
UM Nonlin Version ����� User Manual

Subrata Ghosh� James Hendler� Subbarao Kambhampati� Brian Kettler

Parallel Understanding Systems Group

Department of Computer Science

University of Maryland

College Park� MD �����
Email� nonlin�users�request	cs
umd
edu



Contents

� Introduction �

��� The Rest of This Document � � � � � � � � � � � � � � � � � � � �
��� Support for UM Nonlin � � � � � � � � � � � � � � � � � � � � � �

����� Acknowledgements � � � � � � � � � � � � � � � � � � � � �

� De�ning Problem Domains� The Task Formalism �

� Inside UM Nonlin �

��� Major Program Data Structures � � � � � � � � � � � � � � � � �
��� Network Node Types � � � � � � � � � � � � � � � � � � � � � � � ��
��� The Context Mechanism � � � � � � � � � � � � � � � � � � � � � ��
��� Some Useful Global Variables � � � � � � � � � � � � � � � � � � ��
��� Some Caveats � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Running Nonlin ��

��� Installing Nonlin � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� De	ning the Domain � � � � � � � � � � � � � � � � � � � � � � � ��
��� Loading Nonlin � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Invoking Nonlin � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Debugging Options � � � � � � � � � � � � � � � � � � � � � � � � ��

A A Brief Description of the Nonlin Files �	

B Sample Schema De�nitions �

B�� Blocks World Domain � � � � � � � � � � � � � � � � � � � � � � ��
B�� House Building Domain � � � � � � � � � � � � � � � � � � � � � ��

C Tips for Working with Operator Schemas ��

C�� Bound Variables and Schema Instantiation � � � � � � � � � � � ��

D Sample Runs� Blocks World ��

E Version History ��
E�� Changes in Version ����� 
������ � � � � � � � � � � � � � � � � ��
E�� Changes in Version ����� 
����� � � � � � � � � � � � � � � � � � ��

�



� Introduction

This user manual describes a UM Nonlin a Common Lisp implementation
of Nonlin� Nonlin is a hierarchical nonlinear domain�independent planning
system originally developed by Austin Tate� Full details can be obtained
from Tate�s paper Project Planning Using a Hierarchic Nonlinear Planner 
Research Report No� �� Department of Arti	cial Intelligence University of
Edinburgh� The implementation of UM Nonlin is relatively faithful to the
methodology of the original Nonlin although some name changes have been
made within the operators to conform more closely to more recent usage in
the arti	cial intelligence planning community� The system has been tested in
several Common Lisp implementations including Macintosh Common Lisp

MCL� and Allegro Common Lisp but of course we cannot guarantee that
it will work in all common lisp implementations�

The purposes of this user manual are to describe how to install and run
the UM Nonlin program henceforth referred to as �Nonlin� 
versus �Tate�s
Nonlin�� and to highlight the di�erences between Tate�s formulation and
this implementation� Thus the algorithms of Nonlin similar to those of
Tate�s Nonlin are not described in detail here and one should refer to
Tate�s technical report for more information�

Given a set of operator�action schemas speci	ed by a �knowledge engi�
neer� for a given planning domain Nonlin can generate a plan for a domain
problem consisting of an initial state and one or more 
conjunctive� goals
speci	ed by a user� Domain operators states and goals are speci	ed via
Nonlin�s Task Formalism described in Section ��

Nonlin is hierarchical in that actions to achieve goals can be speci	ed
as hierarchies with abstraction� These hierarchical abstractions will be used
by Nonlin to develop a plan that is 	rst composed of higher�level operators
and is progressively re	ned into lower�level operators and ultimately into
primitive 
i�e� directly executable� actions�

Nonlin can plan for problems in which there may be multiple goals that
interact where planning by generating a linear sequence of actions might be
inadequate� To plan in a nonlinear manner Nonlin represents plans as a
partially�ordered network of actions� A least�commitment strategy is used
which avoids introducing an ordering among actions unless it is necessary�
Such an ordering may be necessary when one action is needed to establish
a precondition for another action or when the e�ects of multiple actions
interact 
e�g� when one action denies a precondition for another action��
When the planning is completed a totally�ordered plan 
i�e� one of possibly

�



several total orderings� is output�
Nonlin is capable of backtracking to produce an alternate plan 
replan�

ning� and backtracking when it reaches a dead end during planning� Choice
points 
and their corresponding contexts see Section ���� are preserved in
a stack whenever Nonlin selects between two or more alternatives� Choices
may be made during schema selection schema instantiation and action lin�
earization� Backtracking to choice points�contexts is done in a depth�	rst
manner�

The basic control cycle of the planner consists of expanding the current
nodes in the network and checking for interactions between actions 
and
correcting any by linearization� until the network is fully expanded and
the plan is generated� If at any point the plan cannot be expanded or an
interaction cannot be corrected then the planner backtracks 
if possible�
switches contexts and continues�

A Question�Answering 
q�a� component of Nonlin is used to determine
the value
s� of a proposition at a node in the network 
in a given context��
The answer returned by QA is not fully deterministic since the network is a
partial ordering� The q�a component is also used to determine what links

linearizations� could be added to the network to establish a given value of
a proposition at a node�

Input to Nonlin consists of�

� the Task Formalism de	nitions of the operators and actions for a do�
main 
these de	nitions are actually incorporated into the source code�

� a list of facts that are always true

� a list of facts describing the initial state of the world

� a list of goals 
states� to be achieved

Output from Nonlin consists of�

� a plan 
alternate plans can be generated� �

� the optional output of the various program data structures

�The plan is printed to the user and also output via several global variables �see Section
�����

�



��� The Rest of This Document

The following sections of the manual describe how to de	ne problem do�
mains 
Section �� what the major components of Nonlin are 
Section ��
and how to install and run Nonlin 
Section ��� Some caveats about this
implementation are given in Section ���� Information on source 	les sample
schema de	nitions and runs and additional tips for de	ning schemas are
given in the appendices�

��� Support for UM Nonlin

This project is being distributed free of charge with no implied warranty
or support� If you FTP UM Nonlin please let us know by sending mail
to nonlin�users�request�cs�umd�edu 
so we can put you on our mailing list
etc���

The following internet email mailing lists have been set up to allow com�
munication among users of UM Nonlin�

� nonlin�userscs�umd�edu � a general mailing list of Nonlin users
that is primarily intended for use by the UM Nonlin maintainers to
announce new releases 	xes etc�

� nonlin�users�requestcs�umd�edu � for requesting information from
the UM Nonlin maintainers� Send mail here to be added to or deleted
from the nonlin�users mailing list�

� nonlin�bugscs�umd�edu � for reporting bugs to the UM Nonlin
maintainers� Bugs will be investigated as time permits�

����� Acknowledgements

The implementation of UM Nonlin was done by Subrata Ghosh and Rao
Kambhampati while they were graduate students working with Prof� James
Hendler� Subsequent maintenance of the code and the creation of this user
manual was done by Brian Kettler� Prof� Austin Tate has provided useful
information about the original Nonlin� Thanks also to the users that have
provided bug reports and other feedback�

�



� De�ning Problem Domains� The Task Formal�

ism

The Task Formalism 
TF� is Tate�s mechanism for de	ning the operators
and actions of the problem domain� TF draws from Sacerdoti�s SOUP 
Se�
mantics of User Program� language and uses the STRIPS representation of
operators�

The problem domain can be decomposed into higher and lower level
operators� The planner develops the plan by considering operators that
match the higher level goals� These high level operators are later expanded
by the planner into lower level operators� Eventually these are expanded
into primitive 
i�e� non�decomposable� actions� Decomposing the domain
can make the planner more e�cient� The decomposition of operators is
speci	ed by the TF de	nitions for the problem� Decomposition can take
place to an arbitrary depth�

TF de	nitions are placed in the 	le operators�lisp� A subset of Tate�s
TF has been implemented here� The primary TF entities areACTSCHEMA

and OPSCHEMA which have identical syntax and semantics� By conven�
tion OPSCHEMAs are used to represent how a particular goal is achieved

i�e� they expand into subgoals and actions�� ACTSCHEMAs are used to
represent actions which have e�ects� Tate brie�y mentions this distinction
but does not motivate it in detail�

Schemas may have the following parts�

type� �ACTSCHEMA� or �OPSCHEMA�

name� schema name

todo� This is the pattern which typically includes variables� When expand�
ing a goal node Nonlin attempts to unify this pattern with the goal�
If there is a match then this schema is a candidate for instantiation�

expansion� The expansion of the schema� This is a partially�ordered list
of steps� Each step will become a node in TASKQUEUE after the
expansion� Every step has the following 	elds� id 
usually �stepN��
type 
one of �goal action primitive�� and pattern� The type 	eld
indicates the type of node resulting from the expansion of that step in
the schema� The node types di�er in how they are expanded by the
planner 
see Section ����� Note that the id 	eld is used only within
the schema de	nition� When the schema is expanded the system will
assign its own id and node number to each resulting node�

�



orderings� The ordering
s� among steps in the expansion� Each ordering
is of the form m �� n where m n are the ids of two steps� Orderings
are transitive� Orderings may be left unspeci	ed between steps�

conditions� A condition determines whether an applicable schema 
i�e� one
whose pattern uni	es with the current subgoal� can be instantiated�
Each condition has the following 	elds� type 
one of �precond unsu�
perv use�when use�only�for�query� � see descriptions below� pattern

negated patterns are unsupported� purpose 
at step�id� and con�
tributor 
from step�id�� The from 	eld is only for conditions of
type precond� The step speci	ed in the from 	eld will be listed as
a contributor for the step speci	ed in the to 	eld�� The types of con�
ditions are mentioned below� Some precondition�type conditions may
be added automatically by Nonlin as described below�

e�ects� The e�ects of the action� This includes assert and delete state�
ments 
predicates containing variables��

variables� This is a list of variables used in the schema de	nition�

The syntax for schema de	nition is very similar to that speci	ed by Tate�
Sample schemas are given in Appendix B�

Some terminology di�erences between the types of conditions in Tate�s
TF and TF as implemented here are�

�� �precond type conditions 
preconditions� are equivalent to Tate�s su�
pervised conditions� The planner achieves these conditions in order
to apply an operator� In the process the plan is expanded to establish
these conditions�

�� �unsuperv type conditions 
unsupervised� are implemented as de�
scribed in Tate�s report� Unsupervised conditions are preconditions
to be established before an operator can be applied� Unlike regular
preconditions 
those of type �precond� however unsupervised con�
ditions are established by some other unspeci	ed schema and thus do
not result in the expansion of the plan� The planner will not attempt to
achieve these unsupervised conditions until the entire plan has been
expanded� It will then attempt to achieve all of the unsupervised
conditions 
via linearizations � not expansions�� If an unsupervised

�Note� Nonlin does not verify that the from�step actually asserts the condition for the
to�step� Thus the user should insure that these 	elds are correct�

�



condition cannot be achieved the planner will backtrack� If any of
these conditions cannot ultimately be achieved the planner will fail
to generate a plan� For an example of unsupervised conditions see the
sample house building schema in Appendix B�

�� �use�when type conditions are equivalent to Tate�s holds conditions
and are also known as �lter conditions� They are used to determine
the relevancy of an operator� The plan is not expanded as a result of
these conditions� These conditions are used for schema selection and
once satis	ed are never removed as long as the schema instantiation
is not removed� See the note on �use�when conditions in the Caveats
List �Section ���	�

There are two special �use�when conditions� �equal var� var�� and
�not �equal var� var���� They are used to specify that two vari�
ables that appear in a schema must codesignate and must not codes�
ignate respectively� These conditions should be listed after any other
conditions in the schema that may bind the speci	ed variables� Note
that equal is the only predicate that may be negated in a condition��

�� use�only�for�query type conditions are not described in Tate�s tech�
nical report because they were a later addition to Nonlin� In Nonlin
all patterns in the plan state 
e�g� action patterns goal patterns ef�
fects of instantiated schemas etc�� must be ground 
i�e� all of their
variables bound��

�use�only�for�query conditions allow their variables to be temporar�
ily bound� If necessary such a binding can later be changed 
in con�
trast to bindings for other types of conditions which are protected��
Such a binding may be changed for example when an interaction can�
not be eliminated by a linearization 
see the function try�to�modify�
binding and other functions in the 	le link�lisp�� See the note on
�use�only�for�query conditions in the Caveats List
 Section ���	�

For an example of where this type of condition would be used refer to
the blocks world TF given in Appendix B� In the puton actschema

�Tate
s Nonlin� in contrast� allows arbitrary predicates to be negated in conditions� To
avoid issues about the meaning of negated predicates �and to simplify the implementation��
UM Nonlin does not permit this� In most cases negated predicates can be speci	ed using
an additional �non�negated� predicate� For example� the predicate closed could be used
as the negation of predicate open� Care must be taken that any action asserting �closed

x� should also delete �open x�� and vice versa�

�



the condition �on �x �z� exists so that the variable z will be bound to
the block currently beneath block x� Let�s assume that x � Block A
and z � Block B and thus the condition is �on A B�� The variable is
also bound to Block B in the e�ects of the schema� The binding of z to
a particular block 
block B in this case� is not a condition for the use
of the schema� That is z can be any block which x happens to be on
top of at the time� During the course of further planning Block A may
need to placed on top of another block� If the condition �on A B� were
protected then the planner would have a problem 
i�e� an interaction
would occur�� But since it is a use�only�for�query condition the
planner can rebind variable z to be whatever is necessary to continue
planning�

The value of the global variable �autocond� determines if precondi�
tions will be automatically added to the schema without the need to spec�
ify such conditions explicitly in the schema de	nition� If �autocond� �
T or AUTO is speci	ed in the schema de	nition then for each step in
the expansion of type goal 
followed by a step of type action� a pre�
condition of the form ��precond pattern �at pnode �from cnode� will be
added where �pattern� matches the goal step pattern �pnode� matches
the node number assigned to the node from expansion of the action step
and �cnode� is the node number from the expansion of the goal step�
For example in schema MAKEON given in Appendix B the preconditions
��precond �cleartop �x� �at step� �from step��
and ��precond �cleartop �y� �at step� �from step�� would automati�
cally be added 
if �autocond� � T�� To disable this automatic behavior
globally set �autocond� to NIL� To disable it for a particular schema only
specify NONAUTO in the condition section of the schema�

Some minor TF statements for schemas have not been implemented here�
These include� COMPUTE conditions MAINEFFECTS LEVELS COST�
These are a possible target for future implementation�

Schemas are stored in a Schema Table which is a hash table where
schemas are hashed on their pattern �todo� 	eld�

See Appendix B for some sample schema de	nitions�

� Inside UM Nonlin

This section brie�y describes some aspects of the UM Nonlin program�s
design� It is not intended to be comprehensive but rather to point out

�



the major data structures etc� that might be useful to know about when
debugging a domain de	nition tracing Nonlin�s solution of a plan etc�

��� Major Program Data Structures

The planner uses the following major data structures during planning� Most
of these can be traced during Nonlin�s operation 
see section �����

� ALLNODES

This contains the partially ordered network of actions as a collection
of nodes� ALLNODES is implemented as an array� Particular nodes
are referenced by their unique node numbers� Each node is imple�
mented as a Common Lisp structure with various 	elds� id� node�
num� type� parent� children� prenodes� succnodes� expansion�

expandconds� expanded� ctxt �e�ects�� mark� nodevars� These
	elds have the same meaning as speci	ed by Tate�

The 	le def�lisp contains routines for node de	nition and access�

� GOST

The GOST 
Goal Structure Table� is used for resolving interactions

through linearization� in the developing plan� Entries in the GOST
give the purpose 
if any� of a particular e�ect at any node� Conditions
on the nodes are stored in the GOST together with lists of contributors�
The GOST is implemented as a hash table and the conditions are
hashed on their pattern�

The 	le gost�lisp contains GOST routines�

� TOME

The TOME 
Table of Multiple E�ects� is used for detecting interac�
tions in the developing plan� E�ects at each node are stored in the
TOME� The TOME is also used by the q�a component to determine
if a proposition is true at a given point in the network� It is also im�
plemented as a hash table and the e�ects are hashed on their pattern�

The 	le tome�lisp contains TOME routines�

� TASKQUEUE

This contains all the nodes which are yet to be expanded� The planner
terminates when the TASKQUEUE becomes empty� Currently it is
implemented as a LIFO list of nodes�

�



The 	le def�lisp contains TASKQUEUE routines�

� CONTEXT�LIST

This contains all backtracking choices� It lists backtracking points and
the alternatives available at each point�

The 	le backtrack�lisp contains CONTEXT�LIST routines�

��� Network Node Types

The following are the types of nodes in the network 
ALLNODES��

� GOAL nodes are expandable� The planner 	rst determines whether
the goal 
pattern� is already true in the current context� If it is true
then it is replaced by a PHANTOM node� Otherwise the planner
will attempt to establish the goal�

� PHANTOM nodes are not expandable� They are used as placehold�
ers for facts that have already been established in the current context�
However if a phantom node�s fact 
pattern� later becomes false then
the phantom node reverts to being a goal node 
which will then be
placed on the task queue��

� ACTION nodes are expandable unless they represent primitive ac�
tions� The planner will not however attempt to see if the pattern of
an ACTION node is already established in the current context 
as it
does for GOAL nodes��

� PLANHEAD� DUMMY nodes are not expandable� They are used
to specify the network structure and serve as points where conditions
may be attached to 
for the planner�s internal use only��

�

��� The Context Mechanism

This is used to implement the backtracking feature of Nonlin described
previously� A context variable 
generated by gensym� is added to every
node link condition and e�ect� A new context is generated every time a
backtracking point 
caused by making a choice between multiple schemas
or multiple linearizations� is reached� One of the alternatives is selected

��



and the rest are saved in the �context�list� with the corresponding con�
text� Whenever the planner fails the backtracking routine 
in 	le back�
track�lisp� backs up to an earlier context where there is some alternative
choice� It throws away everything 
nodes links conditions and e�ects� that
were generated after the context it backtracks to� The planner selects one
of the alternatives and continues�

��� Some Useful Global Variables

The following can be set by the user to control Nonlin�

Variable Description
autocond� when T 
NIL� enables 
disables� automatic

condition generation

see previous section�
cycle�limit� the max� number of planning cycles


node expansion cycles� to run

The following global variables contain output from Nonlin after it has
successfully terminated�

Variable Description

cycle�count� number of planning cycles 
node expansions� done
planner�in� input given to planner
planner�out� output from planner 
ordered list of primitive actions�
nonlin�termin�status� status of Nonlin at termination

��� Some Caveats

There are some known �problems� with UM Nonlin� Most of these are not
bugs per se but rather originate from the design of the current implemen�
tation� Some have work�arounds and others can be avoided� Most of these
are subtle and should not arise frequently� At some point we hope to correct
these but as most require signi	cant redesign and reimplementation they
will not be remedied in the near term�

Matching of facts in initial state are handled incorrectly which can nega�
tively impacts completeness of plan generation� A �use�when type condition
is matched 	rst against the always context and then to the initial context

��




state�� If a match to the condition is found ONLY variable bindings from
the initial state facts matched will be returned� That is the condition will
NOT be matched to the e�ects of other potential contributors 
i�e� the gen�
eral Q�A match procedure will not be invoked��� Thus other contributors
will be ignored and problems will ensue if a clobberer node is placed between
the initial state and the condition�s consumer� It is unclear why Nonlin was
done this way 
see cryptic comment in Q�A 
in establish�lisp�� This prob�
lem is only relevant for facts that can be contributed by both the initial
context 
or always context� AND by e�ects of actions in the plan� For facts
of this sort the user could have every plan expand into a dummy action
which asserts the facts in question rather than having them asserted in the
initial or always contexts�

�use�only�for�query conditions may be improperly re�bound negatively
impacting plan correctness� A �use�only�for�query condition can be re�bound
if necessary� If a condition C� of this type contains variable X where X ap�
pears in another condition C� of the same schema instantiation that intro�
duced C it is possible for X to later be re�bound in C�� When this occurs
however X will not get re�bound in C� to its new value� Hence variable X
will wrongly have the newer value in C� but the older value in C�� Note that
C� can be a condition of any type 
e�g� �use�when etc��� The current �	x�
is to avoid the use of �use�only�for�query conditions that contain a variable
used in other conditions�

All conditions must be NECESSARILY 
vs� possibly� true to be consid�
ered established which can Negatively impacts plan completeness� When
Q�A is called on condition C of node N C must be true at N otherwise C
will be considered unachieved�failing� E�g� if a potential contributor N�
exists for C and a potential clobberer N� exists for C N� and N� precede
N and N� and N� are in parallel to each other C will not be necessarily
true and will fail� Nonlin will NOT try to order N� before N� so as to
achieve C for N� No 	x exists for this currently� For now user could put
more ordering constraints into the schema de	nitions to reduce the number
of tasks in parallel and�or reduce the use of goals in parallel that have the
same predicate�

��



� Running Nonlin

The following is the general procedure for running Nonlin� Details are given
in subsequent sections�

�� Install Nonlin before using it for the 	rst time�

�� De	ne the planning domain 
if required��

�� Load Nonlin before each session�

�� Invoke Nonlin for each planning problem�

��� Installing Nonlin

To install this at your site�

�� FTP the binary 	le nonlin�files�tar�Z to your system via anony�
mous ftp from cs�umd�edu 
directory �pub�nonlin��

�� Uncompress the compressed 	les 
i�e� those with a ��Z� su�x� via
uncompress nonlin�files�tar�Z�

�� The source code 	les should be extracted from the 	le nonlin��les�tar
via
tar �xvf nonlin�files�tar� This will install the 	les in a subdi�
rectory named Nonlin

�� Edit the value set for the directory pathname and lisp binary 	le ex�
tension in load�nonlin�lisp�

The Nonlin code is loaded into a lisp package called �nonlin�
The user manual describing the implementation and how to run Nonlin

is contained in the 	les nonlin�ps 
postscript version� nonlin�dvi 
device�
independent version� and nonlin�tex 
LaTex source�� 
These document
	les should be 	rst uncompressed as described above��

The 	le README contains miscellaneous notes on the implementation�
The 	le load�nonlin�lisp contains Lisp functions for loading and com�

piling the planner 	les� The user should ensure that the 	le pathnames
speci	ed in this 	le point to the directory in which Nonlin has been in�
stalled�

��



��� De�ning the Domain


This step is not required if you want to use an existing domain that someone
else has de	ned��

Create a lisp source 	le containing the operators for your domain spec�
i	ed in Task Formalism as described in Section �� See the 	le blocks�

operators�lisp for an example 
a listing of this 	le can be found in Ap�
pendix B��

��� Loading Nonlin

To load Nonlin before each session do the following� 
Note that some of
these commands may vary depending on the speci	c Common Lisp imple�
mentation being used��

�� Invoke your common lisp�

�� If necessary load the 	le load�nonlin�lisp via �load �load�nonlin�lisp���

�� The planner source 	les are loaded via �load�nonlin�sources�� Note
that this step may be omitted if the sources have already been compiled

see below��

�� The planner source 	les are compiled via �compile�nonlin�sources��
Note that this step may be omitted if binary object 	les for the pro�
gram already exist�

�� The planner object 	les are loaded via �load�nonlin�binaries��

�� Load the lisp 	le containing the operators for your domain 
e�g� blocks�
operators�lisp for blocks world��

�� Optionally load a lisp 	le containing prede	ned planning problems for
your domain 
e�g� blocks�sample�probs�lisp for blocks world��

You may wish to invoke �reset�schematable� prior to to 
re�loading a
new set of schemas� You could also place a statement in the operators 	le
itself to invoke that function�

��� Invoking Nonlin

After Nonlin is loaded it is invoked for each planning problem� Planning
problems may be supplied interactively by the user or may already be de�
	ned� To plan for a new problem�

��



�� Start the planner via �plan�for��

�� Enter the problem name when prompted 
any valid Lisp atom is ac�
ceptable��

�� Enter a list of facts 
	rst order formulae� that are always true� A fact
or goal is a 	rst�order formula of the form 
p arg� arg� � � �argn� where
p is a predicate 
e�g� �on a b���

�� Enter a list of facts of the initial state�

�� Enter a list of goals to be achieved�

To plan for a prede�ned problem 
i�e� a problem that has been de	ned in
a lisp 	le e�g� blocks�sample�probs�lisp� invoke the plan�for function with
the name of the problem i�e� �plan�for �problem 	
problem�name���
For example after loading the 	les blocks�operators�lisp and blocks�sample�
probs�lisp you can test Nonlin by having it solve the prede	ned prob�
lem sussman�blocks 
Sussman�s anomaly� by typing� �plan�for �problem

	sussman�blocks��
If the planner 	nds a successful plan it prints out the plan as a sequence

of primitive operations and then prints the message Replan � and waits
for an input� If the user answers yes it continues to 	nd alternative plans��
When no alternatives are left the message �no more solutions� is printed
out and Nonlin terminates�

See Appendix D for some sample runs in the blocks world domain�

��� Debugging Options

The planner can be run in verbose mode with the debug option� A user
can trace one or more of the major data structures 
e�g� the GOST TOME
etc� � see Section ���� using the functions nonlin�debug 
enables debug�
ging� and nonlin�undebug 
disable debugging�� Help on these functions is
available by invoking the function nonlin�debug�options�

There are other functions that assist in debugging� Many of these are
de	ned in the 	le def�lisp� These include functions for displaying data
structures initializing them etc� Two of these are reset�schematable
which resets the schema table 
after which you must reload the operators

�Note that Replan backtracks to the latest choice point� selects a new alternative and
continues from there� But that does not always generate a new plan�

��



	le you are using� and dump�schematable which displays the contents
of the schema table 
i�e� the operators that have been loaded��

��



A A Brief Description of the Nonlin Files

backtrack�lisp contains backtracking routines�

def�lisp contains most of the data structure de	nitions initializations and
access routines

establish�lisp The main function in this 	le is try�to�establish� For goal
nodes this function tries to establish the condition to be achieved by
the goal node� With the help of q�a�process�tome�entry the func�
tion q�a checks if a condition is true at a particular node� Q�a ac�
cepts non�ground patterns� q�a�process�tome�entry accepts only
ground patterns and using the tome it computes the four critical
lists 
VL� PARVL� VNOTL and PARVNOTL� as de	ned in
�TATE�� and returns them to the calling function 
q�a�� When
called with a non�ground pattern q�a 	nds all possible bindings and
calls q�a�process�tome�entry with each binding

expand�lisp contains the schema expansion routine� Given a schema and
a node this function replaces the node by its expansion� It does all
relocation additions of e�ects and conditions�

gost�lisp contains gost�entry de	nition and gost access 
lookup insertion
and deletion� routines�

init�planner�lisp contains the function get�problem which gets the input
problem interactively from the user and store�access predicates that
are always true stored in �always�ctxt� 
node number ��� and the
predicates that are initially true stored in �init�ctxt� 
node number
���

load�nonlin�lisp contains functions for loading program 	les� It contains
the directory path names for the program 	les�

link�lisp contains routines to detect and correct interactions� The func�
tion nonlin�link takes an interact list makes all possible pair of in�
teractions and then removes the interactions by successively calling
resolve�link� Given a pair of interactions resolve�link computes all
possible linearizations�

mark�lisp contains functions to mark the network 
i�e mark each node �be�
fore �after or �parallel� with respect to a given node passed as a
parameter

