
1 Introduction 

0-Plan is a project centred around computer based generatrue 
planning. There are a number of featurea which make this a 
problem of interest to A I ,  not least the aspects of seamh. Early 
planners investigated the central issues of search space control, 
though it was not until the mid to late '70s that the Nonlin 
system Ill] also incorporated the ability to fully enumerate the 
space, if requid, during the search. This may seem an obvious 
capability but it is essential to have the capability to fully enu- 
merate a search space, if needed, in order to be able to ensure 
completeness of search; if a solution exists it will be found. Early 
planners, and some current systems, did not have this fundamen- 
tal capability. One central issue for the design of a planner which 
can enumerate its search space is to find means to restrict that 
space where possible. 

The @Plan project followed on directly from Tate's work 
in the '70s on Noulin, also undertaken at Edinburgh University, 
though it was influenced by many other systems developed in the 
late '70s and early '80s. In particular it inherits features from: 

NOAH: by being based on a hierarchical representation of 
plans in which actions may be partially ordered. 

Noulin: which introduced the notion of goal structure as 
a means of recording the rationale behind actions in the 
plan, and also the use of typed pnmndations as an aid to 
search space control. A declarative Task Formalism (TF) 
was also used o provide a description of applications to the 
planner. 

Deviser: [12] itself derived from Nonliu but extended to 
handle time and events. 

Molgen: [lo] notable for its ability to perform object selec- 
tion using le& commitment principles. This is supported 
by constraint formulation and pnrpagation techniques. 

O P M :  [8] introduced the concept of cognative specialists 
which can make certain kinds of decisions to alter the plan 
as it is being built. These include decisions about bow to 
approach the planning problem, what knowledge bears on 
the problem, what kinds of actions to try to plan, wbat 
specific actions to plan, and how to allocate resources dur- 
ing planning. 

0-Plan borrows from thesesystems, but importantly it presents 
a framework, or architecture, which enables these techniques to 
be incorporated into a single system in a uniform way. It is a 
system which was deliberately built upon software engineering 
principles from the start. The system is fully described in [5]. 
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2 Tackling Search 

A I planning systems are charged with trying to produce a plan 
which is a possible solution to a spedfied problem, or some task 
specification. In 0-Plan this works as follows. We start by giving 
0-Plan an input problem, itself a complete plan but represented 
at a high level or having some unsatisfied conditions, and a set 
of action descriptions to work with; it returns a plan for the task 
in hand in terms of the given actions. 

The plans produced by 0-Plan are networks. The nodes in 
a network denote actions, and the ares signify an ordering on 
action execution. Each node has information associated with it 
which describes the action's preconditions and effects. Precon- 
ditions are the "logical" conditions which must hold before the 
action can occur. Effects are those logical conditions which will 
hold after the action is completed. Resource information can 
also be associated with each plan node. Since actions can re- 
quire and release resources, each plan node can say something 
about action-specific resource requirements. 

A problem is specified to 0-Plan as a high level or flawed 
plan. The plan will be flawed in the sense that it will have 
some parts missing (i.e. more detail is required), and other parts 
that will not work as required (e.g. there is a conflict between 
competing actions in the plan). 0-Plan's task is to correct this 
input plan so that it wdl work as required. To do this, it needs to 
modify the input plan until a "flawless" plan is produced. Plan 
modifications are designed to add a required plan component to 
achieve an unsatisfied condition, to expand actions to lower levels 
of detail, or to rearrange the plan so as to remove an interaction 
flaw, etc. There will often be more than one plan modification 
possible; that is, there will often be a choice of how to achieve a 
goal or how to fix a fault. Thee  choices lead to search. 0-Plan 
searches through a space of partial plana, modifying one plan to 
obtain another. It seeks a complete plan that is free of faults. 

2.1 Pruning Techniques 

0-Plan incorporates a number of mechanisms, some novel and 
some derived from operational research (on) or other A I  plan- 
ners, in order to restrict the search space the planner needs to 
consider. The various mechanism are described below. 

