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ALMS OF PROJECT 

An intelligent planning system is an example of a software aid 
which, although developed by specialists in artificial intelligence, 
and custonlised for a particular application by knowledge engi- 
neers, is intended eventually to be used by non-programmers for 
a wide variety of tasks. That is, the domain-specific definition of 
requirements, resources, etc. for a particular application will be 
specified by people who are trained in their own trade or profes- 
sion but ‘who are unlikely to be acquainted with the technicalities 
of automatic planning systems. There is therefore a need for a 
communication medium which allows the application specialist, 
and the non-expert user of the eventual domain-tailored system, 
to specify their needs without howing any of the low-level de- 
tails of the planning notation or the actual operations of the 
planning system. 

This kmd of system is one where the ‘mice and menus’ approach 
is unlikely to be able to provide a very flexible interface, since 
i t  is chaxacteristic of the type of interaction that one would like 
to be able to have with a planner that the range and type of 
potential queries is not predictable in advance, and thus not 
reducible to choices withiii some predetermined set of options. 
Furthermore, it is often desirable to have the planner try out 
a range of hypothetical or counterfactual situations that could 
not be represented in any obvious graphical form: some kind of 
language, either artificial or natural. is a necessity here. 

The aim of this project is to experiment with the use of English 
language aa the medium of Communication. The kind of system 
we have been trying to build during this three year project is one 
where the user interacts with the planner to plan some type of 
external activity, perhaps trying out several alternative scenarios 
based on differing assumptions, and then, during the course of 
execution of the resulting plans, engages in further interactions 
making adjustments when parts of the plan turn out for some 
unforeseen reason to be unachievable. 

The following are examples of the kind of query which are suc- 
cessfully handled in the final version of the system. The sample 
domain that we have been using is one in which telephone field 
engineers repair equipment faults. The aim of the planner is 
to allocate engineers to faults in exchanges throughout the rel- 
evant region in the way that maximises the use of their skills, 
minimises travelling, and achieves highest overall productivity. 

1. When will the fault at  Ipswich be fixed? 
2. Will Brown go to Ipswich from Base before anybody does 

3. What jobs will be worked on while Smith is at  Ipswich? 
Jobl? 

Queries l i e  this require that notions of time, in relation to par- 
ticular points in the current plan, or to the current state of 
executioq of the plan, should he handled correctly. 

4. Could Brown repair the fault at  Bury? 
5. If Smith goes to Ipswich, could Brown go to Martlesham? 
6. If Smith had to do Joh2, who could do Jobb? 

Here the interpretation of the queries depends on the ability to 
consider alternatives to the current plan which still allow the 
goals to be achieved. Modal notions like ‘could’ and ‘have to’ as 
well as conditionals, cannot be interpreted without. implicit or 

explicit reference to states of affairs that differ in some respects 
from that currently being contemplated. 

SYSTEM DESCRIPTION 

The overall system consists of a Natural Language Front 
End (NLFE), which produces logical forms (LF) representing 
the meaning of an input sentence; a Plan Query Language Eval- 
uator (PQLE) which accepts inputs in a Plan Query Language 
and evaluates them against an internal representation of the 
current plan, or by manipulating the planner itself to to try 
produce further plans; and the planner: cnrrently the system 
will run with Tate’s NONLIN planner (8) or IPEM, a system 
developed at the Univemity of Essex. However, since these large 
general purpose systems can Le rather slow, for development and 
demonstration purposes we use a hand-crafted, domain specific 
planner written in Prolog at  BTRL. Modules exist for trans- 
lating in both directions betwen the representations used by 
these different components so that responses from the planner 
are eventually presented back to the user by the NLFE. 

The NLFE, PQLE and Planner are all separate processes, con- 
trolled by a ‘debugger’ interfaced to the Sun\’iew Window sys- 
tem, euahling the course of operation of the system to be traced. 

THE NATURAL LANGUAGE FRONT END 

The NLFE accepts English sentences and produces logical forms 
representing the literal meaning of the sentences. Filst, the sen- 
tence is parsed using a unification enriched context free gram- 
mar, a lexicon and a bottom up, left to right parser originally 
developed as part of the Alvey Natural Language Tools project 
(5). This produces the syntactic structure of the sentence, which 
is used to determine what the initial logical form of the sentence 
should be. 

Each syntactic rule in the grammar has one or more correipond- 
ing semantic rules saying how the nieauiugs of the constituents 

should be combined to give the meaning of the whole. (When 
there are several semantic rules, the instantiations of syntactic 
features determine which one is applicable). To give a simple 
example, consider the (simplified) grammar rule 

syntax: SCstype statement1 --> 
NPCnumber 0num, person Qperl 
VPCnumber anum, person @per, vform f i n i t e ]  

semantics: S ’  = NP’(W”) 

This says that a sentence can consist of a noun phrase followed 
by a verb phrase, provided the NP and VP agree in the values 
given to their number and person features and that the VP is 
finite. Agreement between features is enforced by unification: 
feature values beginning with ‘a’ are variables. The semantic 
part of the rule says that given a sentence built up from an 
NP and a VP combined in this way, form the meaning of the 
sentence (S’) by applying the meaning of the NP (NP’) to that 
of the VP (VP’). For a very simple sentence we might have: 
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S 
Cstype statement] 
/ \ 

/ \ 
NP VP 

[nun s ing ,  per 3rdl hum s ing ,  per 3rd. 
vform f i n i t e ]  

I I 
John snores 

NP’ = [AP. P(john)] 
VP’ = snore 
S’ = [AP. P(john)] (snore) 

= snore(john) 
The meanings of the constituents are expressions in a typed 
higher order logic based on a simplified form of Montague’s in- 
tensional logic ( see  (2)). These meanings are ultimately built up 
from logical expressions assigned as the meanings of individual 
words by function application or composition. The expressions 
produced by this stage of processing are not yet complete rep- 
resentations of the sentence meaning, in several respects: 

(i) they contain variables over higher order operators which 
will later be further instantiated: for example, the meaning of 
some NPs is translated with a veriable which can be instantiated 
by one of two operators: ‘DIST-NP’ and ‘COLL-NP’. These op- 
erators correspond to the distributive and collective readings of 
NPs found in ‘the engineers slept’ and ‘the engineers conspired’, 
respectively. The operators are abbreviations for more complex 
logical expressions. DIST-NP, for instance, is a shorthand for 
quantification over subparts of the (plural) object denoted by 
an NP. 
Thus at the initial logical form stage, the meaning of some NPs 
is not completely determined, and it is left to a later stage to 
instantiate their variable with the appropriate operator. The 
alternative to this method would be to treat each NP as am- 
biguous between the two readings and select the appropriate 
one later. The current method is logically equivalent to this 
but computationally much more efficient, avoiding an uncom- 
fortable proliferation of ‘meanings’ for an input sentence which 
differ only in the possibilities for collective and distributive read- 
ings of NPs. 

(ii) they contain terms which are proxy for the value of 
anaphoric expressions like pronouns and definite descriptions. 
In the current system, all anaphoric expressions are analysed as 
involving the quantifier ‘the’ (unique existential), differing oiily 

in that whereas a definite description like ‘the man’ will he: 

the  (x) man(x) & . . . . . 
a pronoun like ‘he’ will be: 

t h e  (x) he(x) & ..... 

Thus pronouns are analysed as predicates which give informa- 
tion only about number and gender of the contextually unique 
referent. In both cases, these subexpressions may be evaluated 
against a local context and the result of that evaluation passed 
on to subsequent processing. Currently, only intra-sentential 
anaphora is implemented in the system, although the addition 
of the ability to refer to entities mentioned in previous sentences 
could easily be added (for simple cases, at  least). 

