
1 Introduction

0-Plan is a project centred around computer based generatrue
planning. There are a number of featurea which make this a
problem of interest to A I , not least the aspects of seamh. Early
planners investigated the central issues of search space control,
though it was not until the mid to late '70s that the Nonlin
system Ill] also incorporated the ability to fully enumerate the
space, if requid, during the search. This may seem an obvious
capability but it is essential to have the capability to fully enu-
merate a search space, if needed, in order to be able to ensure
completeness of search; if a solution exists it will be found. Early
planners, and some current systems, did not have this fundamen-
tal capability. One central issue for the design of a planner which
can enumerate its search space is to find means to restrict that
space where possible.

The @Plan project followed on directly from Tate's work
in the '70s on Noulin, also undertaken at Edinburgh University,
though it was influenced by many other systems developed in the
late '70s and early '80s. In particular it inherits features from:

NOAH: by being based on a hierarchical representation of
plans in which actions may be partially ordered.

Noulin: which introduced the notion of goal structure as
a means of recording the rationale behind actions in the
plan, and also the use of typed pnmndations as an aid to
search space control. A declarative Task Formalism (TF)
was also used o provide a description of applications to the
planner.

Deviser: [12] itself derived from Nonliu but extended to
handle time and events.

Molgen: [lo] notable for its ability to perform object selec-
tion using le& commitment principles. This is supported
by constraint formulation and pnrpagation techniques.

O P M : [8] introduced the concept of cognative specialists
which can make certain kinds of decisions to alter the plan
as it is being built. These include decisions about bow to
approach the planning problem, what knowledge bears on
the problem, what kinds of actions to try to plan, wbat
specific actions to plan, and how to allocate resources dur-
ing planning.

0-Plan borrows from thesesystems, but importantly it presents
a framework, or architecture, which enables these techniques to
be incorporated into a single system in a uniform way. It is a
system which was deliberately built upon software engineering
principles from the start. The system is fully described in [5].

'This project 18 supported by the Alvey Directorate and the Science and
Engineering Reaearch Council (Alvey IKBS 100, SERC GR/D/58987). The
support of SD-Seicon is gratefully acknowledged.

2 Tackling Search

A I planning systems are charged with trying to produce a plan
which is a possible solution to a spedfied problem, or some task
specification. In 0-Plan this works as follows. We start by giving
0-Plan an input problem, itself a complete plan but represented
at a high level or having some unsatisfied conditions, and a set
of action descriptions to work with; it returns a plan for the task
in hand in terms of the given actions.

The plans produced by 0-Plan are networks. The nodes in
a network denote actions, and the ares signify an ordering on
action execution. Each node has information associated with it
which describes the action's preconditions and effects. Precon-
ditions are the "logical" conditions which must hold before the
action can occur. Effects are those logical conditions which will
hold after the action is completed. Resource information can
also be associated with each plan node. Since actions can re-
quire and release resources, each plan node can say something
about action-specific resource requirements.

A problem is specified to 0-Plan as a high level or flawed
plan. The plan will be flawed in the sense that it will have
some parts missing (i.e. more detail is required), and other parts
that will not work as required (e.g. there is a conflict between
competing actions in the plan). 0-Plan's task is to correct this
input plan so that it wdl work as required. To do this, it needs to
modify the input plan until a "flawless" plan is produced. Plan
modifications are designed to add a required plan component to
achieve an unsatisfied condition, to expand actions to lower levels
of detail, or to rearrange the plan so as to remove an interaction
flaw, etc. There will often be more than one plan modification
possible; that is, there will often be a choice of how to achieve a
goal or how to fix a fault. Thee choices lead to search. 0-Plan
searches through a space of partial plana, modifying one plan to
obtain another. It seeks a complete plan that is free of faults.

2.1 Pruning Techniques

0-Plan incorporates a number of mechanisms, some novel and
some derived from operational research (on) or other A I plan-
ners, in order to restrict the search space the planner needs to
consider. The various mechanism are described below.

2.1.1 Condition Typing

One main form of search reduction in 0-Plan is through the use
of condition typing, also used in [l l , 12, 131. This technique
however is not strictly independent of the domain of interest as
all information about how to use condition typing to prune the
search is fed into the system via the domain description language.
The responsibility for engaging this pruning therefore falls on
the user which may or may not be a bad thing. What sets this
technique aside from the other techniques and heuristics outlined
below howkver is that it necessarily leads to loss of completeness
in the abstract search space since the domain writer takes the
responsibility for a deliberate pruning of the space. Condition
typing can be very successful but there is work to be done on how

187

far this technique can be developed. It is precisely the demands
of this technique that caused us to adopt the term knowledge
based planning to describe our work. In practice condition typing
is essential on realistic problems in order to reduce search space
to a manageable level, and this can be done effectively by a
domain writer providing instructions to the system about how
to satisfy and maintain conditions required in the plan.

2.1.2 Time

At any stage of planning, an activity is represented by a node in
the plan state. Each activity has distinct start and finish instants
stored with the activity node in the form of [earliest time, latest
time] windows. Thus each activity has an earliest start time,
latest start time, earliest finish time, and latest finish time. A
time window management algorithm has been successfully de-
veloped and is used incrementally (whenever the plan network
is altered) to revise information contained in time windows. In
this revision process, overall consistency of temporal constraints
is checked. If the constraints are mutually inconsistent then the
algorithm signals this condition and the corresponding plan state
is poisoned (abandoned), resulting in an dective pruning of the
search. These algorithms have extended those in Deviser [12]
and have provable termination criteria.

The time window approach accepts a lack of precise knowl-
edge about the timing of instants in the plan. No attempt is
made explicitly to represent probabilistic uncertainty. However,
probabilistic uncertainty might well be one reason causing the
planner to have imprecise knowledge on the timing of an instant.

In specifying imprecise knowledge, the user is free to supply
any range /’/,U] for the duration of an activity or the required
delay between an activity and one of its immediate successors in
the plan. I must be non-negative and U must be greater than or
equal to 1. Thus, [O,m]represents complete lack of knowledge. In
general, specification of narrow ranges imposes tighter temporal
constraints and enhances the possibility of pruning the search
space due to mutually unsatisfiable temporal constraints. Thus,
for example, it may be helpful to impose a realistic deadline
on the finish time of the overall plan rather than to specify an
upper bound of ca. Analogous comments apply to specifying
finish times of subplans represented by action descriptions.

The temporal representation in [3] assumes that an activity
is represented by two time points: its start instant and finish
instant. A range on the duration of an activity or on the elapsed
time between the finish of one activity and the start of another is
represented by a pair of arcs. The plan network explicitly repre
sents certain temporal constraints, each represented by one arc.
Using standard network longest path algorithms, one can then
discover constraints which are implicitly represented. A longest
path of length lij between instant i and instant j is equivalent
to a direct arc of length lij between the same two nodes. Thus
most constraints are computed on demand. Explicitly repre-
sented constraints make up a sparse network. In 0-Plan this
start and finish time information is attached to a single action
node to allow for quicker access to temporal information but this
is equivalent to the uniform representation in [3].

Time window information is sufficient to signal mutual un-
satisfiability of temporal constraints when this is present. The
implementation of this standard network algorithm has high-
lighted the need for AI systems in general to be able to import
and incorporate techniques developed in other disciplines. It can
be proved that this algorithm operates in polynomial time and
its efficiency is enhanced as it operates incrementally, triggered
on any local change to the emerging network.

2.1.3 Resources

Three types of rewurce have been identified as being important
during a plan generation process - consumable, renewable and
substitutable resources. These resource types are distinct from
time, which we do not treat as a resource in its own right.

Consumable Resources. Consumable resources are those for
which an initial stockpile is available which can only be de-
pleted by actions in the plan. Our problem is one of representing
and propagating resource consumption constraints in an efficient
manner and guaranteeing that total usage does not exceed the
initial availability. We will consider a single resource, widgets,
with an overall availability of U (a known quantity). The min-
imum overall usage of widgets must not fall below I (a known
quantity, typically 0). Thus the overall usage of widgets must
lie in the range p,u]. In any particular plan state we have lower
and upper bounds on the number of widgets used by any action.
Our plan will be valid with respect to the widget resource if it is
possible to select actual usages of widgets for every action from
within that action’s known bounds such that the total usage in
the plan lies in /,U]. Because plan states can only be further con-
strained as the planning procpss proceeds, we must insist that
the power bound, upper bound] widget usage range for action a
must apply to the overall usage of widgets in a more detailed
subplan which replaces action a.

For each action in the plan, a bower bound, upper bound]
range on widget usage for that action is maintained. Our alg-
rithm maintains consistency between all such ranges. If one such
range should shrink because the planner is somehow made capa-
ble of making a more precise statement of resource usage for a
particular action, then this constraint is propagated throughout
the plan. Such propagation may cause widget usage ranges to
shrink for other actions.

Widget usage constraint consistency is maintained as follows:
assume that the current plan state is valid with respect to widget
usage and that each node has an attached widget usage window.
These windows reflect all known widget usage constraints on the
plan as it stands. Now assume that an additional constraint
is imposed, i.e. the lower or upper bound of widget usage at
some node of the plan is altered so that that node’s resource
window shrinks. There are 4 conditions which must be main-
tained (or reachieved) through constraint propagation. These
conditions relate the resource window at a particular node n
with resource windows at node n’s parent, children, and sib-
lings. Maintenance of these conditions thus involves propagation
of constraints throughout the hierarchy of nodes. The resource
propagation algorithm computes and maintains min-max pair
information for the use of a single consumable resource. [2] gives
precise details of the algorithms used.

Some general points should be made. First, there is value
in having bounds as narrow as possible at any node. Narrower
bounds represent tighter constraints; if each constraint intro-
duced is as tight as reasonably possible, then the possibility of
discovering that all constraints are mutually unsatisfiable is en-
hanced. This is helpful in pruning the overall search space. Thus
there might well be later benefit in immediate investment of com-
putational resources to compute relatively tight bounds rather
than to simply use a default value like [O,m]. Liberally wide min-
max intervals are of limited value in pruning the search space.

these types of constraints the level of resource usage in one ac-
tivity can influence the level of resource usage in another activity
only through “overall availability” constraints. We have not ac
commodated the possibility, for example, that the requirement
for widgets in activity2 might well depend on the level of widgets
(or some other resource) used in activity1 in a more subtle way.

Second, this algorithm considers only simple constraints. With

188

Third, if we arrive at a final plan with resource pairs for all
nodes satisfying the governing constraints then we must assume
that any value within that pair’s range is feasible. At execu-
tion time, we could then observe the actual usage of resources as
we go along and could use the algorithm to update resource win-
dows and reallocate potential resources to be used. Provided our
simple resource constraints are satisfied, and provided actual re-
source usages are ohserved one at a time, we are guaranteed that
the evolving plan will be feasible with respect to resources. As
a simple example consider a plan with only 3 nodes in sequence.
The overall resource availability is 20 and the min-max pairs for
nodel, node2, and node3 are each [4,fO]. If we discover that
nodel consumes 10 units of the resource then we must modify
the min-max pairs for node2 and node3 to be each [4,6]. Thus
we must assume that a valid execution can result using [4,6]for
these ranges rather than the original [4,fO]. Now if node2 is
observed to consume 5 units of the resource then the range for
node3 must be further modified to [4,5] and we must assume
that we can execute this action with resources from within this
range.

In practice this “assumption” is used to progress the execu.
tion of a plan np to a point where a resource usage problem
indicates that the remainder of the plan is not feasible. Replan-
ning is then indicated.

Shared Resources with Unit Availability. A shared re-
source with unit availability is not consumed but can be used by
only one agent at a time. Despite an availability of 1, maintain-
ing constraints on usage of this resource is far more difficult than
maintaining constraints on a strictly consumable resource. Us-
age of a shared resource must be scheduled; scheduling problems
are pot,entially computationally explosive because of the number
of schedule permutations. We see no distinction between the
problem of scheduling a shared resource with unit availability
and maintaining any other logical condition (e.g. (on a b) =
true) in a plan. At any instant the gadget may be either in use
or not in u8e. Thus a precondition to allocating the gadget to an
agent is that “in use gadget” is false, an immediate effect of this
allocation is that *in use gadget” is made true, and an immediate
effect of returning the gadget to the resource pool is that “in use
gadget“ is made false. Hence, no special purpose representation
is proposed for shared resources with unit availability.

