

A retrospective on the "Planning: A Joint AI/OR Approach" Project

Lesley Daniel and Austin Tate

This memo collects together material produced to report the outcome of
the Science Research Council (now SERC) grant on "Planning: A Joint
AI/OR Approach". It is being produced to respond to requests for further
information on the final state of the project (which ended in 1978) and the
task domain being tackled. The task domain involved the planning of overall
procedure for electricity generation turbines. The application part of the
work was carried out in conjunction with the Central Electricity Generating
Board OR group. This part would be called a "Generative" Expert System if
it was written today. For further detail, the final report should be read
in conjunction with DAI memo 25 "Project planning using a hierarchic non-linear
planner" by Austin Tate and DAI memo 24 "Planning: modifying non-linear plans"
by Lesley Daniel.

Also as an outcome of the research, a proposal was made to SRC in 1976
to extend the hierarchic non-linear planning work and improve the use of
meta-planning aids such as "Goal Structure" to construct an "Integrated
approach to planning, plan execution and plan monitoring". The proposal
was subsequently funded by SRC but the lead researcher had left DAI by thattime.

The proposal is left intact although pages 19 to 21 of the AI/OR
project final report repeat some material. The Task Formalism examples in
the proposal reflect an early version. DAI memo 25 reflects the adoptedform.

An interesting (now widely recognised) link between AI non-linear
planning techniques and the generation of scheduling information for cooperating
parallel processers with a message passing system is explored in a short note
included in this retrospective.

Further thought on the question answering system used in network (as
opposed to tree structured) change levels to a word model are described in
the next paper.

to

The final paper gives the user notes for the NONLIN planner and its
critical path method package as it was used for the later stages of the project.
These notes are included since they describe user interaction procedures to
enable the task formalism descriptions for the domain to be built incrementally
by the experts involved.

Final Report on Science Research Council Project

"Planning:

a joint AIloR Approach"

G3/RG/9445.5)1

Lesley Danie12 and Austin Tate3

1

The gr ant holder was Professor Bernard Meltzer

2 Now at The Open University
Milton Keynes

3 N,OW at Edinburgh Regional Computing Centre
59 George Square
Edinburgh

PLANNING: A JOINT AI/OR APPROACH

Final Report

1.

Introduction-

The aim 'of the project "Planning: a Joint AI/OR Approach" has been

to investigate ways of aiding a human user in the process of constructing

project networks. To this end, we have developed systems based on AI

work on plan. generation.

The planning system NOAH developed by Sacerdoti (1975a, 1975b) for

the computer based consultant project at Stanford incorporated novel ideas

for

the representation of a plan as a partially ordered network of actions

(a procedural net). This is in contrast to previous work which concentrated

on the generation of linear sequences of action, e.g. STRIPS (Fikes andNilsson,

1971), LAWALY (Siklossy and Deussi, 1973), INTERPLAN (Tate, 1974)etc.

Knowledge about a domain is given to NOAH in a language SOUP to ex-

plain the decomposition of high level tasks into more detailed lower levelactions.

Work at Edinburgh has investigated the use of partially-ordered networks

of actions to ,represent a plan at any stage of development. Such networks

a1;"e in a suitable form for the'use of critical path analysis techniques

having only those ordering constraints imposed by the fact that either
an action achieves a condition for a subsequent action, or .

an action interferes with an important effect of another action and

must be removed outside its range.

,

We have adopted Sacerdoti's philosophy of hierarchical planning where plan-

ning proceeds in stages ~t progressively greater levels of detail and, at

each stage, the current plan is represented as a graph where the nodes

represent actions (of goals to be achieved) and the edges ordering relations

(links) between them. The graph is refined by expanding each node into a

more detailed sub-network of nodes and adjustirtg the orderings accordingly.

In the first phase of the project, we were concerned with the develop-

ment of a general hierarchical planning system; our intention has been not

only to write programs which perform well in a particular problem domain but

to structure the programs so that the various aspects of the planning process

can easily be identified. Accordingly the problem was attacked under several

headings:

(1) Task Formalism a formalism for defining' a h~erarchy of actions and

goals-

2

Planner

a program which uses the task formalism to generate plans

in the hierarchic manner described above.

(iii) .Optimiz~on_Procedure :

considerations of efficiency are important and the planner must produce cost

ordingly, we have developed criteria for choosing

since we are interested in practical problems

effective plans. Acc,

efficient alternatives,

(iv) .Modifying_?~a~s- a decision-graph has been implemented to record the

relationship between decisions made in generating a plan and allow appropri-

ate modification of the plan to recover from failure.

In the second phase of the project the general planning system was

adapted to cope with a practical application to the problem of repeatedly

generating plans for the annual overhaul of power-stations.

2.

Task Formalism

At the outset of the work the problem of specifying a domain to a

problem solver in a hierarchic fashion was recognized as being of primary

importance and a uniform and straightforward method of description wassought.

The formalism allows high level definitions of a task to be given;

each part of which can be expanded into lower level descriptions and so on

down to Some arbitrary level which the user of the program requires as out-put.

Each lower level component can be specified in a mo~ular way -not

requiring knowledge of the exact form of the other components.

The specification of an action must specify how it may be expanded

into more detailed sub-actions (there may be alternative expansions for an

action e.g. different methods for installing electrical wiring) and how

the constituent actions relate to each other. Rather than explicitly ex-

pressing ordering constraints in terms of precedence relations between

,

actions, the task formalism allows specification. of the conditions which

must hold before an action can start (e.g. the walls of a house must be

finished before the roof can be built) and the c;'hanges an action makes to

the world (i.e. making some conditions true and some false) leaving ~eplanning

system to deduce feasible ordering relations. Thus, the task

formalism allows individual actions to be specified independantly of other

actions in the plan.

The task formalism allows the specification of a hierarchy of actions

in terms of schemas (called opschemas) for an expansion which specify:

(i) pattern the p.attern of an opschema determines for which actions

the expansion is suitable.

3

(ii)(iii)

(iv)

the constituent actions (or goals) are specified as a partial ordeexpansion

conditionseffects.the conditions which are required by the constituent actions.

the changes which are made to the world model.

3. Planner

The planning system uses a hierarchic specification of the problem domain

(expressed in the Task Formalism) to plan at progressively more refined levels ofdetail.

At each level the plan is represented as a graph where the nodes represent

actions (or goals) and the edges ordering relations between them. Each node nas

associated with it:'

(i) _the node typ~ action, goal, phantom (a goal which has been achieved in

another part of the plan).

the expansions for a node are found by matching 1ts patterJ1.(ii)

{iii}{iv}

parentnodeparentnode.

pattern t --.:" ---r-:--~:-~ --~- .' --.F "-- ;-' "--=:-:--

against the patterns of opschemas.

node context contains the effects of the node.
~

the node was inserted as a result of the expansion of its

(v) prenodes

succnodes

a list of nodes linked immediately before this one.

a list of nodes linked immediately after this one.

Two other data.structures are built by the planner:

TOME -the table of multiple effects stores information about facts made true or

false at different nodes.

GOST -the goal structure records the conditions on nodes along with the con-

tributors to a condition (those nodes which make the pattern true). The

goal structure thus specifies a set of time "ranges" for which the truth of

certain conditions must be maintained. The use of goal structure in

problem solving was first described by Tate (1974, 1975).

The planning cycle consists of expanding nodes in the network -i.e. replacing

a high level action by a subnetwork of more detailed actions -and then looking

for interactions with other parts of the plan.

Goal nodes are expa~ded by first looking to see whether the goal is already

achieved by some other action in the plan and, if necessary, addi?g links to

make the goal true at the point required (e.g. in overhauling machinery it

is necessary to remove the cover to gain access to a component and it is

worthwhile looking to see whether an action to remove the cover has already
i

been included because of a repair to another component, the node is then

made

a phantom node and a record of this fact kept by adding a phantom

condition to the GOST. If the goal node cannot be made a phantom it isexpanded,

in the same way as an action node, by finding an expansion

4

,
opschema whose pattern matches the pattern of the node.

The expansion of a node causes the introduction of new conditions (on

the

new nodes) and new effects and the planner seeks to ensure that the

conditions are satisfied and the effects do not interfere with conditions

on other nodes in the network. It may be necessary to add new links to

the network to remove an endangered condition out of the range of a node

which denies the condition (e.g. in a housebuilding task, it is necessary.

to have access to brickwork before electrical wiring can be installed,

plastering the, brickwork denies this access and cannot be done until after

the wiring has been installed).

In general, an interaction involves three nodes (A, Band C below).

[~]--*---~~~J

0

If action A achieves a condition required by action B and made untrue

by action C, an interaction occurs unless C is already a predecessor of A

or a successor of B. The interaction can be resolved by adding a link to

ensure that C is outside the range of the condition in question and three

cases must be considered:

(i) the interaction is totally .~o~nstrain~ because C is parallel to

both A and B -in this case, the interaction can be resolved either

by linking C as a predecessor of A or as a successor of B.
,0

the interaction is constrained'because C is already linked as a

successor of A -the inter~ction must be resolved by linking C as

a successor of B.

(iii;

the interaction is constrained because C is already linked as a pre-decessor

of B -the interaction must be r~solved by linking C as a

predecessor

of A.

~

4.

Efficiency Criteria

Since we are interested in practical problems considerations of effic-

iencyare important and the planner must produce cost-effective plans. A

preliminary step was to determine criteria for judging the efficiency of

alternative plans. Such plans have a set of constituent actions each with

cost of execution and duration. A suitable measure of the efficiency of

5

a plan must trade-off the total cost of the constituent actions against

the overall duration of the project. In many cases it is easy either to

assign an overhead cost to the duration of the project or a penalty cost

to any delay beyond a fixed duration. For example, if the project in

question is the overhaul of a power station, the cost of having the station

out of action can be measured as the additional cost of generating power by

a less efficient alternative. For example, the overhead cost per day

may be greater

fired station.

for a modern nuclear power station than for an old coal-

It is very common for building contractors to insert

penalty clauses in their contracts whereby they undertake to make penalty

payments for delays beyond an agreed completion date.

One possible formulation of the problem of generating an efficie~t plan

is that of choosing a set of activities P which will perform the specified

task and minimise the objective function

c = r ci + kT
i c P

c.. h f h .th. bJ. J.s t e cost 0 t e J.)0

k is the overhead cost per day

where

T is the duration of the project in days

There have been several studies (Crowston & Thompson) which have assumed

the choices of alternative'-actions can be incorporated into a single

graph which allows alternatives to have different predecessors and, in

previous work (Daniel, 1974) we have considered ways of searching such a

graph for a good solution.

We now consider'such an approach to be inadequate for the following

reasons:

,
(i) The complexity of carrying along alternatives is too great because of

the combinatorial explosion of interactions between different actions.

i

(ii) The representations (e.g. and/or graphs) proposed for networks with

alternatives are inadequate for the complexity of the problem.

An alternative approach to the problem of choosing efficient plans sug-

gests that plans can be generated at different levels of detail and that, at

each level in the hierarchy choices be made between different actions and

different ways of resolving interactions. Thus no alternatives are kept in

the network as it is expanded to the next most detailed level, but efficiency

criteria are considered when choices are being made.

6

5.

Modifying Plans

At v~rious stages in the planning process choices are made betweenalternatives.

However well organized the planner, there is always the

possibility that a wrong choice will be made resulting in either an in-

feasible or a very inefficient solution. Recovery from such a failure

involves ident~fication of the decision responsible for the failure and

appropriate modification of the current plan. In order to facilitate,

such modification procedures, a separate structure called a "decision graph"

has been implemented to record the relationships between decisions made in

generating a.plan.