2.1.1 Condition Typing 

One main form of search reduction in 0-Plan is through the use 
of condition typing, also used in [ l l ,  12, 131. This technique 
however is not strictly independent of the domain of interest as 
all information about how to use condition typing to prune the 
search is fed into the system via the domain description language. 
The responsibility for engaging this pruning therefore falls on 
the user which may or may not be a bad thing. What sets this 
technique aside from the other techniques and heuristics outlined 
below howkver is that it necessarily leads to loss of completeness 
in the abstract search space since the domain writer takes the 
responsibility for a deliberate pruning of the space. Condition 
typing can be very successful but there is work to be done on how 
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far this technique can be developed. It is precisely the demands 
of this technique that caused us to adopt the term knowledge 
based planning to describe our work. In practice condition typing 
is essential on realistic problems in order to reduce search space 
to a manageable level, and this can be done effectively by a 
domain writer providing instructions to the system about how 
to satisfy and maintain conditions required in the plan. 

2.1.2 Time 

At any stage of planning, an activity is represented by a node in 
the plan state. Each activity has distinct start and finish instants 
stored with the activity node in the form of [earliest time, latest 
time] windows. Thus each activity has an earliest start time, 
latest start time, earliest finish time, and latest finish time. A 
time window management algorithm has been successfully de- 
veloped and is used incrementally (whenever the plan network 
is altered) to revise information contained in time windows. In 
this revision process, overall consistency of temporal constraints 
is checked. If the constraints are mutually inconsistent then the 
algorithm signals this condition and the corresponding plan state 
is poisoned (abandoned), resulting in an dective pruning of the 
search. These algorithms have extended those in Deviser [12] 
and have provable termination criteria. 

The time window approach accepts a lack of precise knowl- 
edge about the timing of instants in the plan. No attempt is 
made explicitly to represent probabilistic uncertainty. However, 
probabilistic uncertainty might well be one reason causing the 
planner to have imprecise knowledge on the timing of an instant. 

In specifying imprecise knowledge, the user is free to supply 
any range /’/,U] for the duration of an activity or the required 
delay between an activity and one of its immediate successors in 
the plan. I must be non-negative and U must be greater than or 
equal to 1. Thus, [O,m]represents complete lack of knowledge. In 
general, specification of narrow ranges imposes tighter temporal 
constraints and enhances the possibility of pruning the search 
space due to mutually unsatisfiable temporal constraints. Thus, 
for example, it may be helpful to impose a realistic deadline 
on the finish time of the overall plan rather than to specify an 
upper bound of ca. Analogous comments apply to specifying 
finish times of subplans represented by action descriptions. 

The temporal representation in [3] assumes that an activity 
is represented by two time points: its start instant and finish 
instant. A range on the duration of an activity or on the elapsed 
time between the finish of one activity and the start of another is 
represented by a pair of arcs. The plan network explicitly repre 
sents certain temporal constraints, each represented by one arc. 
Using standard network longest path algorithms, one can then 
discover constraints which are implicitly represented. A longest 
path of length lij between instant i and instant j is equivalent 
to a direct arc of length lij between the same two nodes. Thus 
most constraints are computed on demand. Explicitly repre- 
sented constraints make up a sparse network. In 0-Plan this 
start and finish time information is attached to a single action 
node to allow for quicker access to temporal information but this 
is equivalent to the uniform representation in [3]. 

Time window information is sufficient to signal mutual un- 
satisfiability of temporal constraints when this is present. The 
implementation of this standard network algorithm has high- 
lighted the need for AI systems in general to be able to import 
and incorporate techniques developed in other disciplines. It can 
be proved that this algorithm operates in polynomial time and 
its efficiency is enhanced as it operates incrementally, triggered 
on any local change to the emerging network. 

2.1.3 Resources 

Three types of rewurce have been identified as being important 
during a plan generation process - consumable, renewable and 
substitutable resources. These resource types are distinct from 
time, which we do not treat as a resource in its own right. 