Shared Resources with Availability Greater than 1.
our observation that there is no essential difference between
maintaining constraints on a resource with unit availability and
maintaining any other logical condition, one might be tempted
to decompose a resource with availability r > I into r distinctly
named resources with availability 1. Unfortunately, the result-
ing r resources will be substitutable and a planner could expend
much useless effort trying to satisfy unsatisfiable resource con-
straints by trying other permutations of the usage of such sub-
stitutable resources. For example, assume that r = f0, that the
planner has allocated units 1 through 10 to actions a l , . . . , al0
in parallel, and that the planner discovers that action k also in
parallel requires one unit of this resource. The planner correctly
diagnoses the conflict that 11 units are required when only 10
are available. In attempting to correct the situation, the plan-
ner might then try each of lo! possible reallocations of units 1
through 10 to actions a,, , . . ,alo. Enough said!

It then appears essential that we somehow model a controller
of the usage of any particular resource. A plan would be valid
with respect to that resource if it contained a schedule of activi-
ties which met all temporal constraints required in our temporal
management algorithm and also obeyed the resource constraints
imposed by the controller of that rwurce. Resource smooth-
ing (the management of shared resources) is an inherently in-

Given

tractable problem. A least-commitment approach to planning
would insist that we could reaasure ourselves that a plan exists
which is valid with respect to every resource while respecting
temporal constraints. This is a notorious problem. Although it
is possible to construct simple heuristics for resource smoothing,
these heuristics are not guaranteed to find a feasible solution.
Thus these heuristiur cannot be used if we wish to ensure com-
pleteness of the search.

Our problem differs from traditional sequencing and schedd-
ing problems which seek to minimize such objective functions as
project makespan, weighted tardiness of jobs, etc., subject to
constraints on the flow of jobs through a shop, utilization of
machines, etc. The primary differences and analogies are:

our objective is simply to verify the existence of a feasible
schedule (and to construct it when planning is completed),

some of our resource constraints are analogous to those in
traditional job shop sequencing and scheduling. A shared
resource with availability n is analogous to n identical ma-
chines in parallel,

many temporal constraints that result from one action’s
effects being a precondition to a later action do not have
analogues in traditional scheduling and sequencing.

strictly consumable resources and shared resources are not
often handled within the same scheduling and sequencing
model (although both are “ n o n in different models).

sequencing and scheduling models do not provide for the
possibility of resources which are renewable in the sense
that some activities may be inserted into the plan which
have the effect of increasing the resource’s availability. Such
resources are discussed briefly below.

The first two i t em should work toward making our task eas-
ier than that of traditional scheduling. However the rest make
the typical AI planning task considerably more complicated than
scheduling problems which can be handled successfully by tech-
niques reviewed in [l] or other more recent O R sources. To specu-
late a little, it is reasonable to question whether present domain-
independent AI planners can cope with realistic problems that
have a heavy sequencing component. Such planners do well in
environments where their task of plan synthesis involves primar-
ily finding appropriate schemata to satisfy particular goals or ex:
pand particular actions, and their scheduling activity is mainly
the correction of interactions. In this case scheduling takes the
form of adding to an existing set of temporal constraints which
can be represented without resorting to disjunction. Sequenc-
ing, on the other hand, requires extensive use of disjunction in
representing possible orderings of activities thus implying lots
of search. A natural area for further research is to investigate
the appropriateness of known sequencing and scheduling algo-
r i thm or more flexible disjunctive plan representations within a
domain-independent AI planning framework. We are considering
such approaches.