(iii) they contain free variables or temporal indices, which 
will undergo a ‘linking’ process, representing the establishment 
of contextually determined relations between them. These rela- 
tionships are established by rules which are sensitive to the type 
of verb involved in the sentence, whether or not it is temporally 
modified, and so on. Thus, for example, in a non-temporally 
modified, present tense stative sentence, the ‘current-time’ in- 
dex will be set to the value of the ‘speech-time’ index. 

(iv) they contain markers corresponding to certain types of 
elided constituent. For example, a sentence like ‘Will Joe go to 
Ipswich before Fred?’ is regarded as elliptical for the full form 
‘Will Joe go to Ipswich before Fred goes to Ipswich?’. Later on, 
the appropriate semantic content for the missing constituent is 
worked out on the basis of the logical form for the main clause, 
and sortal information about the entities corresponding to the 
arguments of the verb: this enables the differing types of inter- 
pretation of sentences like 

‘Will Joe go to Ipswich before Norwich?’ 
which is syntactically identical to the earlier example. 

(vi) certain subparts of a logical form are identified as cor- 
responding to presuppositions which must be satisfied before a 
query can be answered appropriately. In the example just given, 
for example, it is presupposed that it is in fact true that ‘Joe will 
go to Ipswich’. This information can be made use of in providing 
a helpful response in the case where a query might be answered 
in a misleading fashion (i.e. ‘no’) because the presuppositions 
are not satisfied. 

The logical form that results from ‘fleshing out’ the initial, syn- 
tactically generated logical form may contain higher order con- 
structions like predicate modifiers, as well as various tense op- 
erators. Such expressions are relatively hard to deal with in- 
ferentially, and since the translation from LF to PQL involves 
inference based on the contents of the LF, these LFs are con- 
verted to a more tractable form. 

In the case of the tense operators, conversion amounts to r e  
placing the operators by equivalent quantifications over times. 
In fact we go slightly further than this. Our tense operators are 
defined using time periods rather than time points. But time 
periods are more easily reasoned about if we represent them in 
terms of their start and end points. Thus each operator is con- 
verted into a quantification over start and end points of periods. 
For example (PRES ( fau l ty  ipswich)) is said to be true a t  
the triple of time <s , t ,h  if I is a period which has s as an ini- 
tial period, t i s  contained in I ,  and ( fau l ty  ipswich) is true at 
time e. (Intuitively, s is the speech time, t is the ‘event’ time, 
and I is a localisation time, a time period within which all the 
events being talked about must occur). Assuming that s has the 
value ‘now’ (for speech time), the expression is converted into 
something that quantifies over times as follows: 

(some (1) 
(and (time 1) (T= ( s t a r t  1) (start now))) 

(some ( t )  (and (time t )  
;; now s t a r t s  1 

(and (T>= ( s t a r t  t) ( s t a r t  1)) 
;; t contained i n  1 

(D= (end 1) (end t)))) 
( f a u l t y  ipswich t )  

A sentence like ‘Fred works in Ipswich’ will contain a verbal 
predicate modifier, and (ignoring tense) will be expressed as: 

[(in Ipswich) works] (Fred) 

where ‘in’ applies to ‘Ipswich’ to form a predicate modifier 
that modifies the predicate ‘works’. In this case it will cut down 
the set of people who work to the set of people who work in 
Ipswich. The resulting predicate is applied to Fred. In general 
it is not possible to convert predicate modifications like these 
into a logically equivalent and more tractable form, as we can 
with tense operators. We therefore introduce events during the 
conversion, to give us 

(some (e) (event e) 
(and (work Fred e )  ( i n  e ipswich))) 
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‘There is a working event by Fred, and the event is in Ip- 
swich’. It should he pointed out that events are merely intro- 
duced as a device for making inference easier. 