Consumable Resources. Consumable resources are those for 
which an initial stockpile is available which can only be de- 
pleted by actions in the plan. Our problem is one of representing 
and propagating resource consumption constraints in an efficient 
manner and guaranteeing that total usage does not exceed the 
initial availability. We will consider a single resource, widgets, 
with an overall availability of U (a known quantity). The min- 
imum overall usage of widgets must not fall below I (a known 
quantity, typically 0). Thus the overall usage of widgets must 
lie in the range p,u]. In any particular plan state we have lower 
and upper bounds on the number of widgets used by any action. 
Our plan will be valid with respect to the widget resource if it is 
possible to select actual usages of widgets for every action from 
within that action’s known bounds such that the total usage in 
the plan lies in /,U]. Because plan states can only be further con- 
strained as the planning procpss proceeds, we must insist that 
the power bound, upper bound] widget usage range for action a 
must apply to the overall usage of widgets in a more detailed 
subplan which replaces action a. 

For each action in the plan, a bower bound, upper bound] 
range on widget usage for that action is maintained. Our alg- 
rithm maintains consistency between all such ranges. If one such 
range should shrink because the planner is somehow made capa- 
ble of making a more precise statement of resource usage for a 
particular action, then this constraint is propagated throughout 
the plan. Such propagation may cause widget usage ranges to 
shrink for other actions. 

Widget usage constraint consistency is maintained as follows: 
assume that the current plan state is valid with respect to widget 
usage and that each node has an attached widget usage window. 
These windows reflect all known widget usage constraints on the 
plan as it stands. Now assume that an additional constraint 
is imposed, i.e. the lower or upper bound of widget usage at 
some node of the plan is altered so that that node’s resource 
window shrinks. There are 4 conditions which must be main- 
tained (or reachieved) through constraint propagation. These 
conditions relate the resource window at a particular node n 
with resource windows at node n’s parent, children, and sib- 
lings. Maintenance of these conditions thus involves propagation 
of constraints throughout the hierarchy of nodes. The resource 
propagation algorithm computes and maintains min-max pair 
information for the use of a single consumable resource. [2] gives 
precise details of the algorithms used. 

Some general points should be made. First, there is value 
in having bounds as narrow as possible at any node. Narrower 
bounds represent tighter constraints; if each constraint intro- 
duced is as tight as reasonably possible, then the possibility of 
discovering that all constraints are mutually unsatisfiable is en- 
hanced. This is helpful in pruning the overall search space. Thus 
there might well be later benefit in immediate investment of com- 
putational resources to compute relatively tight bounds rather 
than to simply use a default value like [O,m]. Liberally wide min- 
max intervals are of limited value in pruning the search space. 

these types of constraints the level of resource usage in one ac- 
tivity can influence the level of resource usage in another activity 
only through “overall availability” constraints. We have not ac 
commodated the possibility, for example, that the requirement 
for widgets in activity2 might well depend on the level of widgets 
(or some other resource) used in activity1 in a more subtle way. 

Second, this algorithm considers only simple constraints. With 
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Third, if we arrive at a final plan with resource pairs for all 
nodes satisfying the governing constraints then we must assume 
that any value within that pair’s range is feasible. At execu- 
tion time, we could then observe the actual usage of resources as 
we go along and could use the algorithm to update resource win- 
dows and reallocate potential resources to be used. Provided our 
simple resource constraints are satisfied, and provided actual re- 
source usages are ohserved one at a time, we are guaranteed that 
the evolving plan will be feasible with respect to resources. As 
a simple example consider a plan with only 3 nodes in sequence. 
The overall resource availability is 20 and the min-max pairs for 
nodel, node2, and node3 are each [4,fO]. If we discover that 
nodel consumes 10 units of the resource then we must modify 
the min-max pairs for node2 and node3 to be each [4,6]. Thus 
we must assume that a valid execution can result using [4,6]for 
these ranges rather than the original [4,fO]. Now if node2 is 
observed to consume 5 units of the resource then the range for 
node3 must be further modified to [4,5] and we must assume 
that we can execute this action with resources from within this 
range. 