Renewable Resources. Resource smoothing problems are fur-
ther complicated by the introduction of renewable resources.
This provides a mechanism for the possible substitutability of
resources, a concept which is difficult to analyze in a traditional
mathematical model. With renewable resources it may be possi-
ble to consume resourcel in a task whose effect is to produce ad-
ditional units of resource2, e.g. money may be converted to fuel.
Thus resourcel and resource2 become substitutable in the sense
that a valid plan may be constructed out of various combinations
of initial availabilities for the two resources. If resourcel and re-
source2 are both consumable rather than shared then it may be

189

possible to represent constraints on their overall usage. Sucb
constraints would be standard linear programming constraints
provided that the process of producing one resource from some
combination of other resources had a linear production function.
However, if either resource1 or resource2 is a shared resource,
the picture is considerably more complicated. Since handling
shared renewable resources is inherently more complicated than
handling the shared resourcea above, there is little point in tack-
ling the modelling of renewable resources before a satisfactory
methodology has been achieved for these problems.

2.1.4 Temporal Coherence

There may be constraints on legal states of a world model; some
combination of facts may not be able to hold simultaneously in a
physical state. Sets of such inconsistent facts have been referred
to as domain constraints. Temporal coherence is our method of
using such constraints to reduce m c h . The technique is fully
described in [7]. This work was motivated by the difficulties
of plan repair and dependency recording and by the failure of
some of the earlier planners to generate some obvious plans in
the blocks world. It was further motivated by a Rap in the work

Each assertion (precondition) which is true will either be true
by some added operator, or true from the initial situation. We
are interested in analyzing those m t i o n s which must be true
if the partial plan developed so far is to be "executable"; these
assertions are the bulk preconditions for the developed plan.

Temporal coherence suggests working on those plans whose
"bulk preconditions" describe a phys idy possible state of the

given planning domain. By Ypossible" here we mean consistent
with certain prespecified physical laws. Suppose that a plan's
bulk preconditions do not describe a possible domain state. Why
would this happen? It would happen only if the operators in
the plan were not "causally independent" of each other, and
required further sequencing to form a valid plan. Future goal
achievements allowed by the M T C might well do this, but when
faced with the choice between a plan which already requires a
valid state of the world for its execution, and one which does not,
it rnakea sense to choose the former. If possible it in best to avoid
plans which require impossible initial states and the corrective
work they entail. This avoidance of temporary impossibilities
appears to be a good search heuristic. In our experience, this
can lead to significant time savings in plan construction. Full
details of the work is niven in 171. ..

Temporal coherence is currently implemented in 0-Plan in
the way described above though we believe it to have much
more wtential 161. and we have used it in ather non-imdemented

of Chapman [4]. Chapman provided the Modal Truth Criterion
(MTC) as a statement of the conditions under which an assertion
will be true at a point in a partially ordered plan. Essentially,