��



plan�lisp contains the top level control structure of Nonlin� The function
planner�� picks a node from TASKQUEUE each iteration and ex�
pands that node�

printplan�lisp contains a topological sort routine which prints out one of
the many possible linear plans from the partially ordered network in
ALLNODES�

readschema�lisp contains routines that process the schema de	nitions�

schema�lisp contains the function select�schema�to�expand which 	nds
all applicable schemas from schematable 	nds all possible bindings
and with the schemas and the bindings makes all possible ground
schema instances� It saves all but one schemas in the backtracking
list and returns one schema to the calling routine�

tome�lisp contains tome�entry de	nition and tome access functions�

unify�lisp contains all uni	cation routines�

util�lisp contains some utility macros�

blocks�operators�lisp contains schema de	nitions for the blocks world do�
main�

blocks�sample�probs�lisp contains prede	ned sample problems for the
blocks world domain�

house�operators�lisp contains schema de	nitions for the Tate�s house build�
ing domain�

��



B Sample Schema De�nitions

B�� Blocks World Domain

The following operators implement a small blocks world domain� These
operator schemas are in the 	le blocks�operators�lisp� For additional tips
on specifying schemas see the next appendix�

� The following statement will cause preconditions to be added to the

� schema without having to explicitly specify them�

�setf autocond t�

� The following schema details how the goal of �on �x �y� is to be

� achieved� There are � preconditions �pc�� pc�� to be achieved

� before doing an action to achieve �puton �x �y��

� Note that no ordering is specified between pc� and pc��

� Specifying orderings where possible improves planner efficiency�

� but orderings should NOT be specified so as to over�constrain

� the planner�

� Also� by specifying pc� and pc� as GOALS� rather than as

� ACTIONS� the planner will first check to see if they are

� already achieved BEFORE expanding them� On the other hand�

� since we know that �x is not on �y �since this schema would

� not be selected to achieve an already achieved goal��

� we can tell the planner to find an action to achieve �puton �x �y�

� without bothering to check first to see if it is necessary�

�opschema makeon

�todo �on �x �y�

�expansion �

�pc� �goal �cleartop �x�� � pc�� pc�� act are

�pc� �goal �cleartop �y�� � arbitrary labels

�act �action �puton �x �y��

�

�orderings ��pc� �� act� �pc� �� act��

�variables ��x �y�

�

� The following conditions will be added by the planner to the above schema

��



� �since autocond is enabled��

� �conditions ���precond �cleartop �x� �at act �from pc��

� ��precond �cleartop �y� �at act �from pc���

� The following schema details how to achieve �cleartop �x��

� Here pc� is a precondition to be achieved before doing an action

� to achieve act� This schema contains filter ��use�when� conditions

� which� if not met� will keep this schema from being instantiated�

� The first condition is used to match �y with what is now on top of �x�

� The second condition is used to find a block �or table� which is

� clear� and thus �y can be removed from atop �x and put on �z

� This is achieved by first clearing �y �pc�� and then putting �y

� on �z� In order to do this �x� �y� and �z must be distinct blocks

� �filter conditions � and ��� Remember that filter conditions must

� be satisfied in the current context� The planner will NOT attempt

� to satisfy them �as it would for preconditions such as pc���

�opschema makeclear

�todo �cleartop �x�

�expansion �

�pc� �goal �cleartop �y��

�act �action �puton �y �z��

�

�orderings ��pc� �� act��

�conditions �

��use�when �on �y �x� �at act�

��use�when �cleartop �z� �at act�

��use�when �not �equal �z �y�� �at pc��

��use�when �not �equal �x �z�� �at pc��

�

�variables ��x �y �z�

�

� The following conditions will be added by the planner to the above schema

� �since autocond is enabled��

� �conditions ���precond �cleartop �y� �at act �from pc���

��



� The following schema achieves �puton �x �y� by the primitive action

� puton�action� There are no preconditions and � filter conditions�

� The first � filter conditions say that before applying this schema�

� �cleartop �x� and �cleartop �y� must have been achieved� The orderings

� in the makeon schema will ensure this� but stating these conditions

� explicitly here protects them from being clobbered �by an action that

� comes between the actions that establish these preconditions and

� and puton�action�� The third filter condition is used to bind

� �z for purposes of specifying the effects of the action� �See the

� section in the text on �use�only�for�query conditions for a further

� description of this example��

� Note also that this schema has effects �of the primitive action

� puton�action�� Thus this schema is an ��actschema		 instead of

� an ��opschema		� although this labeling makes no difference to Nonlin�

�actschema puton

�todo �puton �x �y�

�expansion ��act �primitive �puton�action �x �y���

� this action is primitive �and hence non�expandable�

�conditions �

��use�when �cleartop �x� �at act�

��use�when �cleartop �y� �at act�

��use�only�for�query �on �x �z� �at act�

�

�effects ��act �assert �on �x �y��

�act �assert �cleartop �z��

�act �delete �cleartop �y��

�act �delete �on �x �z���

�variables ��x �y �z�

�

��



B�� House Building Domain

This example is intended to illustrate how one of the schema de	nitions
for house building given in Tate�s technical report would look in the Task
Formalism as it has been implemented here� This schema is from page
� �TATE�� � Below is how it looks for this implementation� See the 	le
house�operators�lisp for the rest of the house building schemas�

To plan in this domain�

�� Clear the schema table via �reset�schematable�

�� Load the operators via �load �operators�tate�lisp��

�� Invoke the planner via �plan�for�

�� Enter house for Name of the Problem�

�� Enter �� for the next two prompts for Facts���

�� Enter ��build house�� for Goals to be achieved���

��



� The following schema illustrates how actions can be specified

� hierarchically �i�e�� goal �decorate� decomposes into these

� � actions�� These actions are in turn decomposed into other

� actions� The �partial� orderings between these actions that have

� been specified constrain the search space of the planner and

� thus improve planning efficiency�

�actschema decor

�todo �decorate�

�expansion �

�step� �action �fasten plaster and plaster board��

�step� �action �pour basement floor ��

�step� �action �lay finished flooring ��

�step� �action �finish carpentry ��

�step� �action �sand and varnish floors ��

�step� �action �paint ��

�

�orderings � �step� �� step�� �step� �� step�� �step� �� step��

�step� �� step�� �step� �� step���

�conditions �

��unsuperv �rough plumbing installed � �at step��

��unsuperv �rough wiring installed � �at step��

��unsuperv �air conditioning installed � �at step��

��unsuperv �drains installed � �at step��

��unsuperv �plumbing finished � �at step��

��unsuperv �kitchen equipment installed� �at step��

��precond �plastering finished � �at step� �from step��

��precond �basement floor laid � �at step� �from step��

��precond �flooring finished � �at step� �from step��

��precond �carpentry finished � �at step� �from step��

��precond �painted � �at step� �from step��

�

�

��



C Tips for Working with Operator Schemas

The following tips are meant to assist in the 
somewhat arcane� �art� of
schema de	nition� There are of course many ways that operators can be
speci	ed for a given domain� Some will be more e�cient than others� A
poorly speci	ed schema however can result in it being impossible for the
planner to generate a plan� The best way to de	ne good schemas is to
experiment by tracing the planner�s operation with the schemas 
see the
section on debugging��

Users of this program are encouraged to submit their own tips via email
to nonlin�users�request�cs�umd�edu�

C�� Bound Variables and Schema Instantiation

This tip was submitted by Subbarao Kambhampati 
Arizona State Univer�
sity��

The most tricky thing that needs to be speci	cally stated in Nonlin
manual is that Nonlin isn�t guaranteed to work when all the variables are
not bound at the schema instantiation time�

The two ways of binding variables are 
�� by putting the variable in the
�todo 	eld and 
�� by putting the variable in a �use�when condition�

Suppose you have the goal 
at robot !y� and the way to achieve it is to
move robot from !x to !y�

Novice users tend to write something like the following�

�opschema move�robot

�todo �at robot �y�

�expansion �

�step� �goal �at robot �x��

�step� �action �move robot �x �y��

�

�orderings ��step� �� step���

�

Now this is almost certainly going to fail because Nonlin won�t bind
!x at the time of schema selection and thus it will be stuck with partially
instantiated goals� Since the correspondences between the variables 
the
codesignation and noncodesignation constraints� are not maintained in a

��



systematic fashion once there are variables in the plan all bets are o�
regarding completeness of the planner�

The right way to write this is to put a bunch of use�when conditions that
will make sure that !x will get bound before the schema is selected� That
is�

�opschema move�robot

�todo �at robot �y�

�expansion ��step� �action �move robot �x �y���

�conditions ���use�when �at robot �x� �at step���

�

��



D Sample Runs� Blocks World

IBUKI Common Lisp release ����� October ��� ����

PLANNER��load�l�

NIL

PLANNER��compile�l�

NIL

PLANNER��load�o�

NIL

PLANNER��plan�for�

Name of the Problem� 	�blocks�problem

Facts always true �as a list���cleartop table��

Facts of input situation �as a list�� ��on c a � �on a b��cleartop c��on b table��

Goals to be achieved �as a list�� ��on a b��on b c��

The world state is ��ON B TABLE� �CLEARTOP C� �ON A B� �ON C A��

the problem to be solved is

�SCH�����

	�BLOCKS�PROBLEM��PLAN

Expansion�

� �
ND�������DUMMY��

� �
ND�������GOAL�ON A B���

� �
ND�������GOAL�ON B C���

� �
ND�������DUMMY��

Conditions�



SC������ �PRECOND �ON B C� �at � �from ���



SC������ �PRECOND �ON A B� �at � �from ���

Effects�



SE������ �ASSERT �ON B C� �at �



SE������ �ASSERT �ON A B� �at �

The Planning is OVER

The plan is���

INITIAL STATE

�ON C A�

�ON A B�

�ON B TABLE�

�CLEARTOP C�

��



�CLEARTOP TABLE�



�� �PRIMITIVE �PUTON�ACTION C TABLE� �Prenodes����� �Succnodes� ����

�� �PRIMITIVE �PUTON�ACTION A TABLE� �Prenodes����� �Succnodes� ��

����

�� �PRIMITIVE �PUTON�ACTION B C� �Prenodes��� ��� �Succnodes� ��

���

�� �PRIMITIVE �PUTON�ACTION A B� �Prenodes���� �� ��� �Succnodes� ����

GOAL STATEReplan �no

NIL

PLANNER��debug 	�allnodes��

�ALLNODES�

PLANNER��plan�for�

Name of the Problem� 	�blocks��stack�problem

Facts always true �as a list���cleartop table��

Facts of input situation �as a list�� ��on a b��on b table��cleartop a�

�on c table��on d table��cleartop c�

�cleartop d��

Goals to be achieved �as a list�� ��on a b��on c d��

The world state is ��CLEARTOP D� �CLEARTOP C� �ON D TABLE�

�ON C TABLE� �CLEARTOP A� �ON B TABLE� �ON A B��

the problem to be solved is

�SCH���

	�BLOCKS��STACK�PROBLEM��PLAN

Expansion�

� �
ND�����DUMMY��

� �
ND�����GOAL�ON A B���

� �
ND�����GOAL�ON C D���

� �
ND�����DUMMY��

Conditions�



SC���� �PRECOND �ON C D� �at � �from ���



SC���� �PRECOND �ON A B� �at � �from ���

Effects�



SE���� �ASSERT �ON C D� �at �



SE���� �ASSERT �ON A B� �at �

expanding � �GOAL �ON A B� �Purpose ����

��



after the expansion ��

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����DUMMY��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND�����GOAL�ON C D���PRE������SUCC������

expanding � �GOAL �ON C D� �Purpose ����

after the expansion ��

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����DUMMY��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND������ACTION�PUTON C D���PRE��� ����SUCC������

� �
ND������DUMMY��PRE������SUCC��� ����

� �
ND������GOAL�CLEARTOP C���PRE������SUCC������

� �
ND������GOAL�CLEARTOP D���PRE������SUCC������

expanding � �GOAL �CLEARTOP C� �Purpose ����

after the expansion ��

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����DUMMY��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND������ACTION�PUTON C D���PRE��� ����SUCC������

� �
ND������DUMMY��PRE������SUCC��� ����

� �
ND������PHANTOM�CLEARTOP C���PRE������SUCC������

� �
ND������GOAL�CLEARTOP D���PRE������SUCC������

expanding � �GOAL �CLEARTOP D� �Purpose ����

after the expansion ��

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����DUMMY��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND������ACTION�PUTON C D���PRE��� ����SUCC������

� �
ND������DUMMY��PRE������SUCC��� ����

� �
ND������PHANTOM�CLEARTOP C���PRE������SUCC������

��



� �
ND������PHANTOM�CLEARTOP D���PRE������SUCC������

expanding � �ACTION �PUTON C D� �Purpose NIL�

after the expansion ��

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����DUMMY��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND������PRIMITIVE�PUTON�ACTION C D���PRE��� ����SUCC������

� �
ND������DUMMY��PRE������SUCC��� ����

� �
ND������PHANTOM�CLEARTOP C���PRE������SUCC������

� �
ND������PHANTOM�CLEARTOP D���PRE������SUCC������

The Planning is OVER

The plan is���

INITIAL STATE

�CLEARTOP C�

�ON D TABLE�

�CLEARTOP A�

�ON B TABLE�

�ON A B�

�ON C TABLE�

�CLEARTOP D�

�CLEARTOP TABLE�



�� �PRIMITIVE �PUTON�ACTION C D� �Prenodes��� ��� �Succnodes� ����

GOAL STATEReplan �no

The data structures are

CONTENTS of ALLNODES�

� �
ND�����PLANHEAD��SUCC������

� �
ND�����PLANTAIL��PRE��� ����

� �
ND�����DUMMY��PRE������SUCC��� ����

� �
ND�����PHANTOM�ON A B���PRE������SUCC������

� �
ND������PRIMITIVE�PUTON�ACTION C D���PRE��� ����SUCC������

� �
ND������DUMMY��PRE������SUCC��� ����

��



� �
ND������PHANTOM�CLEARTOP C���PRE������SUCC������

� �
ND������PHANTOM�CLEARTOP D���PRE������SUCC������

Gost Table Entrees�

Cond��CLEARTOP C� ���

 �PHANTOM �at � �from ������



 �PRECOND �at � �from ������ � ��NIL �

Cond��CLEARTOP D� ���

 �PHANTOM �at � �from �����



 �PRECOND �at � �from ������ � ��NIL �

Cond��ON C TABLE� ���

 �USE�ONLY�FOR�QUERY �at � �from ������ � ��NIL �

Cond��ON A B� ���

 �PHANTOM �at � �from ������



 �PRECOND �at � �from ������ � ��NIL �

Cond��ON C D� ���

 �PRECOND �at � �from ������ � ��NIL �

Tome Table Entrees�

Eff��CLEARTOP C� �assert���� � �delete�NIL �

Eff��CLEARTOP D� �assert��� �� � �delete���� �

Eff��ON C TABLE� �assert���� � �delete���� �

Eff��ON A B� �assert���� � �delete�NIL �

Eff��ON C D� �assert���� � �delete�NIL �

NIL

PLANNER��bye�

��



E Version History

E�� Changes in Version ����� ���	
��

� put Nonlin code back into package �nonlin

� minor bug 	xes

� replaced old loader INIT�LISP with LOAD�NONLIN�LISP

� renamed INIT�ALWAYS�LISP to BLOCKS�SAMPLE�PROBS�LISP

� renames OPERATORS�LISP to BLOCKS�OPERATORS�LISP

� replaced debug fn DEBUG with NONLIN�DEBUG NONLIN�UNDEBUG
NONLIN�DEBUG�OPTIONS

� tested under Allegro CL ��� and MCL V���

� added some documentation to code

� changes in User Manual

E�� Changes in Version ����� ��	
��

The main purpose of this release is to 	x several bugs reported by alert
users� An e�ort was made to 	x as many of these as possible� As a result
almost all of the Nonlin 	les contain changes� These changes have been
tested on our Macintosh Common Lisp implementation and should work on
other Common Lisps�

In addition the PACKAGE statements have been removed from the
source 	les as they have hindered the porting of the source code between
di�erent Lisps�

Nonlin now writes various info to some global variables� This was done
to facilitate the use of Nonlin by other applications� These variables are�

� �cycle�count� records the number of node�expansion cycles

� �cycle�limit� is an optional limit on the number of these cycles

� �cycle�limit�p� is t if such a limit exists

� �nonlin�use�mode� is interactive 
normal� if equal to t else is batch

i�e� no prompting to the user� if equal to nil

��



� �goals� records the goals input to the planner

� �planner�in� records the context and goals input to the planner

� �planner�out� records the output 
plan� from the planner

� �kids� records a trace of node expansion

��


