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This paper addresses the problem of designing a system that accepts a plan structure of the sort 
generated by AI planning programs and produces natural language text explaining how to execute the 
plan. We describe a system that generates text from plans produced by the NONLIN planner (Tate 
1976). 

The results of our system are promising, but the texts still lack much of the smoothness of 
human-generated text. This is partly because, although the domain of plans seems a pr ior i  to provide 
rich structure that a natural language generator can use, in practice a plan that is generated without the 
production of explanations in mind rarely contains the kinds of information that would yield an 
interesting natural language account. For instance, the hierarchical organization assigned to a plan is 
liable to reflect more a programmer's approach to generating a class of plans efficiently than the way 
that a human would naturally "chunk" the relevant actions. Such problems are, of course, similar to 
those that Swartout (1983) encountered with expert systems. In addition, AI planners have a restricted 
view of the world that is hard to match up with the normal semantics of natural language expressions. 
Thus constructs that are primitive to the planner may be only clumsily or misleadingly expressed in 
natural language, and the range of possible natural language constructs may be artificially limited by the 
shallowness of the planner's representations. 

1 INTRODUCTION 

Planning is a central concept  in Artificial Intelligence, 
and the state of  the art in planning systems allows quite 
complex plans to be produced with very little human 
guidance. If these plans are to be for human consump- 
tion, they must be explained in a way that is compre- 
hensible to a human being. There is thus a practical 
reason for considering ways of  generating natural lan- 
guage from plans. There are also theoretical reasons 
why plans are a good domain for studying natural 
language generation. Although there may be a great deal 
of material in a given plan, there is a kind of consensus 
among planning researchers on what sort of  information 
a plan is likely to contain. Thus it is possible that 
interesting general principles about producing explana- 
tions of  plans can be formulated, independently of the 
domains in which the plans are produced. This prop- 
erty,  of providing a relatively formally defined and yet 

domain-independent input, makes plans very attractive 
from a natural language generation point of  view. 

This paper discusses a system that accepts a plan 
structure of  the sort generated by AI planning programs 
and produces natural language text explaining how to 
execute the plan. Our objective in building this system 
has been to develop a clear model of  a possible archi- 
tecture for a language generation system that makes use 
of  simple, well-understood, and restricted computa- 
tional techniques. We feel that too much of the work in 
this area has been characterized by the use of arbitrary 
procedures,  which often do not provide a clear basis for 
future work. We believe that by providing a simple yet 
nontrivial account of language generation, we can con- 
tribute at least by providing a "s t raw man"  with known 
limitations, with respect to which other work can be 
compared. 

Describing plans represents in many ways an obvious 
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Figure I Action Graph of a Nonlinear Plan. 

application of natural language generation, and our 
approach has been to tackle this problem in a fairly 
straightforward way, informed by the state of the art as 
we perceive it. The results from our system are prom- 
ising, but our texts lack much of the smoothness of 
human-generated explanations. An analysis of the rea- 
sons behind some of the system's failures points to a 
number of deep problems concerning the connection 
between AI plans and natural language explanations. 

In the next section we briefly introduce the inputs 
and structure of the language generation system. We 
then run through the parts of the system by showing a 
worked example. The core of this paper concerns the 
mapping from plans to messages, which can be thought 
of as abstract descriptions of natural language dis- 
courses. We describe our repertoire of messages, how 
plan structures are mapped onto messages, and how 
messages are simplified. Finally we look at further 
examples of the system's output and analyze some of its 
failures and successes. 

2 SYSTEM OVERVIEW 

2.1 PLANS AND PLANNERS 

For this project, we have adopted a traditional AI view 
of planning and plans. According to this view, the task 
of planning to achieve a goal is that of finding a set of 
(instantaneous) actions which, when performed, will 
transform the world as it is (the "initial state") to a new 
world (the "final state"), which is similar to the present 
world, but where in addition the goal is true. 

We assume that the plans produced by our planner 
are nonlinear (almost standard with AI planners since 
NOAH; Sacerdoti 1975); that is, they only partially 
specify the order in which the actions are to be per- 
formed. Furthermore we assume that the time con- 
straints involved in a plan can be displayed in an action 
graph, where an action is represented by a point and a 
line going rightward from one action to another indi- 
cates that the first action must take place before the 
second (this is true of most, but not all, AI plans--see 
for instance Tsang 1986). Figure 1 shows an action 
graph for a nonlinear plan for building a house. 

We further assume that plans are in general hierar- 

chical. By this we mean that the planner operates in a 
hierarchical manner (almost standard in AI planners 
since ABSTRIPS; Sacerdoti 1973), first producing a 
plan :specified at a very abstract level, and then succes- 
sively refining it until the required level of detail is 
obtained. At each stage a process of criticism may 
impose new orderings between actions whose relative 
ordering seemed to be unconstrained at the previous 
levels of abstraction. For us, the history of this hierar- 
chical expansion must be present in the final plan, since 
we assume no explicit interaction with the planner itself 
while it is operating. (We shall return in Section 5 to the 
question of whether the hierarchical plan structure is in 
fact a sufficient description of the planner's processing.) 

For concreteness, we have based our system on the 
output of a single AI planning program, even though 
there are a number of planning systems that could 
produce a similar style of output. The input to our 
natural language generator, then, is the translation into 
Prolog of the set of datastructures created by Tate's 
(1976) NONLIN planner. 

:2.2 SYSTEM STRUCTURE AND PARAMETRIZATION 

We have set ourselves the goal of generating from a 
NONLIN plan a single natural language text that ex- 
plains the actions to be performed and why things have 
to be done this way. To a large extent the explanatory 
power of such an account depends on what information 
is represented in the plan in the first place. Although a 
system that produces a single monolog from a plan is 
more restricted than, say, an interactive system that can 
be a,;ked to explain parts of the plan selectively, a 
number of possible applications do suggest themselves 
(for instance, the automatic generation of instruction 
manuals), and the monolog task does provide us with an 
excellent way of studying the problems of automatically 
generating large texts. 

We have attempted to factor out domain-dependence 
as much as possible in the generation system by having 
it rely heavily on knowledge expressed in a declarative 
fashion. Given a particular target natural language, a 
specific lexicon then needs to be provided for the 
domain in which the plans are to be generated (we have 
considered cookery, house building, car maintenance, 
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central heating installation, and the "blocks world"). 
This provides linguistic representations corresponding 
to the objects, states, and actions that will arise in 
generated plans. These lexical representations are sup- 
plemented by domain-dependent rewrite rules that can 
be used to reveal hidden additional structure in the 
planner's representation of the domain. Even with the 
target natural language fixed and a particular domain 
given, there are still in general many possible plans from 
which natural language could potentially be generated 
(indeed, many man-years of AI research were devoted 
to developing plans simply in the "blocks world"). 

Our natural language generation system can be 
thought of as consisting of four processing stages, 
centering on the construction and manipulation of an 
expression of our special message language, as follows: 

Message Planning 
Message Simplification 
Compositional Structure Building 
Linearization and Output 

Message Planning is the interface between the genera- 
tor and the outside world. At this stage, the generator 
must decide "what to say," i.e., which objects and 
relationships in the world are to be expressed in lan- 
guage and in roughly what order. The output of the 
message planner is an expression in the message lan- 
guage which, following McDonald, we will call the 
message. The idea is that message planning may be a 
relatively simple process and that the resulting message 
is then "cleaned up" and simplified by localized rewrite 
operations on the expression ("Message Simplifica- 
tion"). 

The message is a nonlinguistic object, and the task of 
structure building is to build a first description (a 
functional description much as in Functional Grammar; 
Kay 1979) of a linguistic object that will realize the 
intended message. We assume here that a "linguistical- 
ly motivated" intermediate representation of the text is 
of value (this is argued for, for instance, by McDonald 
1983). Our structure builder is purely compositional, 
and so the amount of information that it can take into 
account is limited. We treat structure-building as a 
recursive descent traversal of the message, using rules 
about how to build linguistic structures that correspond 
to local patterns in the message. During this, a simple 
grammatical constraint satisfaction system is used, to 
enforce grammaticality and propagate the consequences 
of syntactic decisions. The recursive descent terminates 
when it reaches elements of the message for which there 
are entries in the system's lexicon. 

Once a structural description of a text has been 
produced, it is necessary to produce a linear sequence 
of words. Our structural descriptions contain only dom- 
inance information and no ordering information, and so 
a separate set of rules is used to produce a linearization. 
This is akin to the ID/LP distinction used in GPSG 
(Gazdar et al. 1985). 

The resulting system is similar to McDonald's (1983) 
model, in that it is basically a direct production system 
that utilizes an intermediate syntactic representation. 
The system is also similar to McDonald's in its empha- 
sis on local processing, although there is no attempt to 
produce a psychological model in our work. Our con- 
straint satisfaction system is implemented efficiently by 
unification, however, so that the effects of local deci- 
sions can propagate globally without the need for ex- 
plicit global variables. This is used, for instance, to 
enforce a simple model of pronominalization (based on 
that of Dale 1986). 

3 A WORKED EXAMPLE 

AS an illustration of the various mechanisms contained 
within the system, we present in this section an example 
of the system in operation. The example is taken from a 
demonstration application, showing how the language 
generator might be attached to an expert system. The 
scenario is as follows: we have an expert system whose 
function is to diagnose car-starting faults. The expert 
system asks questions to which the user can either give 
an answer or type "how,"  meaning "how can I find out 
the answer?" In this latter case, the expert system 
invokes a planner to work out what the user has to do, 
and passes the resultant plan to the language generator, 
which produces text giving instructions to the user. The 
expert system then asks its original question again. 

In our demonstration system, the expert system is in 
fact just a binary decision tree. At each internal node 
there is a yes-no question and a planner goal, to be used 
if the user responds with "how."  At each leaf node 
there is a recommendation and a planner goal--here 
"how"  is interpreted as "how do I carry out your 
recommendation?" To make the demonstration more 
varied, the system keeps track of what it has already 
told the user to do, so that, for example, accessing the 
carburetor jet will be described differently depending on 
whether the air filter (which is on top of the carburetor) 
has already been checked. 

We pick up the example at a point where it has been 
ascertained that the battery is OK, but that there is no 
spark on the spark plugs. The next step is to test for a 
spark at the distributor. The system asks: 

Is  t h e r e  a s p a r k  a t  t h e  d i s t r i b u t o r ?  

and we respond with "how."  The NONLIN plan goal 
associated with the above question is 

{tested dis t_spark} 

that is, "make a plan to achieve the state in which we 
have tested the distributor spark." The planner assumes 
that we have done nothing already and are standing at 
the front of the car, looking at the engine. 

3.1 THE PLAN 

The plan produced by NONLIN for this example case is 
a totally ordered sequence of six actions as follows: 
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{act {detached dirt_cover engine}} 
{act {detached coil_lead dist_cap}} 

{act {located mech cab}} 
{act {started engine}} 
{act {located mech frontofcar}} 
{act {observed spark colLlead}} 

detach the dirt cover from the engine 
detach the coil lead from the distributor 
cap 
go to the cab 
start the engine 
go to the front o f  the car 
observe whether there is a spark on the 
coil lead 

However, although this is the plan at its lowest level, 
the plan structure returned by NONLIN also includes 
the hierarchical expansion history of the plan. The plan 
started out as just the original goal itself, and was 
successively expanded to greater levels of detail until 
the primitive actions given above were obtained. The 
expansion hierarchy for this plan is shown in Figure 2. 2 

As well as this hierarchical structure (and the order- 
ing information not shown in this diagram), NONLIN 
returns information about preconditions in the plan-- 
where they are needed and where they are established. 
So, for example, the condition {goal {located mech cab}} 
is required by node 14 and made true by node 13 (and 
made false again by node 15). 

3.2 THE TEXT 

All this information is extracted from NONLIN's  data 
structures, converted into Prolog clauses, and passed to 
the language generator. The generator looks for ways to 
break up and organize the information in the plan to 
produce comprehensible text. This process is described 
in more detail in Section 4, but to see what it does in this 
case, we shall concentrate on just one fragment of the 
above plan, namely nodes 3, 5, 6, 7, and 8. These nodes 
represent the expansion of the following NONLIN 
operator: 

actsclhema tested_4 
pa t t e rn  {act {tested dist_spark}} 
expansion 

goal 
goal 
goal 
goal 

orderings 
1 - *  
2-- ,  

{goal {detached coiklead dist_cap}} 
{goal {started engine}} 
{goal {located mech frontofcar}} 
{goal {observed spark  coil_lead}} 

4 
4 

3 - * 4  
conditions 

unsupervised {goal {accessible dist}} at self 
supervised {goal {detached coil_lead 

dist_cap}} at 4 f rom 1 
supervised {goal {located mech  frontofcar}} 

at 4 f rom 3 
supervised {goal {started engine}} at 4 f rom 

2 
er.Ld; 

This operator expands the high level action "do some- 
thing that causes the distributor spark to have been 
tested" (that is, "test the distributor spark") into four 
subgoals (not actions, since if they are already in effect, 
nothing further needs to be done), the first three of 
which must preceed the last. Thus the plan here is to 
ensure that the coil lead is detached from the distributor 
cap, the engine is started, and the mechanic is at the 
front of the car, and then to observe whether there is a 
spark on the coil lead. 

Tile subplan gives rise to the following piece of text: 

T E S T I N G  T H E  D I S T R I B U T O R  S P A R K  

Testing the distributor spark involves detaching the coil 
lead from the distributor cap, starting the engine, going 

? 
? 
® 

Figure 2 Expansion Hierarchy. 

1: (goal ( tested dist._spark) } 

2: {goal {accessible dist} } 
3: {act {tested distspark) } 
4: {act {accessible dist} } 
5: {goal {detached coil_lead dist_cap} } 
6: { goal { started engine } } 
7: [goal {located mech frontofcar} } 
8: {goal {observed spark coil_lead} } 
9: {goal {detached dirt_cover engine) } 
1 O: { goal {located mech cab } } 
l h  {act {detached dirt_cover engine} } 
12: {act [detached coil_lead dist_eap} } 
13: { act {located mech cab } } 
14: {act {started engine} } 
15: (act {located mech frontofcar} } 
16: {act {observed spark coil_lead} } 
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to the front o f  the car and then observing whether the 
coil lead sparks. 

I f  you go to the front o f  the car now you will not be 
at the wheel afterwards. However in order to start the 
engine you must be at it. Therefore before going to the 
front of  the car you must start the engine. 

I f  you start the engine now you will not be at the front 
o f  the car afterwards. However in order to detach the 
coil lead from the distributor cap you must be at the 
front of  the car. Therefore before starting it you must 
detach the coil lead from the distributor cap. 

Detach the coil lead from the distributor cap. After 
this start the engine. After this go to the front o f  the car. 
After this observe whether the coil lead sparks. 

You have now finished testing the distributor spark. 

Notice that this text is not just a description of the 
actions as specified by the plan operator. Nor is it the 
fully detailed plan of everything to be done. It is a 
description of the plan operator in the context of the 
current plan, embellished with additional useful infor- 
mation from that context. It includes references to 
actions at several different levels of abstraction, as well 
as information about ordering constraints present in the 
plan but not present in the basic plan operator. 

3.3 THE MESSAGE 

The first step in the generation of this text is to convert 
the plan data into an expression in the generator's 
intermediate message language. The message language 
and the strategies for carrying out this conversion are 
discussed more fully in Section 4; here we concentrate 
on those aspects particularly relevant to this text. 

The overall strategy applied to our subplan is to 
construct an embedding: an introduction-body-conclu- 
sion structure in which the introduction explains how 
the action is expanded, the body explains how to 
execute the expansion, and the conclusion makes the 
point that by executing the expansion, the higher level 
action is acheived. This strategy is appropriate because 
the body of the expansion is relatively simple. For more 
complex examples, where it is not practical to attempt 
to describe the expansion merely as an introductory 
sentence of a paragraph, an alternative strategy would 
be employed. 

This strategy decision gives us the general shape of 
the text, and the components of the embedding are 
straightforwardly constructed, by reference to the local 
"shape" of the plan fragment. Here the actions are 
linearly ordered, which suggests presenting them in the 
order of execution. At the same time the message is 
embellished with the justifications for the action order- 
ing. In the above plan operator, the first three actions 
were unordered, but lower level considerations (con- 
cerning where the mechanic is at a given time) impose 
an ordering on them in the actual plan returned. Mes- 
sage elements are added to explain these ordering 
requirements, and in this case these necessarily appeal 
to the lower level actions of moving about. 

The resulting message expression is too large for 
easy display, so we shall concentrate on a small part of 
it, the part corresponding to the three sentences: 

I f  you go to the front o f  the car now you will not be 
at the cab afterwards. However in order to start the 
engine you must be at it. Therefore before going to the 
front of  the ear you must start the engine. 

The initial message expression for this text  is: 

implies ( 
contra_seq ( 

hypo_result ( 
user, 
achieve (goal (located (mech, front ofcar))), 
not (goal (located (mech, cab)))), 

prereqs ( 
user, 
then (wait ([ ]), achieve (goal (started 
(engine)))), 
goal (located (mech, cab)))), 

neccbefore ( user, 
then (walt ([ ]), achieve (goal (started 
(engine)))), 
achieve (goal (located (mech, frontofcar))))) 

where expressions like goal(located(mech,frontofcar)) 
and goal (s tar ted(engine))  are straight NONLIN ex- 
pressions, translated literally into Prolog. This expres- 
sion can be read approximately as "the hypothetical 
result of going to the front of the car is that you will not 
be in the cab, and this contrasts with the prerequisite of 
being in the cab to start the engine. This combination 
implies you should start the engine before you go to the 
front of the car." And of course, that is more or less 
what the produced text says. 

3.4 SIMPLIFYING THE MESSAGE 

The above message contains a number of redundancies, 
which will lead to inelegant text if it is used for gener- 
ation. First of all, it contains various occurrences of 
wait([  ]) (the action of waiting for nothing). These are 
inserted because in general at certain points of the 
subplan being explained, one is forced to wait for the 
conclusion of actions being performed in other sub- 
plans; this time, however, there are no such critical 
actions in other parts of the plan. Second, the NONLIN 
expressions have been inserted verbatim, without any 
consideration of whether they could be expressed more 
elegantly in the message language. Message simplifica- 
tion concerns rewriting the message expression gener- 
ated by message planning into one that is "simpler" in 
some sense. This is achieved by applying rewrite rules 
to components of the whole message. Two kinds of 
rewrite rules are used: the first kind perform domain- 
independent structural simplifications to message ex- 
pressions, and the second domain- or language-depen- 
dent alterations. For example, the following two rules 
together dispose of the redundant wait([  ]) terms of the 
above message ([ ] denotes the empty action here): 

w a i t ( [  ])  --~ [ ]. 
then([ ]~X) --* X. 
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These are to be read as rewrite rules, with the expres- 
sions on the left of  the "---~" being rewritten to the 
expressions on the right. Variables are denoted by 
names beginning with capital letters. The operation of  
these rules is entirely domain-independent.  One of  the 
domain-dependent  rules rewrites mech (the mechanic) 
as u se r ,  to indicate that the mechanic is the same as the 
person to whom the instructions are being given. An- 
other  set of  rules rewrites states into a form where the 
affected person or object is explicit (this representation 
allows the system to collapse together multiple states 
involving the same person): 

goal (located (X,Y)) --~ state (X, located (Y)). 

More substantial examples include the following rules 
for talking about moving around: 

achieve (state (user, located (Y)))  --* go_to (user,Y). 
result  (go_to (X,Y),state (user, located (Y)))  --~ 
do (go_to (X,Y)). 

The first causes a phrase such as "get  to be at the front 
of  the ca r "  to be rewritten as "go  to the front of  the 
ca r . "  The second removes redundancy in a sentence 
like " G o  to the front of  the car and you will be at the 
front of  the ca r , "  rewriting it as simply " G o  to the front 
of  the ca r . "  

Once all the rewrite rules have been applied, our 
simplified example message looks like this: 

implies ( 
contra_seq ( 

hypo_result ( 
user, 
go_to (user, function (front, car)), 
state (user, not (located (cab)))), 

prereqs ( 
user, 
star t  (engine),  
state (user, located (cab)))) ,  

neccbefore (user, 
s tar t  (engine),  
go_to (user, function (front, ca r ) ) ) )  

3.5 COMPOSITIONAL STRUCTURE BUILDING 

The next  stage is to build a linguistic structure from this 
message expression. The structure-building component  
uses an ordered set of  rules for mapping from local 
message patterns to linguistic structures. It is similar to 
the system described in Chester  (1976) in the local 
nature of  its operation,  but Chester  builds sentences 
directly, rather  than via structural representations. 
Mann et al. (1982) would call our  system a "di rec t  
t ranslat ion" system. A system built in this fashion has 
the advantage of  a very  simple control structure and has 
the potential of  having its principles expressed in mod- 
ular, independent rules. 

Our linguistic structural descriptions are similar to 
the functional descriptions used in Functional Grammar 
(Kay 1979; Kay 1984). For  example,  the following is a 
slightly simplified version of  the rule used to realize the 
hypo_result construct  above: 

hp!oo.result (Agent, Act, State) --* 
[ ss~nesentence, 
conjn = [root = 'if], 
first = 

Is, 
agent = [ SAgent], 
pred = [active, 
morph  = pree, 
SAct, 
adv = + [ap, adv_word=[root=now]]]] ,  

rest  = 
Is, 
pred = 

[vp, 
aux = [root = will], 
pred = 

[vp, 
$State, 
morph  = inf, 
adv = + [ap, 

adv_word= [ root = afterwards ] ] ] ] ] ]. 

In this rule, the left hand side of the ---> is a Prolog 
pattern to be matched with part of the message (symbols 
beginning with uppercase letters represent  variables, 
which are to match subexpressions of  the message). The 
rightlaand side is a functional description, describing the 
English phrase that is to render  that part. In these 
functional descriptions, expressions preceded by dollar 
signs represent  the places where further information 
will be contributed by the expansion of subparts of the 
message. Thus the " ag en t "  value is obtained by recur- 
sively matching the value of the variable A g e n t  (that is, 
the first argument in the hypo__vesu.lt term) against the 
structure rules. 

This rule is responsible for sentences like: 

I f  you start the engine now you will not be at the front  
o f  the car afterwards. 

The rule provides the basic template for the sentence: it 
is a combination of  two sentences using the conjunction 
" i f . "  The first sentence is present  tense active, with 
agent specified by the A g e n t  argument and predicate by 
the Act  argument, and has an adverbial modifer " n o w . "  
The second sentence is a future tense expression of  the 
Sta te  given as argument,  with adverbial modifier "af-  
te rwards ."  The presence of  s a m e s e n t e n c e r  ensures 
that the whole is a single sentence and that the two 
subclauses have the same focus. 

Tile recursive structure building process "bo t toms  
ou t"  when a message element is reached for which a 
linguistic realization appears in the domain-dependent  
lexicon. Domain states and properties (Section 4.1) are 
provided with lexical entries that describe how to 
realize them as VPs. Such entries could be written as 
structure building rules in the same format as the above 
1-~,po_result rule, but in practice it is convenient  to use 
a more compact notation: 

lx (accessible, be, [attr: @ accessible]). 
lx (answer, answer, [obj: @ 'the question']). 
lx (s tar t  (Z), start, [obJ: Z]). 
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These entries indicate how each of accessible (a prop- 
erty), answer ,  and s ta r t (Z)  (actions) can be realized in 
English, by providing a verb and a specification for the 
complements to follow it. In the first two, the comple- 
ment phrases are specified directly as constant strings 
(indicated by the '@' sign). In the last one, the filler of 
the obj role (the direct object) will be whatever phrase 
is used to realize the object Z being started. Additional 
rules provide possible fixed phrases to realize such 
domain objects: 

r e f e r e n t  ( e n g i n e ,  @ e n g i n e ) .  

When a domain object like engine comes to be realized, 
either the fixed phrase provided (prefixed by 'the') will 
be used, or a pronoun with the appropriate gender and 
number will be chosen. It is clearly a limitation of our 
system that no other possibilities are currently allowed, 
but in some sense this reflects the fact that plans come 
with a great deal of information about the actions to be 
performed but very little information about the objects 
involved in them. 

Structure building rules are ordered, so rules for 
more specific patterns can be placed before rules for 
less specific ones, without the latter having to explicitly 
provide negative conditions. In addition, rule applica- 
tion is deterministic, in that, once the left hand side of a 
rule has matched a piece of message and the right hand 
side structure (minus the parts that require recursive 
rule matching) has been successfully built, no other rule 
will ever be tried for that portion of the message. 

As well as the usual specifications of features and 
values (for example, conjn and first used above), 
functional descriptions can also contain specifications 
of properties, such as s and samesentenee,  that the 
relevant construction must have. Some of these prop- 
erties (such as s) are intrinsic--essentially just features 
without values. Others are "macros" for bundles of 
simpler feature-value and property specifications. For 
example, saraesentence is defined as being shorthand 
for a bundle of feature-value pairs that limit the possi- 
bilities for focus movement in and around the structure 
described. A collection of such macros enables us to 
implement what is essentially Dale's (1986) model of 
how discourse structure constrains pronominalization, 
which was inspired by the work of Grosz (1977) and 
Sidner (1979). The use of a macro like ssanesentence 
(keyed off particular structures in the message) sets up 
an environment that will allow certain pronominaliza- 
tions but exclude others. The choice of whether to 
pronominalize or not is then made on a local basis. It is 
interesting to compare this scheme to that of McKeown 
(1982), which also makes focus decisions on a local 
basis. McKeown's approach, almost the opposite to 
ours, is to take certain focus priorities as primary and 
then to attempt to select material in accordance with 
these. Our approach, which involves considering focus 
only after the material has already been organized, 
regards pronominalization more as a last-minute lexical 
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optimization than as something that is planned in ad- 
vance. We have considered incorporating some means 
of focus annotation in the message, but it is not always 
clear at this level what the focus should be. We have 
thus preferred to allow message planning simply to 
place general constraints on focus movement. 

As the message is traversed by the structure building 
rules, more and more information accumulates about 
the output functional description and its components. 
As is usual in unification grammar, in the written form 
structural descriptions are sideways open, that is, an 
object satisfying the description is required to have the 
features listed, but may have any other features in 
addition. Thus our structure building rules only provide 
the framework of the final functional description. The 
rest is filled in by a simple grammatical constraint 
satisfaction system. This enforces grammaticality and 
handles the propagation of feature values that are 
shared between different phrases (for instance, number 
agreement). The constraint satisfaction system is based 
on the use of a declarative "grammar specification" of 
the types of legal descriptions and the constraints they 
must satisfy. This specification is compiled into a rep- 
resentation that essentially treats every property and 
feature as a macro for a bundle of conclusions that 
follow from its being involved in a description. 

3.6 CONSTITUENT ORDERING 

The final task once the linguistic structure has been built 
is to determine the order in which the constituents are to 
be produced, and to locate the actual words to be used. 
Substructure ordering is determined by ordering rules. 
The ordering rules are applied to a structural description 
in much the same way that structure-building rules are 
applied to the message; that is, recursively and compo- 
sitionally. The left hand side of an ordering rule is a 
pattern that is matched against the structural descrip- 
tion. The right hand side of the first rule whose pattern 
matches is then taken as a template determining which 
parts of the description are to be realized as phrases and 
in what order. For example, here is a rule for VP 
ordering: 

[vp,  m a i n v e r b  = V, adv  = A, e o m p l s  = C] --* [V ,C~] .  

This rule ensures that a verb is realized before its 
complements, which are realized before any adverbial 
modifiers, producing VPs like: 

go to the front of  the car now 

Each application of an ordering rule returns an ordered 
list of functional descriptions. These are then recur- 
sively subjected to ordering rules, to determine their 
relevant subphrases and the order these should be 
realized in. The recursion "bottoms out" when a func- 
tional description of type word  is reached. The end 
result is a list of word descriptions each containing 
features detailing aspects of the morphology. These are 
passed to the morphology component (currently ex- 
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pressed as raw Prolog code), which will then output the 
appropriately inflected word. 

4 PLANS AND MESSAGES 

4.1 THE MESSAGE LANGUAGE 

In some ways,  a natural language generation system is 
like an optimizing compiler. Producing some sort of 
natural language from a symbolic input is not a task of 
great difficulty, but producing text that is smooth and 
readable is a challenge (and in general quite beyond the 
state of  the art). With both tasks one has the option of  
planning the text and simplifying its form either in a 
single pass or in multiple passes. In language genera- 
tion, McDonald 's  M U M B L E  (McDonald 1983) pro- 
duces and simplifies linguistic structures within a single 
pass of the input. Although the modeling of human 
language product ion may require a theory of  this kind in 
the end, the result is a system where it can be hard to 
separate out the different principles of structure build- 
ing and simplification, because these have all been 
conflated for reasons of  efficiency. We have thus opted 
for a multi-pass system. Multi-pass optimizing compil- 
ers need to have specialized internal languages (virtual 
machine codes) more abstract than the output machine 
codes and in terms of  which optimizations can be 
stated. The analog in a natural language generation 
system would be a message language that could ex- 
press at a level more abstract than linguistic structure 
the goals and intended content  of  a piece of  language to 
be generated. We can see elements of  such a language in 
the "realizat ion specif icat ions" of  McDonald and Con- 
klin (1982) and in the "p ro tosen tences"  of Mann and 
Moore (1981). A crucial part of  our own system is the 
use of  a message language specialized for the explana- 
tion of  plans. 

Our message language is a language specifically de- 
vised for expressing the objects that arise in plans and 
the kinds of things one might wish to say about them. 
The main types of  statements ( "u t t e rances" )  that can 
be made at present  as part of our generated text are 
shown in Figure 3. These "u t t e r ances"  mention actions 
and states, which could be domain actions and states (as 
appearing in the plan) or complex actions and states, 
formed according to the rules in Figure 4. The message 
language provides for the description of actions being 
carried out involving different agents and objects (both 
represented as " o b j e c t s " - - F i g u r e  5), although NON- 
LIN provides no indication about who is responsible for 
any given part of  a plan. Thus the agent of an action 
defaults to u s o r  for an action that is properly part of the 
current  subplan and s o m e o n e  for an action that has 
been included in the description but is properly part of 
another  subplan. In this way, each part of  the plan is 
explained from the point of  view of  the person executing 
it, with no assumption that the same person will be 
executing other  parts of the plan. A message consists of  
a number  of  "u t t e r ances"  linked together by various 
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UTTERANCE ::= 
:neccbefore(OB JECT,ACTION,ACTION) 
--- one action must take place before another 
do(ACTION) 
..... instruction to perform an action 
:result(ACTION,STATE) 
.... as 'do', but also mentioning an effect of  the action 
:hypo_result(OB JECT,ACTION,STATE) 
--- if the agent carried out the action, the state would hold 
expansion(ACTION,ACTION) 
--- describing the expansion of an action into subactions 
prer eqs(OB JECT,ACTION,STATE) 
--- describing the prerequisites of  an action, with the 
--- assumption that a given agent wil l  perform it 
needed(OBJECT,ACTION,STATE) 
--- describing the reason why a STATE is needed, so that 
--- OBJECT can perform ACTION 
causes(STATE,STATE) 
--- once the first state holds, so does the second 

now(STATE) 
--- indicating that some state now holds 

Figure 3 Types of  Basic Utterance. 

organizational devices. These indicate various kinds of  
sequencing and embedding (Figure 6). Most are simply 
ways to string together two "u t t e r ances , "  with an 
appropriate conjunction being suggested, according to 
what kind of link there is between the two. The e m b e d  
construction is used to indicate a discourse segment 
which has an introductory section, a body and a con- 
cluding section. Hence it has three parts. The idea is 
that the explicit marking of such structures in the 
message language will enable linguistic decisions (for 
instance concerning pronominalization) to be made 
more intelligently. In general, the domain-dependent  
lexicon need only supply a single linguistic representa- 
tion for the simplest form of a domain action or prop- 
erty. The linguistic forms of  the more complex forms 
allowed by the message language are then dealt with 
automatically by the system (Figure 7). 

4.2 FROM PLAN TO MESSAGE 

A plan with 30 or so actions contains a great deal of 
material, spelling out the necessary partial ordering 
between the actions and their preconditions and effects. 
A crucial task in message planning is cutting this 
material down into small enough pieces that can be 
rendered as independent pieces of text. In a domain- 
independent system for plan explanation, the only 
structure that such a "chunking"  can make use of  is the 
abstraction hierarchy and the local " s h a p e "  of the 
action graph. Even this is unfortunately limited by the 
fact that the abstraction hierarchy may represent  a view 
of the domain that is convenient  to the plan generator,  
but not the plan executer.  

The abstraction hierarchy tells us how certain actions 
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ACTION ::= 
then(ACTION,ACTION) 
--- two actions in sequence 
achieve(STATE) 
--- the action to achieve a state 

wait(STATE) 
--- waiting until a state holds 
complete(ACTION) 
--- finishing doing a prolonged action 
repeat(ACTION,STATE) 
--- doing the action until the state holds 
delegate(OBJECT,ACTION) 
--- have someone else do an action 

parallel(ACTION,ACTION) 
- -  doing two actions in parallel 
DOMAIN_ACTION 

STATE ::= 
and(STATE, STATE) 
--- both states hold 
state(OBJECT,PROPERTY) 
.-- an agent has a property 
not(state(OBJECT, PROPERTY)) 
--- an agent does not have a property 

PROPERTY ::= 
andp(PROPERTY, PROPERTY) 
--- conjunction of properties 
enabled(ACTION) 
--- able to perform an action 
done(ACTION) 
--- having done an action 

doing(ACTION) 
--- doing an action 
DOMAIN_PROPERTY 

Figure 4 Actions,  States,  and Properties.  

at a particular level of  the plan arise from the expansion 
of  a single action at a more  abstract  level. Such a group 
of actions is an obvious candidate for explaining as a 
single chunk. Thus our basic strategy is to first of  all talk 
about the plan at the most  abstract  level, then discuss 
the expansion of  the actions at that level, then discuss 
the expansion of  the actions involved in that, and so on. 
In general, then, at any time we are concerned with 

1) selecting out the portion of  the plan that corresponds 
to the expansion of  a single abstract  action and 

OBJECT ::= 
U S e r  

someone 
function(FWORD,OB JECT) 
DOMAIN_OBJECT 

Figure 5 Objects .  

MESSAGE :~--- 
title(ACTION.MESSAGE) 
--- labels a piece of  text with a title (based on an action) 
embed(MESSAGE,MESSAGE,MESSAGE) 
--- inn, oduction-body-conclusion type structure 
neutral_seq(MES SAGE,MESSAGE) 
--- two bits produced in sequence, but with no implied relationship 

time_then(MES S AGEoMES S AGE) 
--- two bits produced in sequence, this indicating time order 
linked(MESSAGE, MESSAGE) 
--- two bits prodtw.ed in sequence, with some unspecified relafinship 
time_parallel(MES SAGE,MES S AGE) 
--- two bits produced in sequence, indicating parallelism in time 
contra_seq(MESSAGE.MESSAGE) 
--- two bits produced in sequence, where the second conCadicts an 
--- expectation created by the first 
implies(MESSAGE,MESSAGE) 
--- one dplan statement is u'ue and hence so is another 
UTTERANCE 

Figure 6 Linking Devices  for Utterances.  

2) describing this, given that whole subsets of  the 
actions in it are to be treated as single actions. 

The first of  these is not trivial because,  as the result of  
successive criticisms, the set of  actions in the expansion 
of a more abstract  action may no longer be a simple 
connected piece of  the plan. As an example  of  this, 
Figure 8 is the action graph for a house-building plan, 
with the actions that are in the expansion of "installing 
the serv ices"  blocked out. 

To describe this set of  actions and their timing in the 
plan, it is necessary to describe other actions whose 
timing is closely coupled to them. The actions to be 
included in the explanation of  the expansion are ob- 
tained by a " c l o s u r e "  ope ra t ion - - a  process  of  tracing 
through all possible paths going forward in t ime be- 
tween actions in the expansion.  Any other actions 
encountered on these paths are deemed necessary to be 
included in the description. We call these actions "in- 
t ruders . "  Thus the actions described form the minimal 
convex graph that includes the desired actions (Figure 
9). 

Once the lowest-level plan actions corresponding to a 
single abstract  action have been isolated, the " s h a p e "  
of this part  of  the plan at the current  level of  abstract ion 
needs to be determined.  The current  point in the ab- 
straction hierarchy specifies the set of  actions that can 
be mentioned in this part  of  the text. I f  one of these is an 
abstract  action, in general there will be a whole class of  
lowest-level actions that need to be described simply as 
parts of  this action, whose internal structure will be 
described later. The lowest-level actions are thus 
grouped into subsets,  and what is to be explained are 
relationships between these subsets,  rather  than rela- 
tionships between primitive actions.  Technically,  the 
"chunk ing"  imposed by the current  layer of  the ab- 
straction hierarchy defines an equivalence relation, and 
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do( examineOftter_bolts ) ). 
do(complete(examine(filter_bolts))). 
do( de legate (someone ,examineOflter botts) ) ). 
now( state( user ,enabled( examine(lifter_bolts ) ) ) ). 
now(state(someone ~lone( examineOilter_ bolts) ) ) ). 
now(state( user ~toing ( examine(filter_ bolts) ) ) ). 
now(state(plug_leads ~ositioned) ). 
do(achieve(state(plug_leads,posit ioned) ) ). 
do(wait(state(plug leads,positioned) ) ). 
causes(state( user ,done(achieve(state(plug leads,posit ioned) ) ) ), 

state( user, enabled( examine(fdter_ boits) ) ) ). 

Examine the filter bolts. 

Finish examining the Nter  bolts. 

Have someone examine the Nter  bolts. 

You can now examine the filter bolts. 

The filter bolts have now been examined. 

You are now examining the filter bolts. 

The plug leads are now in position. 

Get the plug leads to be in position. 

Wait  until the plug leads are in position. 

Once the plug leads are in position you can 

examine the filter bolts. 

Figure 7 Expressions Generated Using Two Lexical Entries. 

we are interested in the quotient plan with respect to 
this relation. We can define the usual plan relationships 
between the relevant subsets of actions in a natural 
way. For instance, we say that one subset comes before 
another if and only if each element of the first comes 
before each element of the second. Because such a 
demanding criterion will apply quite rarely, in general 
there will be a great deal of parallelism in subplans 
whose actions are not at the most detailed level. 

Once a piece of the whole plan has been extracted 
and its "shape"  (relative to some given equivalence 
relation) established, rhetorical strategies are applied to 
decide how particular parts are to be presented. The 
message created depends directly on the structure of the 
justified plan. Thus, for instance, the expansion of a 
complex action gives rise to a section of text repre- 
sented by a message of the form: 

title ( Action, 
embed ( In t ro ,  

Body, 
now (s ta te  (user ,  done (complete  
( A c t i o n ) ) ) ) ) ) )  

where Action is the action described, In t ro  is an 
introductory message, which describes the prerequi- 
sites of the main action and the set of actions in its 
expansion (unless there are too many of them) and Body 
describes the action graph expanding the main action. 
The main strategies for describing action graphs are the 
lump strategy, forwards description, and backwards 
description (Figure 10). The lump strategy applies if a 
piece of the action graph is a self-contained " lump" 

Figure 8 Distribution of Expression of an Abstract Action. 

between two actions A and B, with no links between 
any actions inside the " lump" and any actions outside. 
If the subgraph between the actions is sufficiently 
complex (has more structure than two simple actions in 
parallel), the strategy suggests that its explanation 
should be postponed to a separate "section." Mean- 
while the whole subgraph is incorporated into the 
current explanation as if it were a simple action (this is, 
of course, the same strategy that is applied for an action 
that is above the primitive level in the abstraction 
hierarchy). Forward description is deemed appropriate 
when the action graph is a right-branching structure; in 
this case the actions are generally dealt with in time 
order, giving a message of one of the forms: 

t ime_then ( resul t  (Act, State) . . . .  ) 

neutra]_seq ( 
resul t  (Act, State), 
embed (causes  (State, 

state (user ,  enabled (Acts) ) ) ,  
. . . .  [ ] )  

where Act is the first action, State a state that it makes 
true, and " . . . "  is the message derived from the 
subsequent actions. When the action graph is a left 
branching structure, however, the strategy of back- 
wards description is suggested. This gives rise to mes- 
sages of the form: 

embed (p re reqs (use r~c t ,P res ) ,  

now (s ta te(user ,  
enabled ( 

~9® ® ® ®  

Figure 9 Closure of Expansion. 

® ®  
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Lump: 

~ 0  gQ Q 
O I 

Forwards: 

Backwards:  
~ m  I QQ 

When you have done A 
you can do B and C 

• 

8 Q 

•. Before you can do A 
you must do B and C 

Figure 10 Rhetorical Strategies. 

parallel (Act, 
achieve (State))))) 

where Act is the first action, with preconditions Pres 
and effects State, and " . . . "  is the message derived 
from the subsequent actions. 

All of these kinds of messages require the insertion of 
preconditions and effects of actions. It is necessary for 
the system to compute those preconditions and effects 
that are actually relevent for the current plan, rather 
than simply the total sets of preconditions and effects. 
This amounts to determining the justifications for the 
action ordering chosen. The justification for action A 
coming before action B can be of one of two types. 
Either A is needed to create a state where a precondi- 
tion of B is true, or A comes before B because otherwise 
B would create a state where a precondition of A was 
not true. The two different possibilities give rise to 
different modes of presentation, but if the justification is 
redundant or not available from the plan, it is simply 
missed out. 

4.3 IMPROVING THE MESSAGE 

As the last section suggests, the initial version of the 
message is put together in a very direct way from the 
structure of the plan. As a result, it is often unneces- 
sarily cumbersome. Message simplification concerns 
rewriting the message expression generated by message 
planning into one that is "simpler" in some sense. Since 
the amount of material we wish to deal with could be 
large, we have avoided considering expensive global 
simplification techniques in favor of emphasizing local 
simplification techniques analogous to "peephole" op- 
timizing techniques in compiling. Of course, a crucial 
difference between language generation and compila- 
tion is that in the former there is no clear notion of what 
"optimality" is. In the absence of a formal and detailed 
psychological theory of discourse comprehension, re- 
searchers in natural language generation are reduced 
more or less to using their intuitions about whether one 

way of phrasing something is "easier to understand" 
than another. We have regretfully had to follow the 
same course in designing and evaluating our own sys- 
tem. 

The domain-independent simplification rules used by 
our message simplification system are treated equally, 
but conceptually they seem to be of four main types. 
Members of the first type tidy up special cases that 
could as easily be detected when the expression is 
constructed. Here is an example of such a rule ([ ] 
denotes the empty utterance): 

(1) neutral_seq (X,[ ]) --* X. 