Hierarchical planning corresponds to choosing between alternative plans

at each level in the hierarchy. Because, at each level, the planner- is

working on a complete plan, global information is available to direct the

choice and, moreover, because high level plans have relatively few actions,

it is possible to make a comprehensive investigation of the search space

for that particular level. A planner which explored the whole search

space at each level of detail and did not back-track between levels would

have a complete search space as shown in fig. 5.1.

\

~!ig. 5.1

The expectations of such a system are:

.It is possible to explore all alternatives at each level of detail

in order to yield the 'best' plan according to some criteria.

.The ~best' plan at a particular level will always generate a good

plan when examined in more detail -i.e. it is not necessary to

.back-up to higher level choice points. .

In fact the search space at a particular level is often large and,

since, high level plans must be inaccurate, the decisions made at these

levels sometimes prove to be wrong and must be reversed. Consequently,.
in designing a search strategy it is necessary to consider how to structure

the search within a particular level in order to get a good solution with-

out necessarily s~arching the whole space and how to recognize when it is

necessary to back-up to a decision made at a highe~ level of detail

7

The decision-graph based on Hayes' (1975) work on a journey planner

allows the' system to back-up and undo decisions made at higher levels with-

out throwing away all the work done since the decision was made. Only the

affected parts of the network are modified when a decision is undone.

The basic assumption behind the structure of the decision graph is

that the decisions made in generating a plan are of two types:

(i) Choice of expansion for a node.

(ii) Choice of links to remove an interaction.

Such choices are interrelated inasmuch as an interaction and consequent

link may depend upon a particular choice of expansion. The purpose of the

decision graph is to record such relationships. Every node in the plan

(net node) points to a node in the decision graph (d-node) corresponding to

the expansion which introduced it. Every time an expansion (or phantom)

is made,anode is set up in the d-graph with pointers to:

(i) the net node being expanded.

(ii) the parent d-node -i.e. that which introduce~ the net node beingexpanded.

(iii) the new net-nodes introduced by the expansion.

(iv) any subsequent expansions of these nodes.

(v) any interaction d-nodes consequent on this expansion.

(vi) any phantom d-nodes corresponding to phantom links using a pattern

achieved by the expansion.

(vii) in the case of a phantom -any d-node corresponding to a phantom

link required to establish the phantom goal.

Every time a link is introduced to enable the creation of a phantom

net-node, a d-node is introduced with pointers to:

(i) the net-node and corresponding d-node made into a phantom.

(ii) the net-node and corresponding d-node achieving the pattern.

Every time a link is introduced to remove an interaction, a d-node is
introduced with pointers to: '

the link being introduced.(i)

(ii) the netnode and corresponding d-node which needs the condition

involved in the interaction.

(iii) the netnode and corresponding d-node which achieves the condition in

,question.

the netnode and corresponding d-node which deletes the condition in

question.

The only way in which a plan can be modified is to undo one of-the two

kinds of decision involved in the pl~n -i.e. to remove an expansion or a

8

link (either phantom link or an interaction link).

Removing a phantom link is very straightforward only requiring that

the netnode in question be reinstated as a goal node and that the GOST and

decision-graph be modified accordingly. Removing an interaction link in-

volves either choosing an alternative to remove the interaction or undoing

an expansion which introduced one of the actions involved in the interaction.

The steps involved in undoing an expansion are: ,~tep!

Trace down the decision-graph and the netnodes (and their expansions

if any) and links dependant on the expansion.

Remove these nodes and links and replace by the si?gle parent netnode.

All remaining links which connected to any removed netnodes are now

attached to the parent netnode. ~.
The TOME and GOST are modified for every deleted netnode as follows:

(1) remove all conditions and effects which are needed/achieved by

the deleted node and not the replaced node.

(2) remove them as contributors to any condition which is not

step 2

step 3

step 4

step 5

stee §.

achieved by the replaced node.

For all conditions which now have no contributors,undo the expansion

which was dependant on it (i.e. phantom nodes replaced by goal nodes).

Look for interactions arising from the removal of liriks from the

graph.