To illustrate some of these features, here is the initial logical 
form for the query ‘Who does johz?’: 

((S-tense -tel -til) 
;; t ense  

;; Wh-phrase 
(lambda (-xi) (PRES (do -xi job3)) ) ) )  
;; Verb phrase 

When the wh-phrase is expanded out: 

(((WHdet -uhl) person) 

( 6 - t e n s e  - t a l  -til) 
(some (-vhl) (person -whl) (PRES (do -whl jobs) ) ) )  

In this case there are no pronouns. After the rules have 
expanded out the tense operator, and linked temporal indices, 
the final first order logical form is: 

(some (-til) 
(time -til) 
(some ( - te l )  

( t i n e  - t e i )  
(some (-ubi) 

(person -ubi -tei) 
(and (T>= (start -til) ( s t a r t  now)) 

(T>= (start - t e l l  ( s t a r t  -til)) 
(n- ( f in i sh  -til) ( f i n i s h  - t e l ) ) )  

(some (-el) (event -e l )  (do -whl job3 - e l  -tell 

As will be evident, quite complex temporal relations are ex- 
pressed via predications involving the start and end points of 
events, and their relations to the time of utterance of the sen- 
tence (i.e. ‘now’). Notice also that it is strictly speaking inac- 
curate to regard this process of fleshing out the compositionally 
derived logical form as one of macro expansion: actually, we are 
translating from expressions in one language to expressions of 
another with a systematic semantic relationship to it (much as 
skolemisation does in transforming to normal form for theorem 
proving purposes). For example, the two place logical constant 
‘do’ given as the original translation of English ‘do’ is eventually 
mapped into another which is 4 place, relating agents, entities, 
events and times. 

The final translation into PQL is made easier by the fact 
that we now have a fully fiist order expression (though this is 
desirable on other grounds also): 

exists(type(??whl, person), 
ex is t s ( type(?e l ,  done(job3, ??whl, -, -)I, 

=<(now, s t a r t ( ? e l ) ) ) ) .  

Notice that the temporal information supplied by the lin- 
guistic analysis is much simplified in PQL: this is a reflection 
of the more general point, amplified below, that the informa- 
tion derivable from the English input is much richer than can 
be made use of in the planner. 

PLAN QUERY LANGUAGE 

Our original intention was to develop a formal language in which 
to talk about the structures and operations of a planning system 
in a way which was independent of any particular application, 
and which did not rely on any idiosyncrasies of a particular 
planner - a type of SQL for planners. We would like the language 

to provide in a precise sense a definition of the range of possible 
interactions it is possible to have with a planning system. PQL 
would have a clear deuotational or operational semantics, which 
any ‘implementation’ of it in terms of a particular planner would 
have to respect. Then the process of moving our system from one 
planner to another operating of the same factual domain would 
be simply that of implementing PQL using the hasic mechanisms 
of the planner in question. (There are of course a different set 
of problems arising when the domain is different too). 

However, the analogy is not one which holds as firmly as we 
might like. For one thing, database theory and practice is much 
more advanced in standardisation than is the case with planning. 
Only if some reasonable convergence on the range of operations 
and type of structures that planners deal with emerges will it 
be possible to provide a definition which has a chance of being 
fairly generally applicable. As it is, there is a wide variety of 
types of system being used for planning: deductive, procedural, 
agentless, multi-agent, those that include plan execution and 
monitoring, or on-the-fly replanning, etc. etc. There seems to 
be no great measure of agreement (at any useful level of detail) 
about the primitive concepts of planning systenw in general, 
other than those we have already tried to incorporate. Thus 
any proposed version of PQL is quite likely to be overtaken by 
events in the world of planning research. 

The language that we actually use for communicating with 
planners and reasoning about plans is, in essence, a sorted first 
order logic with equality, with the addition of three modal-like 
operators which can only be used in queries. 