Thus any utterance expression of type neutral_seq will 
be rewritten by this rule if its second component is 
empty. Such an expression is rewritten simply to its first 
component. Incorporating such rules into the simplifi- 
cation stage means that the message-planning compo- 
nent can be simpler and more perspicuous. 

The second kind of rule expresses knowledge about 
planning and plan execution. Here are two such rules: 

(2) achieve (state (user, done (Act))) --* Act. 
(3) parallel (X, wait (Y)) --* then (X, walt (Y)). 

Rule (2) expresses the fact that the only way to create a 
state where you have done an action is to do the action. 
Rule (3) expresses the fact that waiting is an action that 
is always postponed until there is nothing else to do. 
Both of these principles are useful in finding the best 
way to express a given action. 

A third kind of rule really reflects the linguistic 
coverage of the system in an indirect manner. If there is 
a special way available for saying a particular kind of 
thing, then that should be preferred to using a more 
general technique. Here is such a rule: 

(4) prereqs (user, X, state (user, done (Y))) --* 
neccbefore (user, Y, X). 

This rule is about a special case of the prereqs structure 
arising in the message. When one is calling attention to 
the prerequisite(s) of an action X, a special case arises 
when the only prerequisite is the achievement of an- 
other action Y. In this case, the prerequisites statement 
amounts to saying simply that Y must happen before X. 
In general, one would expect that expressing the state- 
ment in this second way would result in a simpler piece 
of text than using a general-purpose strategy for ex- 
pressing prereqs statements. It is arguable that such 
rules should really exist as special-case structure build- 
ing rules. Such an approach would, however, preclude 
the use of simplification rules that made further use of 
the output of such rules. 

Finally, there are rules that are motivated by notions 
of simplicity of structure. For instance, the rule: 

( 5 )  t ime_parallel  (do (X) ,  do ( Y ) )  --* do (paral le l  (X, 
Y)). 
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results in an expression with one fewer "connectives." 
Such rules should really be backed up by a (perhaps 
psychological) theory of the complexity of messages. 

Here is an example of how a message language 
expression can be simplified using these rules. 

neutr~.] ~eq ( 
prereqs (user, 

achieve (state (user, done (al))) ,  
state (user, 

done (parallel (a2, wait (s))))), 
[]) 

is simplified by rule (1) to: 

prereqs (user, 
achieve (state (user, done (al))) ,  
state (user, 

done (parallel (a2, wait(s))))) 

which is simplified by rule (2) to: 

prereqs (user, 
el,  
state (user, done (parallel (a2, wait(s))))) 

which is simplified by rule (3) to: 

prereqs (user, 
el, 
state (user, done (then (a2, walt(s))))) 

which is simplified by rule (4) to: 

neccbefore  (user ,  t h e n  (a2,  w a i t ( s ) ) ,  a l )  

Here the simplification would result in the difference 
between a text like: 

In order to get you to have washed the baby you must 
have undressed the baby and waited until the bath is 
full. 

and one like the following: 

You must undress the baby and then wait until the bath 
is full before you can wash the baby 

The rewrite rules we have discussed so far in this 
section are independent of the domain in which the plan 
is made. Our system also allows for domain-dependent 
rules to be provided for a given planning domain. This 
provides a way of automatically rewriting every occur- 
rence of a given expression coming from the planner 
into another given expression. One purpose of this kind 
of rule is to provide a translation for states, which may 
be primitive objects to the planner but are required to be 
somewhat more complex by the generator. For exam- 
ple, in the car domain, there is a rule that rewrites the 
planner primitive posi t ioned (X) to be the complex 
term state (X, posit ioned).  Domain-dependent rewrite 
rules can also be used to show correspondances be- 
tween action and state names that seem independent but 
are in fact strongly connected. For instance, in the 
house-building plan, there is an action lay_basement_ 
floor and a domain state basement_floor_laid (not a 
legal message state). Not surprisingly, the second is an 
effect of the first and can only come about by the first 
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having been done. Given that we can deal with complex 
states and actions, we would do well to replace the 
second by a formula involving the first, in fact state 
(user', done (lay_basement_floor)). In this way we can 
simplify certain expressions in the message. For in- 
stance, the expression: 

do (achieve (basement_floor_laid)) 

is equivalent to: 

do (achieve (state (user, done (lay_basement_floor))) 

which simplifies to: 

do ( ls~r_basement-floor ) 

by simplification rule (2) above. Given this domain- 
dependent rule and the simplifications thus enabled, the 
expression do (achieve (basement__floorAaid)) would 
be realized as something like "lay the basement floor," 
rather than "get the basement floor to be laid," which 
would arise from a more straightforward encoding of the 
state basement_floor_laid in terms of verbs and cases. 

Domain-dependent rewrite rules allow us, in princi- 
ple, infinitely to enrich the semantics of actions and 
state,~ represented in the plan. They thus provide one 
way of compensating for the shallowness of the plan- 
ner's representation. The basic framework on which the 
plan actions and states hang is, however, fixed by the 
planner and cannot be changed by the generator. Thus 
not all deficiencies of the planner can be rectified by this 
method. The extensive use of domain-dependent re- 
write rules is in any case unattractive, as it takes away 
from the domain-independence of the system. We will 
return to this topic later. 

4.4 :KNOWLEDGE SOURCES IN MESSAGE CONSTRUCTION 

Before we leave our discussion of how messages are 
constructed, it is useful to summarize the different 
knowledge sources that have an effect on the text 
generated from a plan. The gross organization of the 
message is determined by rhetorical strategies that look 
for patterns in the plan structure. Such strategies are 
specific only to the kind of plan that we are taking as 
input (i.e., hierarchical, nonlinear plans). Message sim- 
plification is usually responsible for the finer-grain 
structure of the message, as its rewrite rules operate 
strictly locally in the message. The domain-independent 
rewrite rules exploit the redundancy in the message 
language and express heuristics about how a given 
proposition might be expressed most simply. Such rules 
embody simple knowledge about planning and the facil- 
ities of the message language. Finally, domain-depen- 
dent rewrite rules enable some of the hidden structure in 
the planner's representation to be revealed. 

Once a final message has been decided on, its real- 
ization as text makes use of structure building rules that 
depend on the natural language being used. At this point 
most of the significant decisions have already been 
made. The structure-building rules are able to make a 
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Figure 11 Installing the Services. 

limited choice among possible syntactic structures and 
are able to introduce pronominalization where it seems 
appropriate, but their scope is heavily constrained by 
the message. During structure building, a domain-de- 
pendent lexicon makes available a verb entry for each 
domain state and action, as well as a fixed NP that can 
be used to denote each domain object. Although it is 
useful to assess the effectiveness of the system by 
considering the text output, many of the more interest- 
ing problems with the system are really already visible 
at the message stage. 

5. DISCUSSION 

5.1 FURTHER EXAMPLES 

The system has been tested using a number of different 
domains with rather different characteristics, and the 
results have been correspondingly varied. One domain 
that seems to work fairly well is that of cookery recipes 
such as the following: 

MAKING PAPRIKA POTATOES AND SMOKED SAUSAGES 
Melt the fat, fry the onion in it, add the flour to it and 
add the paprika to it. After this, stir the sauce until it 
boils. Meanwhile peel the potatoes and cut them into 
pieces. After this, add them to the sauce, cover the pan 
and make the sauce boil, stirring the sauce occasion- 
ally. Meanwhile cook the sausages. After this, add them 
to the sauce. 

This text was actually produced from a "mockup" of 
plausible planner output, rather than a real plan, and did 
not include enough information (about preconditions, 
effects, etc.) to warrant the system adding justifications 
about ordering. This does not seem to matter too much, 
probably because cookery recipes are traditionally pre- 
sented as instructions to be followed more or less 
blindly. 

For an example where our techniques produce a less 
pleasing result, consider the "installing the services" 
extract from the house-building plan (discussed above) 
shown in Figure 11. In this action graph (which shows 
no preconditions or effects), we have indicated the 
actions with abbreviated names. Those actions in low- 
ercase are not actually part of installing the services (but 
are "intruder" actions that are nevertheless crucial to 
this part of the plan); they will be described elsewhere in 
the text. Here is the English produced for this plan 
fragment: 

INSTALLING THE SERVICES 
Installing the services involves finishing the electrical 
work and laying the storm drains. 
You must paint the house before finishing the electrical 
work. 
In order to paint the house you must have installed the 
finished plumbing and installed the kitchen equipment. 
You must lay the finished flooring before installing the 

finished plumbing and installing the kitchen equipment. 
You must fasten the plaster and plaster board before 
laying the finished flooring. In order to fasten the 
plaster and plaster board you must have installed the 
air conditioning and installed the rough plumbing and 
installed the rough wiring. 
Install the drains and then install the air conditioning, 
installing the rough plumbing. 
Meanwhile install the rough wiring, 
You can now fasten the plaster and plaster board. 
You can now lay the finishedflooring. 
You can now install the finished plumbing and install 
the kitchen equipment. 
You can now paint the house. 
You can now finish the electrical work. 
Meanwhile lay the storm drains. 
You have now finished installing the services. 