More detailed descriptions of the task formalism and planning system (NONLIN)

can be found in Tate (1976) while the optimization schema and decision graph

are described in Daniel (1977) and Daniel (1978).

6. A Practical Applicatio~

6.1 Introduction

In the second phase of the project we sought to apply the ideas developed

in the first phase to.a practical problem in a particular domain. For a

practical application involving the generation of networks of the size usually

used for critical path analysis techniques (several hundred activities) it was

important to avoid large search spaces. We looked for an application where

a large class of networks were required; each member of the class having

great similarities with all the others but important differences which re-

quired a new network to be generated for each indi~'idual project.
(

The advantages of such a problem domain are

(i There is enough

historical

data of plans previously generated to allow

an action hierarchy to be set up.

9

The choice of plans to be generated is sufficiently restricted to

keep the seach space under control.

(iil) The difference between individual plans is sufficient to make it

worthwhile to have a system which aids in their generation.

The chosen application Was the annual overhauling of power-stations

where each annual overhaul is different from previous years but still has

the same overall structure. Another possible application might be the

construction of a set of houses of ,a particular type but wnere, in

each individual case, there are choices to be made between res,tricted

alternatives.about suc~ things as type of heating, type of floori?g, type

of bathroom fixtures, etc.
"

6.2 The problem domain

Within the large task of power-station overhaul we selected the sub-

project of overhauling a turbine as being the size of problem the planning

system should cope with. The net\~orks involved usually have more than

five hundred activities but the problem is highly structured in the follow-

ing ways.

(i) A turbine consists of 4 sections: high pressure, intermediate pressure

and two low pressure sections.

(ii) Overhauls on each of the four sections can proceed independently of

each other except for one alignment check along the whole .length of

the rater.

(iii) The overhaul of a section comprises the removal of layers of covers

and the roter, giving access to various components in the process,

and replacement of parts as access is no longer required.

(iv) An individual overhaul varies from previous ones inasmuch as different

components mayor may not be overhauled and there are different types

of overhaul for each component. The choice of which type of overhaul

is to be "done on each component (or whether it is to be overhauled at

all) is totally at the discretion of the user and t11e planner has

merely to \-lork out the consequences of each decision -e.g. ensuring.
that access is gained. .

It seemed natural to define the action hierarchy in terms of three

~levels giving networks of about 70 nodes, 300 nodes and 750 nodes. ~fuen

using the task formalism to specify opschemas only those conditions and

effects were mentioned which were involyed in interactions.

These

were

relatively few at each level of detail since in most cases the ordering

within expansions, which was passed down to lower level networks, took

care of most potential interactions. In this particular application there

10

are no choices to be made between alternative expansions (such choices are

decisions to be made by the user of the system) and in all cases, inter-

actions can only be removed in one way. Consequently, the process of

generating the network is completely deterministic and there is no need

to consider search strategies or decision-graphs.

fi.3 Satisfying conditions and removing interactions

The task formalism allows several types of condition to be specified,

but the two which were useful in this application were

.supervised conditions -these conditions which are achieved within

the expansion containing the node for which they are needed -i.e.

their contributor is specified by the opschema.

.unsupervised conditions -these conditions which are expected to be

achieved by an action in another part of the plan -i.e. their

contributors are not specified and must be determined by the planner.

Ensuring that unsupervised conditions are satisfied often involves add-

ing links to the network thus constraining later attempts to remove inter-

actions or satisfy conditions. Consequently, it is important that such

conditions be satisfied as soon as possible. In the latest planning system

unsupervised conditions are satisfied at every level before proceeding to

the next most detailed level.

For the same reason, constrained interactions are removed immediately

while those which can be resolved in two ways* are only removed when all

nodes at one level have been expanded.

6.4 Achieving Goals

The planning system now distinguished between goal nodes, action nodes

and query nodes. Query nodes represent those goals (e.g. «high pressure

section overhauled») ,~hose inclusion is at the discretion of the user.