To give an example of a traditional type of planning operator 
formalised in PQL, consider: 

needs (movetX,Y,Z), 

makes (move(X,Y.Z), 
[block(X), on(X,Y), c lear ( top(Z)) l )  

Con(X,Z), clear(top(Y)),  -clear(top(Z))l)  

The ‘needs’ predicate expresses the relation between an action 
and its preconditions, and ‘makes’ expresses the relation he- 
tween the action and any postconditions. The list appearing 
as a second argument is a shorthand form for a series of in- 
dividual predications each relating the event to a single pre- 
condition. The sortal structure that we assume distinguishes 
between events, times, propositions, and other individuals, so 
that ‘move’ is a function from entities to events, ‘on’ and ‘clear’ 
etc. are functions from entities to things that we might as well 
call propositions. We also have relations between propositions 
or events, and times, expressed by ‘holdsat’, e.g. ‘holdsat(t3, 
on( block3,block4))’. 

This language is then suitable for formalising the concepts 
known and used by the planner, the plans that are actually 
delivered, as well as domain specific information which may not 
be needed to form plans, but could be relevant to answering 
questions. 

Queries posed against a PQL ‘database’ are answered by a 
procedural interpreter. In the case of the three extra modal 
operators, the process of answering the query also involves in- 
voking the planner. The modal operators aim to capture notions 
of necessity, possibility and conditionality. Given a specification 
of a task we are trying to perform, MUST(P) is true with re- 
spect to the task if P is true in all the plans solving the task. 
MAY(P) is true with respect to the task if P is true in at least 
one of the plans solving the task. Conditionals of the form ‘If P 
then Q’ involve modifying the task specification to include the 
information contained in the antecedent, P, and evaluating the 
query Q by generating plans from the new specification. 
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It is tempting to look at  the modalities in tern- of possible 
worlds (4), whereby the sentence MAY(P) is true in the current 
world if there is some possible world accesible from the current 
one in which P is true. Here we can regard plans as possible 
worlds. The current world is the plan currently under consid- 
eration, and accessible worlds are those plans that achieve the 
same goals as the current plan. But this view faces certain diffi- 
culties in terms of the procedural implementation of possibility 
and necessity, different ‘grades’ of modality that arise, and the 

treatment of conditionals. 
The procedural interpretation of possihilty and necessity as 

true in some and true in all plans runs into problems with the 
fact that planners are carefully designed not to search a full 
space of plans. In a route planning domain, we would not want 
the planner to return a route from London to Cambridge that 
went via Dumfries. This is a possible route, but it involves go- 
ing at  least 10 times as far as any of the more obvious routes. 
If you asked a question like ‘Can I go from London to Cam- 
bridge via Dumfries?’ and answered it by looking at  the London- 
Cambridge routes the planner returned, the answer would be 
therefore be ‘No’. But there is a sense in which the answer 
should be ‘Yes’, as such a route is possible, if ill-advised. To 
get a ‘Yes’ answer, we must contrive to alter the space of plans 
that the planner searches over. This can be done by making it 
a goal that the route passes through Dumfries. This motivates 
the following procedural treatment of possibilities, MAY(P). 

If P is true in the current plan, then TRUE. 0th- 
erwise add P to the set of goals, and see if a plan 
can he generated that meets these goals. If one can, 
then TRUE. else FALSE. 

This treatment of possibility makes it appear as though the task 
specification is altered rather than held constant. However, it 
is possible to avoid this consequence if we distinguish between 
goal conditions that are genuinely part of the task specification, 
and those that are merely added to alter the planner’s search 
space. 

Necessity on the other hand is treated by simply looking at 
all the plans generated from an unmodified set of goals. This 
means that in dealing with possibility we are searching over a 
wider range of plans than we are with necessity. This can lead 
to the following paradoxical situation. Suppose we ask ‘Must 
Smith do Job 3?’. and in all the plans that the planner can 
currently search over, Smith does indeed do Job 3. Thus the 

answer is ‘Yes’. Now suppose that we ask ‘Could Jones do Job 
3?’. In answering this, we change the range of plans that the 
planner will search over, and it possible that Jones does do Job 
3 in one of these previously unconsidered plans, in which case 
the answer would be ‘Yes’. On the assumption that only one 
person can do a job, the two answers are contradictory. The 
problem could he avoided if we could add negative conditions 
to the set of goals. In this case, we would treat MUST(€‘) by 
adding the negation of P to the set of goals. Assuming that 
there was at  least one plan for the original set of eoals. if no 