r ~~~~~~~~
~~~ ~~~~~~ . ,, ~~ ~ the M T C  Says that an asserhn P is necessarily true at a Point 

in a plan if and only if 1) there is a point necessarily before the 
required point where p is necessarily asserted; and 2) for every 
operator that could possibly come between the point of assertion 
and point of requirement, if the intervening operator possibly 

ideas,' The basic problem of ordering is a crucial one and goes 
beyond goal ordering. The ordering problems associated with 
agenda handling in general also need to be tackled. We have 
made a start, 

retracts an assertion which might turn out to be p, then there 
must be  another (appropriately placed) operator which restores 
the truth of p whenever the intervening operator deletes it. 

One can take a procedural reading of the M T C  to produce a 
non-deterministic goal achievement procedure (e.g. as in Chap 
man's TWEAK).  Such a procedure will form the heart of any 
correct "Nonlinear" planner. T W E A K  searches a space of par- 
tial plans, using the goal achievement procedure as a partial 
plan generator and in T W E A K  the space is explored breadth- 
first. However planning systems such as Nonlin, S I P E ,  Deviser 
and 0-Plan strive for realism and 80 cannot afford this luxury 
of breadth-first search. Heuristics for selecting among the plan 
modification oc-erations sanctioned bv the M T C  are reauired if 

2.2 Search Order 

Temporal coherence only addresses goal ordering, but the fact 
that there are many different types of choice open to a planning 
system means that other approaches to search controrire neces- 
sary. 0-Plan records choice left open to the system at any point 
during the generation of a plan and can exploit this choice with 
a simple but efficient backtracking mechanism. However even 
elaborate backtracking schemes are only supporting failure of 
the ordering techniques used in planning, so should be viewed as 
a last resort. With this in mind, 0-Plan progresses its search in a 
local best, then global best manner by assigning priorities to the 

olans are to be oroduced in acceotable time. outstanding flaws in the plan in some informed manner. Typed 

The M T C  says nothing about an order in which to pursue 
goals. Possible bindings are determined by goal-ordering, so the 
M T C  gives no guidance regarding sensible bindings for un-bound 
variables. The heuristic of temporal coherence addresses this 
problem. It suggests avoiding work on plans whose bulk pre- 
conditions do not "make sense". The bulk preconditions for a 
plan are the overall conditions on which the plan depends for 
its successful execution. We say that these preconditions do not 
make sense if they do not describe a physically realisable domain 
state. If a plan's bulk preconditions do not make sense, then the 
plan has internal inconsistencies, and is best avoided. 

The basic principle of temporal coherence is this: don't work 
on partialplans which have inconsistent bulk preconditions. Think 
of this as follows. At each point in its search a planner will have 
a partially completed plan. The search begins with a given, or 
"root" plan, and each partial plan uncovered in the search will 
differ from the root plan by the addition of some number of op- 
erator schemata and binding of variables. Each added operator 
schema will have preconditions. Unless the plan is complete, 
flawless down to the truth of each and every Precondition, there 
will be at least one precondition of at least one operator in the 
plan which is not true by the M T C .  

preconditions and typed flaws, and measures of the degree of de- 
terminacy of the flaw form part of this informed assignment, but 
it is difficult to achieve truely opportunistic control. 0-Plan's 
architecture resembles that of a blackboard system [5]; a recog- 
nition of the aims of opportunistic control in that design. 

3 Summary 

The 0-Plan project induded a study into search control in A I  

planning. However, search implies decisions at choice points and 
hence has to include arbitration and decision making into its 
overall aims. This cannot be achieved without proper depen- 
dency and representational schemes capable of allowing resolu- 
tion of conflicts. The 0-Plan study has given us insight into the 
real requirements of such schemes, though they remain difficult, 
and it has made a positive contribution to the current arsenal of 
search space control techniques. 



References 

[l] Baker, K. An introduction to sequencing and scheduling. 
Wiley, 1974. 

[2] Bell, C.E., Currie, K.W. & Tate, A. Managing scheduling 
and resource usage constraints in 0-Plan. Artificial Intelli- 
gence Applications Institute AIAI-TR-23, 1986. 

[3] Bell, C.E. & Tate, A. Using temporal constraints to restrict 
search in a planner. Artificial Intelligence Applications In- 
stitute AIAI-TR-5, 1986. 

[4] Chapman, D. Planning for conjunctive goals. Masters The- 
sis, report AI-TR-802, M I T  Artificial Inte[/igence Labom- 
tory, 1986. 

[$] Currie,K.W. & Tate, A. 0-Plan: the Open Planning Ar- 
chitecture. Submitted to the A I  Journal. Also A I A I - T R - ~ ~ .  

1989. 

[SI Desimone, R & Mallen, C. 'khmplete, consistent goal sets: 
Controlling the search in non-linear plan generation. In 
procs. of the First International Conference on Ezpert Plan- 
ning Systems, 1990. 

[7] Drummond, M. & Currie, K.W. Goal Ordering in Partially 
Ordered Plans. In p'ocs.  IicAr-89, Detroit, U S A ,  1989. 

[SI Hayes-Roth,B. & Hayes-Roth, F. A Cognitive Model of 
Planning. Cognitive Science,pp 275 to 310, 1979. 

[9] Sacerdoti, E. A structure for plans and behaviours. Artificial 
Intelligence series, publ. North Holland, 1977. 

[lo] Stefik, M. Planning with constraints. In Artijicial Intelli. 

[ll] Tate, A. Generating project networks. In prom IJCAI-??, 

gence, Vol. 16, pp. 111-140. 1981. 

Cambridge, USA, 1977. 

[12] ?'ere, S. Planning in time: windows and durations for activ- 
ities and goals. IEEE Tmnsactions on Pattern Analysis and 
Machine Intelligence Vol. 5, 1981. 

[13] Wilkins, D. Domain independent planning: representation 
and plan generation. A I  Journal Vol. 22, 1984. 