In practice this “assumption” is used to progress the execu. 
tion of a plan np to a point where a resource usage problem 
indicates that the remainder of the plan is not feasible. Replan- 
ning is then indicated. 

Shared Resources with Unit  Availability. A shared re- 
source with unit availability is not consumed but can be used by 
only one agent at a time. Despite an availability of 1, maintain- 
ing constraints on usage of this resource is far more difficult than 
maintaining constraints on a strictly consumable resource. Us- 
age of a shared resource must be scheduled; scheduling problems 
are pot,entially computationally explosive because of the number 
of schedule permutations. We see no distinction between the 
problem of scheduling a shared resource with unit availability 
and maintaining any other logical condition (e.g. (on a b) = 
true) in a plan. At any instant the gadget may be either in use 
or not in u8e. Thus a precondition to allocating the gadget to an 
agent is that “in use gadget” is false, an immediate effect of this 
allocation is that *in use gadget” is made true, and an immediate 
effect of returning the gadget to the resource pool is that “in use 
gadget“ is made false. Hence, no special purpose representation 
is proposed for shared resources with unit availability. 

Shared Resources with Availability Greater than  1. 
our observation that there is no essential difference between 
maintaining constraints on a resource with unit availability and 
maintaining any other logical condition, one might be tempted 
to decompose a resource with availability r > I into r distinctly 
named resources with availability 1. Unfortunately, the result- 
ing r resources will be substitutable and a planner could expend 
much useless effort trying to satisfy unsatisfiable resource con- 
straints by trying other permutations of the usage of such sub- 
stitutable resources. For example, assume that r = f0, that the 
planner has allocated units 1 through 10 to actions a l ,  . . . , al0 
in parallel, and that the planner discovers that action k also in 
parallel requires one unit of this resource. The planner correctly 
diagnoses the conflict that 11 units are required when only 10 
are available. In attempting to correct the situation, the plan- 
ner might then try each of lo! possible reallocations of units 1 
through 10 to actions a,,  , . . ,alo. Enough said! 

It then appears essential that we somehow model a controller 
of the usage of any particular resource. A plan would be valid 
with respect to that resource if it contained a schedule of activi- 
ties which met all temporal constraints required in our temporal 
management algorithm and also obeyed the resource constraints 
imposed by the controller of that rwurce. Resource smooth- 
ing (the management of shared resources) is an inherently in- 

Given 

tractable problem. A least-commitment approach to planning 
would insist that we could reaasure ourselves that a plan exists 
which is valid with respect to every resource while respecting 
temporal constraints. This is a notorious problem. Although it 
is possible to construct simple heuristics for resource smoothing, 
these heuristics are not guaranteed to find a feasible solution. 
Thus these heuristiur cannot be used if we wish to ensure com- 
pleteness of the search. 

Our problem differs from traditional sequencing and schedd- 
ing problems which seek to minimize such objective functions as 
project makespan, weighted tardiness of jobs, etc., subject to 
constraints on the flow of jobs through a shop, utilization of 
machines, etc. The primary differences and analogies are: 

our objective is simply to verify the existence of a feasible 
schedule (and to construct it when planning is completed), 

some of our resource constraints are analogous to those in 
traditional job shop sequencing and scheduling. A shared 
resource with availability n is analogous to n identical ma- 
chines in parallel, 

many temporal constraints that result from one action’s 
effects being a precondition to a later action do not have 
analogues in traditional scheduling and sequencing. 

strictly consumable resources and shared resources are not 
often handled within the same scheduling and sequencing 
model (although both are “ n o n  in different models). 

sequencing and scheduling models do not provide for the 
possibility of resources which are renewable in the sense 
that some activities may be inserted into the plan which 
have the effect of increasing the resource’s availability. Such 
resources are discussed briefly below. 