In practice, the paradox is not a serious problem. Instances of 
it do not frequently arise. Also, most users are likely to have a 
fairly accurate idea of the space of sensible plans, and are un- 
likely to be posing questions of the type designed to prise out 
these little inconsistences. The query will not be answered in 
too misleading a way provided that the idea that these modal- 
ities are interpreted with respect to a set of particular desired 
conditions, and not some more general background, is kept in 
mind. 

Another difficulty for the possible worlds/plans view of modality 
is the existence of different ‘grades’ of modal. A question like 
‘Can Jones repair the fault at the TXE exchange in Cambridge?’ 
can be interpreted in two ways. It could be a question about 
valid alternatives to the current plan. Or it could be a more gen- 
eral question about Jones’s ability as engineer: whether Jones 
knows how to repair TXE exchanges. The second interpreta- 
tion of the qnestion makes no appeal to a current plan being 
the current ‘world’. The association of worlds with plans is too 
rigid. 

In general, possibility and necessity are evaluated with respect 
to a set of background assumptions (3). In many cases the back- 

ground assumptions will be exactly the specification of the task 
to he solved. In other cases we might remove some of the goals 
from the assumptions, leaving perhaps just a specification of en- 
gineers’ abilities and the locations and types of faults. Alterna- 
tively, we might add the description of a plan to the assumptions 
1. 

In theory the range of background assumptions form a con- 
tinuous scale, and necessity and possibility can be viewed in 
terms of entailment by or consistency with the assumptions. 
In practice it difficult to identify what background is being as- 
sumed, and it is helpful to distinguish different types of back- 
ground. It is also undesirable to appeal directly to logical entail- 
ment and/or consistency with respect to a set of assumptions, 
since planners do not search a logically complete space. PQL 
categorises three grades of modal: those taken against a task 
specification, those taken against a particular plan, and those 
taken against a more general background that assumes no par- 
ticular task but which do assume a certain amount of knowledge 
about the domain. The different grades of modal are evaluated 
in different ways. Task modals are evaluated in the way de- 
scribed above, by using the planner to generate plans. The 
planner can he seen as a kind of theorem prover, albeit logically 
incomplete. Plan modals are evaluated by carrying out genuine 
inference on the description of a plan. This inference is done 
within the PQLE, and does not invoke the planner. Non-task 
modals are not implemented yet. There are two ways of dealing 
with them, depending on whether the planner is used or not. 
Without using the planner, the PQLE could use inference to 
determine entailment or consistency by the non-task oriented 
assumptions. Alternatively the assumptions could be used to 
construct a new mini-task, and the planner employed to see if 
such a task can he solved. Thus, for a non-task interpretation 

‘We can also identify two different interpretations far quationa of the 
plans can be generated-once we ensure-that P is fays,, then P 
must where is 
false, P need not be true. This treatment would make necessity 
the dual of possibility. Unfortunately. there is no general way of 

form ’Could A happen after B?’, since typically plans returned by a planner 
give only a partial specification of the order of events. If the ordering of 
A and B is left unspecified, the question could be about possible orderings 
within the current plan. or about completely different plans 

he true‘ If a ’Ian can be 

- 
imposing negative goals on planners. 
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of a query like ‘Can Jones repair the fault a t  the TXE exchange 
in Cambridge?’ we set up a task with just one goal (that Jones 
repair the fault a t  Cambridge) and initial conditions involving 
Jones’s abilities etc., and see if a plan can be produced. 