Every time a query node is expanded the system interrogates the user as to whether

this particular goal should be achieved. If the answer is no, the system

behaves as though the' goal had already been achieved by making the goal have

value true in the initial state. The node-type is then changed to a goal

node and the planning system tries to achieve the goal. If the goal is

true in the initial state (i.e. the user does not want this task to be done)

lnode will be made into a phantom node -otherwise an expahsion will be

to include actions to achieve the goal.

--
* In this particular application those interactions which at first appear to

be unconstrained become constrained a~ links are added to remove other inter-

In such cases, they are removed as soon as they become constrained.

actions.

11

In general, an expansion will include several goal nodes which are

used to avoid redundancy in cases where several actions share preconditions.
For example, two different components A and B may be located under the same

cover.

If A is to be overhauled then it will not be necessary to remove the

cover again for B. However, if A is not included then an action must be,

introduced to remove the cover for B. Thus, the opschemas for B will have

the following expansion:

: 1 goal. «Remove top cover»

2 action' «Overhaul component B»

3 goal «Replace top cover» .'..

orderings 1 --~ 2 2 --~ 3

The actions to remove and replace the cover should naturally be included

in the same network as the action to overhaul B. In the planning system

the two goal patterns are marked as having the Same level as that of thepattern

currently being expanded. In this way they will both be expanded

(i.e. the goal replaced by actions) before the action to overhaul B is

expanded.

6.5 The planning cycle

The planner ope,rates at distinct levels (in this case three) and tries

to tie up as many loose ends as possible-before going on to the next level

of detail. Each pattern is marked with a level and only those whose level

is equal to the current one will be expanded. For a particular level the

cycle is as follows:

step 1 Increment net level to current level.

step 2 Expand a node whose level is equal to current level.
If tllere is

none go to step 8.

_~tep 3 If there are any query nodes in the expansion interrogate user and

step 4

step~

act accordin.91y.

Introduce new nodes into network.

Try to satisfy unsupervised.conditions.- if any cannot be satisfied

step 6

k.eep"a note.

Look. for interactions involving nodes in the current expansion.

All constrained interactions are re~~ved immediately -unconstrained

interactions are stored to be removed when they become constrained

or at the end of the cycle.

go to step 2.~tep 7

12

step 8 Remove any outstanding unconstrained interactions*.

step 9 I

6.6 Conclusion.

Go

to step 1.

We have set up the action hierarchy for the overhaul of a turbine for

a power-station run by the South of Scotland Electricity Board (part of

this hierarchy is described in Appendix I) and the planning system operates

effectively to produce networks of the type in current use. ..

As stated above, there is no requirement, in this particular application

for the planning system to make any choices since:

.choices between alternative expansions are made by the user -i.e. in

specifying the exact type of overhaul that he wishes to have performed.

.all interactions become constrained at each level of detail -either

by the time they are identified or by the introduction of links to

satisfy unsupervised conditions before they are resolved. (In the

current implementation, unconstrained interactions are not resolved

until the very end of each level of expansion.)
" ~

However, it is reasonable to expect that in very similar applications,

(e.g. different types of overhaul or construction tasks) the problem of

choices will arise. Limited choices between alternative eX!?ansions might

arise because there is more than one way to perform a task (one being fast

and expensive, 'the other being slow and cheap) the "best" choice being

dependent on the criticality of the task in question -i.e. its relations~ip

to other parts of the project.

Again it is easy to envisage occasions where choices between alternative

ways of resolving interactions need to pe made by the planning system.

The considerations to be taken into account when making such choices

can best be illustrated by an example for a house-building task. When the

network shown in Figure 6.1 is examined for interactions the following con~

ditions and effects are discovered.

,

* In general this step may involve alternatives but in this particular

application no interactions remain unconstrained at the end of the cycle.

13

6 -
fit bathsetc.

3

fix plunlbing connect water
and test-1---

7

-A,.~,,~-~ ~ --iE~~~11s L-~ ,

radiators

connect and
test c.h.
system

5

---:-

7-1lay c.h.
pi,pes

!!gure

6.1.