The first two i t em should work toward making our task eas- 
ier than that of traditional scheduling. However the rest make 
the typical AI planning task considerably more complicated than 
scheduling problems which can be handled successfully by tech- 
niques reviewed in [l] or other more recent O R  sources. To specu- 
late a little, it is reasonable to question whether present domain- 
independent AI planners can cope with realistic problems that 
have a heavy sequencing component. Such planners do well in 
environments where their task of plan synthesis involves primar- 
ily finding appropriate schemata to satisfy particular goals or ex: 
pand particular actions, and their scheduling activity is mainly 
the correction of interactions. In this case scheduling takes the 
form of adding to an existing set of temporal constraints which 
can be represented without resorting to disjunction. Sequenc- 
ing, on the other hand, requires extensive use of disjunction in 
representing possible orderings of activities thus implying lots 
of search. A natural area for further research is to investigate 
the appropriateness of known sequencing and scheduling algo- 
r i thm or more flexible disjunctive plan representations within a 
domain-independent AI planning framework. We are considering 
such approaches. 

Renewable Resources. Resource smoothing problems are fur- 
ther complicated by the introduction of renewable resources. 
This provides a mechanism for the possible substitutability of 
resources, a concept which is difficult to analyze in a traditional 
mathematical model. With renewable resources it may be possi- 
ble to consume resourcel in a task whose effect is to produce ad- 
ditional units of resource2, e.g. money may be converted to fuel. 
Thus resourcel and resource2 become substitutable in the sense 
that a valid plan may be constructed out of various combinations 
of initial availabilities for the two resources. If resourcel and re- 
source2 are both consumable rather than shared then it may be 
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possible to represent constraints on their overall usage. Sucb 
constraints would be standard linear programming constraints 
provided that the process of producing one resource from some 
combination of other resources had a linear production function. 
However, if either resource1 or resource2 is a shared resource, 
the picture is considerably more complicated. Since handling 
shared renewable resources is inherently more complicated than 
handling the shared resourcea above, there is little point in tack- 
ling the modelling of renewable resources before a satisfactory 
methodology has been achieved for these problems. 

2.1.4 Temporal Coherence 

There may be constraints on legal states of a world model; some 
combination of facts may not be able to hold simultaneously in a 
physical state. Sets of such inconsistent facts have been referred 
to as domain constraints. Temporal coherence is our method of 
using such constraints to reduce m c h .  The technique is fully 
described in [7]. This work was motivated by the difficulties 
of plan repair and dependency recording and by the failure of 
some of the earlier planners to generate some obvious plans in 
the blocks world. It was further motivated by a Rap in the work 

Each assertion (precondition) which is true will either be true 
by some added operator, or true from the initial situation. We 
are interested in analyzing those m t i o n s  which must be true 
if the partial plan developed so far is to be "executable"; these 
assertions are the bulk preconditions for the developed plan. 

Temporal coherence suggests working on those plans whose 
"bulk preconditions" describe a phys idy  possible state of the 

given planning domain. By Ypossible" here we mean consistent 
with certain prespecified physical laws. Suppose that a plan's 
bulk preconditions do not describe a possible domain state. Why 
would this happen? It would happen only if the operators in 
the plan were not "causally independent" of each other, and 
required further sequencing to form a valid plan. Future goal 
achievements allowed by the M T C  might well do this, but when 
faced with the choice between a plan which already requires a 
valid state of the world for its execution, and one which does not, 
it rnakea sense to choose the former. If possible it in best to avoid 
plans which require impossible initial states and the corrective 
work they entail. This avoidance of temporary impossibilities 
appears to be a good search heuristic. In our experience, this 
can lead to significant time savings in plan construction. Full 
details of the work is niven in 171. .. 