The third kind of modal operator is the conditional. This too 
is evaluated relative to a set of background assumptions and is 
inspired by the h m s e y  treatment of conditionals (1,6). The 
information in the antecedent of the conditional is added to 
the set of background assumptions, and the consequent eval- 
uated relative to fhe updated set of assumptions just as if it 
was a non-conditional query. Again, we have three grades of 
conditional: plan, task and non-task (with non-task condition- 
als unimplemented). The modification of the assumptions may 
be counterfactual, in that the conditional’s antecedent contains 
information that is inconsistent with those assumptions. Nor- 
mally this means that the background assumptions have to be 
adjusted, causing ‘minimal‘ change, so that the antecedent can 
be consistently added. Bringing, about such an adjustment is 
a non trivial matter. However, with the classification of back- 
ground assumptions that we employ this process can be made 
easier. The assumptions form a hierarchy, starting with non- 
task assumptions that simply describe the domain and perhaps 
the initial state of the world, followed by task assumptions that 
add a set of goals to the non-task assumptions, and finished by 
plan assumptions that add a description of a plan to the task as- 
sumptions. An antecedent may be counterfactual with respect 
to a particular plan without being counterfactual to the task 
specification used to produce it. In such cases, the antecedent is 
added non-counterfactually to the task msumptions rather than 
counterfactually to the planpssnmptions. There are cases where 
dealing with counterfactual antecedents by ascending a hicrar- 
chy will not work, e.g. if something is counterfactual against 
non-task assumptions. In these cases there are some very sim- 
ple heuristics for attempting to add the antecedent consistently, 
and if these fail, the conditional is not evaluated. 

The procedural implementation of conditionals taken relative to 

the task specification is as follows. The antecedent is added to 
the task specification, a plan is generated, and the consequent 
is treated EIS a n o d  query. If the consequent is non-modal, 
as in ‘If Smith did Job 3, who would do the job in Ipswich?’ 
the consequent, ‘who would do the job in Ipswich‘ is evaluated 
against the first plan generated. This contrasts with conditionals 
with modal consequents, like ‘If Smith did Job 3, who could 
do the job in Ipswich?’. Here we have to generate a range of 
plana to determine all the people who could do the job rather 
than the person who would in fact be assigned to do it were 
Smith to do Job 3. This has a passing, though misleading, 
resemblance to the Stalnaker (7) treatment of Conditionals. On 
this account, conditionals are handled by going to the ‘nearest’ 
possible world in which the antecedent is true, and evaluating 
the consequent from there. Finding the nearest world involves 
the use of a similarity relation, ordering the worlds. The order in 
which a planner generates plans from a task specification could 
be seen as a kind of similarity relation. However, it functions in 
a different way from the Stalnaker similarity relation. For them, 
the similarity relation is a way of incorporating counterfactual 
information. For us, this is already done by other means, and 
the order of plans is only used for conditionals with non-modal 
antecedents. 

One interesting thing to note about our implementation is the 
treatment of conditlonals of the form ‘If P then May(Q)’. First 
P is added to the task specification. Then to evaluate May(Q), 
Q is added to the specification, and plans are then generated. 
This means that the query become equivalent to ‘May(P and 
Q)’ and also ‘If Q then May(P)’. Such equivalences do not hold 
with conditionals like ‘If P then MUST(Q)’, and they are a bye- 
product of the incompkte search space of planners. However, 
these equivalences seem to be haimless, and this suggests that 
the ‘directionality’ of conditionals is a matter of implicature 
rather than of truth conditions. In many cases, the antecedent 
is taken to precede the consequent (e.g. ‘If he comes here, I will 
leave’), but in other cases, especially in planning domains, there 

is no such directionality (e.g. ‘If Smith does X, Jones will do Y’ 
where Y may be done before X). 

It is also important to note that to handle the treatment of 
modals and conditionals given here, the planner must be able 
to accept partial plans. This is because the task specification, 
as well as giving initial and goal conditions, may also specify 
certain operations that must be used in any resultant plan a t  
a particular place. To allow this, the planner must be able to 
build up complete pIans on the basis of a partial description of 
a plan. Most planners do allow this. 