Condi. tions
--

Supervised condition <brickwork laid> needed at 3
<walls plastered> .. at 4

II<brickwork bare> at 3Unsupervised

Effects

~ <brickwork laid> by 1

<brickwork bare> by 1

<walls plastered> by 7

delete <brick"'ork bare>- ~ by 7

A sensible planner would satisfy the super.vised conditions (which involva

no choices) before resolving the interaction between nodes 3 and 7. ..rnen the

supervised conditions are satisfied the network is c,S in Figure 6.2.

~

~~.
9

14

J

Figure ~
.

There is now an interaction because the unsupervised condi~ion

<briCkwork bare>'4needed by node 1 is de1eted by node 7~ The int:raction

can be resolved in two ways: .

eitner, add a link which means 7 can't start until node 3 has finished

and 7's predecessors will be qelayed ..

or, link 7 before 3 and expect that t.he ccndition must no\... be established

by the addition of a new action into Lh~ network.

Thus,

we see that the problem of choosing how to resolve the interaction in-

'volves trading off possible delays in the project against the cost of intro--

ducing additional actions. However, if no radiators ~lere bcing fitted, the

al ternative resolution would be more sa,tisfactory..

(

The planner in use (NONLIN) has the ability to .cope with this and the
, --.

present turbine overall system needs only minor modification'to cope with such

choices and in another report (Daniel 1978) we describe a search-strategy for

such applications.

15

7. Suggestions for further work

7.1 Alternative applications

We have described in section 6.6 how the problem of choices might arise

in an application and it would be worthwhile to modify the present system to

handle a problem domain such as house construction where such situations

might be expected.

_1.2 Specifying Action Hierarchie~ "-

In order that the planning program can generate plans at different

levels of detail the data base must contain hierarchical descriptions of

the actions involved in the task. Such descriptions must specify1.

the conditions which must hold before an action can .be performed
."2. the effects that an action has on the world, and3.

the way in whi.ch actions:can be decomposed into more detailed

sub-actions.

The current program accepts domain descriptions in a formalism which

allows hierarchical descriptions of tasks which incorporate the items above.However,

the program -usually expects such task descriptions to be pre-defined

and has only crude facilities to guide the user through the process of de-

fining such a data base.

There are two aspects on which such a user would require guidance.1.

Which effects and conditions need be mentioned for actions described

at each level of detail.

2.

How to aggregate and describe actions to form a useful hierarchical

representation of a domain.

For the small problem domains which traditional planning programs have

handled (e.g. block-stacking, pushing objects around a maze of rooms) the

specification of actions has been very straightforward. The world is so

small

with so few objects and locations that the action schemata can describe

all

the changes made to the world without being too large. Moreover, the

action schemata hav~ 'usually been completeQ by the programmer -i.e. by an

expert in c~mputer science who understood the r~quirements of the planning

program.

.

Action schemata for a realistic domain with a large number of actions,

(

objects and possible changes must be provided by a number of users rather

than a programmer. In general such people will have expertise in theparticular

task in hand '(e.g. overhauling plant, building roads) but no

knowledge of the work of the planning program. Each user supplying in-

formation to the system must select, from all the possible things which

could be said about an action, which are the important conditions and

16

effects -those which are likely to cause interactions with other parts

of a plan us~9 to perform som~task in the,domain being described.

Such a process is combinatcrially explosive inasmuch as it may in-

volve comparing one action with all ~ther possible action~ and must be

controlled by the program in such a way that the user is guided through

the hierarchy of actions in a systematic fashion which makes apparent

th~ important conditions and effects..
If the hierarchy of actions is to enable the planner to plan

efficiently then the constituent actions must be organized to meet

certain conditions. The planner uses high-level plans,.with aggregated

actions, to make choices between alternative actions. If such choices

are to be sensible then the high-level plans give fairly accurate repre-

sentations of their more detailed descendants.

Also, each high-ievel aggregate can, in general, be decomposed into

sub-actions in several different ways. If it is to be usefully included

in a high-level plan, the aggregate's descriptions must be fairly repre-,
sentative of each of its possible decompositions.