This account is basically comprehensible, but is repet- 
itive and quite hard to follow. One reason for the 
repetition is that the subject matter is really very boring 
and uninformative, and it would be quite a challenging 
task for a human being to produce interesting and 
readable text from the same information. We discuss 
below some other reasons why this text is less than 
optimal. 

5.2 DEFICIENCIES IN PLANS 

Although generating explanations from the output of an 
AI planner appears to be a promising application of 
natural language generation research, there are a num- 
ber of special problems that we have encountered with 
this task. Indeed, we can explain some of the deft- 
ciences in the text we have been able to generate purely 
in terms of deficiencies of the planner and/or its plans. 
Some problems stem from the use of plan operators not 
designed with text generation in mind, and can be 
solved within the scope of the planning system. More 
serious are problems that arise because of deficiencies 
in the planner methodology itself. In the development of 
our system we have encountered a number of these, 
ranging from trivial to quite fundamental. Some of these 
are properties of NONLIN in particular; others apply 
more generally to most AI planning systems. It is not 
appropriate to discuss the full details of these problems 
here, but we shall mention some of the main points. 

GRANULARITY 

One might ask why, unlike in the cookery recipe, there 
is no pronominalization in the text for installing the 
services. The coherence of the text would be improved 
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considerably by the judicious use of pronouns. Unfor- 
tunately, whereas in the cookery domain (which we 
encoded by hand) a particular action of 'frying' is 
treated as an instance of a general action that can 
potentially be applied to different objects; in the house- 
building domain the objects acted on by an action are 
fundamentally built into that action. The difference can 
be seen from example lexical entries from the two 
domains: 

ix (fry (Food, In), fry, [obj: Food, in: In]). 
lx (install_rough_wiring, install, 

[obj : @ 'the rough wiring']). 

To use pronominalization, one needs to be able to 
determine that the same domain object is being men- 
tioned several times, but only the first type of represen- 
tation here actually supports the representation of do- 
main objects. What has happened here is that, from the 
point of view of making a house-building plan, the 
planner cannot make use of properties of a general 
action like 'install,' and so its representation of actions 
is at a coarser level of granularity than that required to 
produce good text. 

In common with most plans in traditional AI work, 
NONLIN plans only encode very weak information 
about causality and temporal relationships. For in- 
stance, when there is an action that achieves an effect, 
there is no way to tell from the plan whether we are 
dealing with an instantaneous action, an extended ac- 
tion that terminates as soon as the effect is achieved, or 
an extended action where the effect is achieved some- 
time during the execution. A natural language like 
English provides ways of distinguishing between these 
cases: 

Turn on the switch and the light will be on. 
Pour  in the water until the bucket  is full. 
Prepare a chicken curry so that the chicken scraps are 
used up. 

Because there is no way to distinguish between these in 
the NONLIN representation of effects, our generator is 
forced to try to find a neutral way to express all of them. 
As a result, there is a homogeneity in the text that is not 
necessarily reflected in the actual plan execution. Again 
the problem can be thought of as a mismatch between 
the granularity of the representation used for planning 
and that needed to exploit the facilities of the natural 
language. 

The effect of the granularity problem can be lessened 
by allowing the plan generator to provide deeper infor- 
mation about the internal structure of actions and states 
through domain-dependent rewrite rules. Our message 
language allows us to talk about repeated actions, for 
instance, and so we can specify that certain domain 
actions are really shorthand for more complex expres- 
sions: 

filLbucket -~ repeat (pour (water, bucket), 
state (bucket, full)). 
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Messages containing these complex actions can then be 
simplified by domain-independent rules like: 

resul t  ( repeat  (Act, State), State) -* 
do (repeat  (Act, State)). 

Similarly we can use domain-dependent rewrite rules to 
introduce tokens standing for domain objects and hence 
give us a basis for pronominalization. The more one 
reliies on domain-dependent rewrite rules for good text, 
however, the less one can claim to have a domain- 
independent basis for generating text from plans. 

CONCEPTUAL FRAMEWORK 

Domain-dependent rewrite rules can be regarded as a 
way of embellishing the planner's output to match up 
better with the requirements for generation. The basic 
framework of the plan is, however, something that 
cannot be changed unless the generator itself is to start 
doing some of the planning. Assuming that there is some 
point in distinguishing the planner from the generator, 
the generator is therefore sometimes faced with a mis- 
match between self-evident concepts in the planner's 
conceptual framework and those concepts that can be 
expressed simply in natural language. Consider, for 
instance, the notion of (primitive) actions that are 
unordered in the plan. If two actions have no ordering 
relation between them, then this indicates that the 
actions can be performed in any order relative to one 
another. To express correctly the plan's semantics, one 
should therefore make use of expressions like: 

Install the drains and install the rough wiring, in any 
order. 

In practice, however, we have chosen to map such a 
piece of plan into a message like: 

do (parallel (instalLdrains, inst~.11 rough_wiring)). 

which then gives rise to a text such as: 

Install the drains. Meanwhi le  install the rough wiring, 

Treating unordered actions as parallel actions may 
indeed both produce good text and even capture the 
reality of plan execution, as in: 

Make  the sauce boil, stirring the sauce occasionally. 

but this will only be so if at least one of the actions takes 
place over a period of time and the actions can be and 
are recommended to be executed concurrently. There 
is, of course, no way to determine from the planner's 
representation whether this is so. Indeed, since the 
planner regards all primitive actions as essentially in- 
stantaneous, in all cases it is in some sense incorrect to 
express the planner's recommendations in this way. If 
the correct execution of the plan were critical, for 
instance, then it could be very dangerous to hide the 
limited way in which the planner views the world as we 
have done. It might thus be suggested that a generator 
working from plans could and should always strive to 
convey the plan semantics accurately, even if this 
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involves long-winded and unnatural prose. But in the 
end one is faced with an incompatibility between the 
planner's conceptual framework and the limits of what 
our language can express. For instance, it unclear how 
the action of "installing the rough wiring" can be 
expressed in English in such a way that the action can 
only be interpreted as an instantaneous action, which is 
the way the planner sees it. 

EXPLANATORY POWER 

The texts that we have generated from plans are in- 
tended to do more than simply tell the reader how to 
execute a series of actions. We always hoped that the 
justification structure built by the planner would also 
help us to explain why the given actions, with the 
ordering described, are the right ones to achieve the 
plan's goal. In practice, however, our texts have failed 
to be explanatory for a number of reasons. One problem 
is that, unlike instructions generated by human beings, 
our texts only tell you what to do, and not what not to 
do. It is often just as important for a person to be 
warned about the unpleasant consequences of doing the 
wrong thing as it is to be told what the right thing is. 
Unfortunately, the notion of "plan" we have adopted 
only makes reference to the successful actions, even 
though the plan generator may have spent a lot of time 
exploring other possibilities that did not work out. It 
might therefore be appropriate, in future work, to 
consider natural language generation based on the trace 
of a planning system, rather than on the final result. 

Similarly, in many of the texts produced by our 
system the reader is told what to do but is given no 
illumination as to why things have to be done in this 
way. Unfortunately, although in principle every plan is 
justified by earlier actions achieving the preconditions 
of later actions, many plans do not contain this infor- 
mation in a useful form--in the housebuilding plan, for 
instance, the only preconditions that are required for an 
action in this plan to be performed are the successful 
completion of previous actions. That is, the person who 
has encoded the operators in terms of which the plan is 
constructed has "compiled in" certain ordering con- 
straints without using the language of preconditions and 
effects effectively to explain them. One is reminded 
here of the problems that Swartout (1983) encountered 
in producing explanations from expert systems. The 
problem was that just because a set of rules was 
sufficient to produce expert behavior did not mean that 
those rules contained anything illuminating to put into 
explanations. Similarly in the planning area, there is no 
reason why a set of operators that are effective for 
producing useful plans need contain anything very 
interesting that can be put into a natural language 
account. Unfortunately, one cannot necessarily expect 
machine-generated plans to come at the right level of 
detail to be really useful to a human being. For instance, 
a house-building plan that enabled one to see why the 
rough plumbing must be installed after the drains (pre- 
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sumably because otherwise it is hard to make the pipes 
line up) would be very large, and it would be well 
beyond the state of the art for such a plan to be 
produced automatically. Moreover, such a plan would 
undoubtably contain a lot of information that was 
blindingly obvious to a human reader and hence of no 
interest whatsoever. 

ARBITRARY PLANNER RESTRICTIONS 

As is typical with application programs, most planners 
have particular features that represent non-standard or 
novel approaches to certain situations. This fact means 
that any natural language generator using plans as input 
must customize itself somewhat to the peculiarities of 
the particular planner it is working with. One problem 
peculiar to NONLIN's representation language con- 
cerns the manner in which preconditions are specified. 
In NONLIN an operator specifies how a goal is ex- 
panded to a network of subgoals. As was observed in 
the earliest AI planners, the most common case is that 
a goal has preconditions, goals that must be true before 
the given goal can be achieved. In NONLIN, one has to 
use an expansion to represent this, with the conse- 
quence that one wants the original goal itself to occur in 
the expansion (that is Goal expands to Pre ~ . . . . .  Pre y, 
Goal). NONLIN will not allow this, so there have to be 
two distinct representations of the goal. So in the car 
example, we have {goal ...} for the high level goal and 
{act ...} for the low level version (although this scheme 
might not work in every domain). By this means we can 
make NONLIN behave, but give ourselves a linguistic 
problem--every action occurs twice. For example, we 
might get: 

S T A R T I N G  THE E N G I N E  

Go to the cab and then start the engine and you will 
have finished starting it. 

Roughly speaking, the distinction is between 'starting 
the engine' (the whole task) and 'actually starting the 
engine' (the specific operation). To some extent we can 
avoid the problem by using different phrases (e.g., 'turn 
on the engine'), but it does not make the generation task 
easier. 

5.3 DEFICIENCIES IN OUR APPROACH 

The problems with our natural language accounts are, of 
course, not entirely due to deficiencies in the plans we 
are working on. We have deliberately held closely to 
some basic guiding principles to evaluate their applica- 
bility. So it is important to pinpoint their failings in our 
current system and mention possible alternative ap- 
proaches. 

RELYING ON PLAN STRUCTURE 

To build a domain-independent system to generate text 
from plans, we have deliberately tried to use only 
information that the planner itself understands; i.e., 
information about the structure of the plan. One of the 
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fundamental tenets of our approach was thus that the 
plan abstraction hierarchy would be a useful source of 
information about how the text should be organized. 
But our experience suggests that it may not be as useful 
as one might think. As well as the kind of problems 
described above (which might be corrected in a different 
planning system), there seem to be more general dis- 
crepancies between the kind of abstraction useful to a 
planner and the kind useful to a text generator. 

For example, our car domain and many of the 
blocksworld plans that have been studied in AI tend to 
have a deeper abstraction hierarchy than one might 
expect from the apparent simplicity of the tasks. A 
generator that tries to exploit them all ends up produc- 
ing too much structure in its text. Thus the example 
used in Section 3 also has a 'section': 

GAINING ACCESS TO THE DISTRIBUTOR 
Detach the dirt cover f r o m  the engine and you will have 
f in ished gaining access  to the distributor. 

Here there is a level of abstraction that is useful to the 
planner, but not to the human reader: it would probably 
have been better to insert this section "in-line" in the 
higher level description. On the other hand, the single 
"section" devoted to installing the services in the 
house-building plan would have gained from being bro- 
ken up in some way. There may be a linguistic solution 
to the problem of whether a piece of information 
deserves a fu l l"  section," perhaps in terms of a domain- 
dependent model of what is and is not worth saying, or 
the problem may point to a fundamental difference 
between the ways the planner and a human perceives 
the planning task. Either way, what is clear is that the 
planner's abstraction hierachy alone is not fully ade- 
quate for text generation. Whether we can devise gen- 
eral principles for producing alternative decompositions 
of plans more suitable for text generation remains an 
open research area. 

REPETITION 

We have commented above on reasons why the raw 
material we can gain from plans is liable to lead to 
repetitiveness in the text. Even if we managed to enrich 
the plan representations suitably, however, the genera- 
tor would still be deficient when the input really is 
uniform. In particular, the uniformity of the text output 
often leads to unwanted ambiguities, simply because of 
the lack of variation in the stylistic devices used. For 
instance, in the following excerpt it is unclear whether 
the potato peeling is supposed to be "in parallel with" 
melting the fat, or just with stirring the sauce: 

Melt  the f a t  . . . .  
A f ter  this, stir the sauce until it boils. 
Meanwhi le  peel  the potatoes  and cut them into pieces.  

We originally hoped to overcome the problem of repe- 
tition by providing several structure-building rules for 
each type of message language construction, which 
would be sensitive to the form of the objects involved in 
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the construction. To some extent we succeeded in 
producing such rules, but the effect on the text was not 
great. The problem here is that, even with these extra 
rules, our structure-building is based solely on local 
patterns in the message, whereas the problem of repe- 
tition can only be solved by a global planning of the 
text. It :might be possible to gain some improvement in 
our system by having the choice of structure-building 
rules be determined partially by some random factor, 
but a proper solution requires a more radical redesign. 

LINGUISTIC SIMPLIFICATIONS 

There are a number of stylistic issues that the system 
cannot easily accommodate. For instance, operations 
such as "heavy NP shift," segmentation into sentences, 
coordination, and ellipsis all require detailed stylistic 
control and evaluation. The message language is delib- 
erately nonlinguistic and so can only approximately 
represent the kinds of language-dependent stylistic in- 
formation such processing needs. For instance, rewrite 
rules can decide how to group information on the basis 
of the complexity of the message,  but this only indi- 
rectly reflects the complexity of the text that will be 
generated. The effective use of different stylistic de- 
vices depends in the end on simplifications that are 
justified on linguistic, rather than conceptual, grounds, 
and this suggests that our architecture should really 
in~zorporate a style module capable of reasoning at this 
level. Such a style module would necessarily have to 
take a more global view, looking at the overall linguistic 
effect of the localized basic text generation processes. It 
might be possible to introduce linguistic simplifications 
at structure-building time, relaxing the requirement of 
compositionality (indeed, this is how McDonald 1983 
operates). We believe, however, that it would be pref- 
erable to attempt to treat it at least conceptually as a 
subsequent processing stage. 

5.4 WAYS FORWARD 

In this paper we have described a system for generating 
natural language from automatically generated plans. 
Our main aim in developing the system was to produce 
a model of a complete system using state-of-the-art 
methodology and techniques, partly to evaluate the 
current state of knowledge, and partly to provide a basis 
for comparison for future work. Logically, then, there 
are two strands to further work based on this research: 
building on the evaluation to learn lessons about the 
design of generation systems and the systems they 
interact with, and building on the system itself to 
produce better generation-from-plans systems. 

One of the key evaluative lessons concerns the plan 
structures a system like this depends on. We found the 
plan,; produced by NONLIN unsatisfactory and we 
have begun to understand why. We must now specify 
what we would like a plan to look like and contain, 
within the general constraint that a planning system 
couht reasonably produce it. Our present approach to 

Comlmtational Linguistics Volume 15, Number  4, December 1989 



Chris Meilish and Roger Evans Natural Language Generation from Plans 

th is  t o p i c  is to  t a k e  a v e r y  f o r m a l  v i e w  o f  p l ans  as  

a l g e b r a i c  e x p r e s s i o n s  o v e r  s t a t e s  ( r a t h e r  t h a n  a c t i o n s  o r  

goa l s )  w i t h  a w e l l - d e f i n e d  f o r m a l  s e m a n t i c s ,  a l l o w i n g  us  

to  be  c l e a r  a b o u t  t h e  s e m a n t i c  e f f e c t  o f  p l a n  t r a n s f o r -  

m a t i o n s .  

The system itself falls broadly into two parts, build- 
ing and simplifying the message, and turning the mes- 
sage into text. Of these the latter is the more modular, 
more declarative, and probably more successful at 
present. To a certain extent it can serve as a piece of 
enabling technology for research on the message com- 
ponent. Its major deficiency as discussed above is 
global stylistic control. Its handling of morphology is 
currently rather unprincipled, but the utilization of a 
morphological representation language such as Datr 
(Evans and Gazdar 1989 a,b) would rectify this. 

The biggest outstanding task, however, is the mes- 
sage planner itself. The mechanism described above 
employs some quite powerful techniques in a fairly 
effective way, but it is not very perspicuous or exten- 
sible. We have begun work on a new message planner 
module that applies transformation rules to plans of the 
algebraic type mentioned above, gradually transforming 
the plan into an optimized message structure. This will 
provide us with a rule-based semideclarative framework 
in which to explore further the issues of message 
planning. 
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NOTES 

1. Current address: Department of Artificial Intelligence, University 
of Edinburgh, 80 South Bridge, EDINBURGH EH1 IHN, United 
Kingdom. 
2. In the node descriptions we distinguish explicitly between goals and 
actions that achieve goals. The reason for this is discussed in Section 
5 below. 
3. It is possible, however, to specify that, for a given domain, there 
will only ever be one agent. 
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