GENERAL INTERFACING ISSUES 

There are some general lessons that we feel can be learned 
from our experieuces with this attempt to provide a natural 
language interface to a planning system. The first concerns the 
limitations of the system that we are interfacing to. The general 
point is that a system which was not designed with a view to 
having access via natural language is unlikely to include facilities 
which such an interface would find useful. In this respect plan- 
ners, and other typen of problem solving systems, are different 
from databases, which are the most usual system to provide NL 
interfaces to. Whereas with database systems the range of possi- 
ble (sensible) queries is more or less limited to the contents, and 
to some degree, the organisation of the database, with a planner 
there are far more things that could sensibly and usefully be 
required. 
For some of these type of interactions, there may be little or 
nothing inside the actual planner for the front end system to 
use. In presenting our earlier example of successive translations 
from logical form, we mentioned that much temporal detail is 
stripped out of the the sentence meaning when it is trapslated 
into PQL. This is because the temporal structure in a planner 
is invariably much simpler than that presupposed by the tense 
and aspect system of a language. 

In fact, NONLIN in our present system provides an example of 
this: there is actually no explicit temporal information at all in 

a NONLIN plan. The partial ordering of nodes in a plan places 
some constraints on how the plan could be temporally executed, 
but all of this is neutral as to particular approaches to the rep- 
resentation of time. Nevertheless, we still want to be able to 
ask and answer questions about temporal ordering of jobs to be 
done, and so on. In our current system, this has either to be in- 
ferred from domain information, or (as is actually done) treated 
in an oversimplified manner by associating nodes in a plan with 
temporally located events. Whereas in this application this is 
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fairly satisfactory, it is not difficult to imagine other applications 
in which consumption of time resources were important, where 
this kind of temporal information would have to be superim- 
posed on the actual planner in a way fairly unconnected with 
how the plans were actually arrived at. 

The complexity in the LFs arise as a result of giving a compo- 
sitional semantics for tense that covers a wide range of cases. 
though in any one instance much of the information is will in 
fact be redundant. The translation thus involved an element of 
generating logically equivalent but non redundant expressions. 

If the designers knew that the planner was going to be used with 
an NL interface, then it might well be the case that the system 
could be built in such a way that the relevant information could 
be more easily superimposed on the basic planning system. 

Many interactions do not require invoking the application so 
much as the domain model, or a declarative representation of 
the current state of the system. In some more extreme cases, 
it might be information straightforwardly about the nature of 
the domain which is needed to answer the question, informa- 
tion that is totally irrelevant for the operation of the planner 
itself and thus not represented in it. In our current system we 
would have to represent this knowledge inside PQL, for the not 
very good reason that there is nowhere else for it to go. But 
enriching PQL so as to encompass the ability to answer such 
questions would not, we feel, be a good idea: a general purpose 
knowledge representation formalism should not be confused with 
a planning-specific language. In retrospect, we should have de- 
voted much more attention to modelling the domain of applica- 
tion: we tried to avoid this, motivated partly by the practical 
necessities of building a system within limited resources in t e r m  
of time and effort, and partly by the feeling that it was theoreti- 
cally undesirable to have to emulate some of the knowledge and 

output of the planner in another part of the system, However, 
this intuition was, we now feel, wrong: it is better to bring as 

. -  ~. 
Such expressions are not easy to simplify or optimise, and in 
the general case there may not even be a decision procedure for 
doing this. It would be much easier if the inference required for 
this simplification were done in the question answering process 
rather than in the question forming process. This suggests a 
different way of using PQL and the PQLE. PQL could he used 
to provide a language in which to express the semantic clauses 
that provide an interpretation for LF expressions, much as the 
language of set theory is normally used for this purpose. Thus 
instead of producing a single PQL expression for a single LF 
query, a procedure generates smaller PQL expressions in an at- 
tempt to interpret the LF. Many problems need to he sorted 

out with this approach, and it may tum out to be as difficult to 
implement as direct translation, but it is an approach we would 
like to study. 
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