Temporal coherence is currently implemented in 0-Plan in 
the way described above though we believe it to have much 
more wtential 161. and we have used it in ather non-imdemented 

of Chapman [4]. Chapman provided the Modal Truth Criterion 
(MTC) as a statement of the conditions under which an assertion 
will be true at a point in a partially ordered plan. Essentially, 

r ~~~~~~~~ 
~~~ ~~~~~~ . ,, ~~ ~ the M T C  Says that an asserhn P is necessarily true at a Point 

in a plan if and only if 1) there is a point necessarily before the 
required point where p is necessarily asserted; and 2) for every 
operator that could possibly come between the point of assertion 
and point of requirement, if the intervening operator possibly 

ideas,' The basic problem of ordering is a crucial one and goes 
beyond goal ordering. The ordering problems associated with 
agenda handling in general also need to be tackled. We have 
made a start, 

retracts an assertion which might turn out to be p, then there 
must be  another (appropriately placed) operator which restores 
the truth of p whenever the intervening operator deletes it. 

One can take a procedural reading of the M T C  to produce a 
non-deterministic goal achievement procedure (e.g. as in Chap 
man's TWEAK).  Such a procedure will form the heart of any 
correct "Nonlinear" planner. T W E A K  searches a space of par- 
tial plans, using the goal achievement procedure as a partial 
plan generator and in T W E A K  the space is explored breadth- 
first. However planning systems such as Nonlin, S I P E ,  Deviser 
and 0-Plan strive for realism and 80 cannot afford this luxury 
of breadth-first search. Heuristics for selecting among the plan 
modification oc-erations sanctioned bv the M T C  are reauired if 

2.2 Search Order 

Temporal coherence only addresses goal ordering, but the fact 
that there are many different types of choice open to a planning 
system means that other approaches to search controrire neces- 
sary. 0-Plan records choice left open to the system at any point 
during the generation of a plan and can exploit this choice with 
a simple but efficient backtracking mechanism. However even 
elaborate backtracking schemes are only supporting failure of 
the ordering techniques used in planning, so should be viewed as 
a last resort. With this in mind, 0-Plan progresses its search in a 
local best, then global best manner by assigning priorities to the 

olans are to be oroduced in acceotable time. outstanding flaws in the plan in some informed manner. Typed 

The M T C  says nothing about an order in which to pursue 
goals. Possible bindings are determined by goal-ordering, so the 
M T C  gives no guidance regarding sensible bindings for un-bound 
variables. The heuristic of temporal coherence addresses this 
problem. It suggests avoiding work on plans whose bulk pre- 
conditions do not "make sense". The bulk preconditions for a 
plan are the overall conditions on which the plan depends for 
its successful execution. We say that these preconditions do not 
make sense if they do not describe a physically realisable domain 
state. If a plan's bulk preconditions do not make sense, then the 
plan has internal inconsistencies, and is best avoided. 

The basic principle of temporal coherence is this: don't work 
on partialplans which have inconsistent bulk preconditions. Think 
of this as follows. At each point in its search a planner will have 
a partially completed plan. The search begins with a given, or 
"root" plan, and each partial plan uncovered in the search will 
differ from the root plan by the addition of some number of op- 
erator schemata and binding of variables. Each added operator 
schema will have preconditions. Unless the plan is complete, 
flawless down to the truth of each and every Precondition, there 
will be at least one precondition of at least one operator in the 
plan which is not true by the M T C .  

preconditions and typed flaws, and measures of the degree of de- 
terminacy of the flaw form part of this informed assignment, but 
it is difficult to achieve truely opportunistic control. 0-Plan's 
architecture resembles that of a blackboard system [5]; a recog- 
nition of the aims of opportunistic control in that design. 

3 Summary 

The 0-Plan project induded a study into search control in A I  

planning. However, search implies decisions at choice points and 
hence has to include arbitration and decision making into its 
overall aims. This cannot be achieved without proper depen- 
dency and representational schemes capable of allowing resolu- 
tion of conflicts. The 0-Plan study has given us insight into the 
real requirements of such schemes, though they remain difficult, 
and it has made a positive contribution to the current arsenal of 
search space control techniques. 
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