A high-level action is an approximate representation ot a group of

actions not only because it represents several possible decompositions but

also because its description contains only part of the detail of the con-

ditions and effects which apply to its constituents. The point in the.-
hierarchy at which a condition br effect is introduced has serious im-

plications for the efficiency of the planning program inasmuch as it de-

termines when interactions will be detected. If interactions are found

too soon the plan will be overconstrained while if they are found too late
.

the high-level plans will not accurately reflect the possible plans at a

lower level.

The program must help the user to define hierarchies of actions in

which the more detailed actions are grouped into representative aggregates

and the descriptions at each level are of appropriate detail.

(-

An important extension of the work reported here would be a program

enabling a user to describe actions in the task' formalism by prompting him

in the following manner:

(i) An expansion of a high-level action into a network of sub-actions

should be called for.

(ii) Conditions on the ~ub-actions should be called for in texms of

possible interactions with other activities at the same level of detail.

We expect that the user will ~1ink in terms of interactions between actions

:0

explain such interactions inand will then be prompted by the system

17

terms of conditions and deletions..

(iii) The important effects of actions should become explicit in the same

way as conditions.

(iv) We expect that a ~ser will be continually modifying his specifications

as the consequences become apparent {e.g. the definition of an unsupervised

condition reduces the number of possible plans and the user may wish to in-

crease the choice by making a condition achievable). The program should'

be able to cope with such modifications and do the appropriate housekeeping.

7.3 Use of intermediate representations of a Plan for resource allocation~ ~ --LC ~--~- ~--~-~~-~..
.-

Hierarchical planning is a way of reducing the search space involved in

practical problems by planning at different levels of detail and, in this
"

section, we consider the ways in which the intermediate representations of

the network can be used for associated optimization problems.

An important problem associated with network planning is that of

scheduling the activities in the plan to satisfy resource constraints.
,

In general, the resource constraints are not taken into account when the

plan is generated and the precedence relationships represent technological

orderings between actions -e.g. the walls of a house cannot be built until

its foundations are laid. In fact the management of most projects has to

take into account fixed manpower ceilings and the availability of a limited

number of machines or other pieces of equipment. Jobs occurring on

parallel paths through the network may compete for the same resources and.

even though the precedence relationships allow them to be done in parallel

resource constraints might force them to be scheduled sequentially.

Scheduling activities to satisfy such resource constraints is such a

large combinatorial problem that, for practical applications, only heuristic

methods can be used. In general such alg~rithms correspond to depth first

search tilrough the search tree where the heuristics are used to choose the

best branch at each stage. In such a program the critical path information:

gives some measure o~ how a job fits into the whole plan and allows scheduling

for each individual job to take account of some,global considerations. How-'ever,

no account can be taken of tile'fact that some combinations of jobs can

be chosen which use up all resources while others waste resources on certain

idays and consequently delay the project.

An alternative approach is to use a high-level representation of the

plan and find a schedule which satisfies the resource constraints and mini-

mises the overall duration of the project. The high-level plan has rel-

atively few constituent actions, so all schedules can be explored and the

"best" schedule can then be refined by scheduling the jobs at the next level

18

of detail within the constraints imposed by the high-level schedule. If

the high-l~vel plan is very inaccurate the resultant schedule will be poor
"",

and we might expect that a hierarchical approach will only give good results

in cases where the aggregates are fairly homogeneous in terms of resource

requirements and critical path data. This hierarchical approach to resource

allocation would mesh well with our general planning philosophy.

An interesting use of hierarchical planning is included in the SPADQR,

program (Pease, 1977) for planning missions from aircraft carriers. The

task handled by the program is that of answering a request to plan". an in-

dividual mission within a background of several previously planned and on-

going activities. The constituent actions of each mission are pre-determined

and stored in the data base. However, each mission requires several"'re-

sources such as aircraft, pilots, technicians and maintenance crews and the

problem is to make assignments from the pool of resources which meet the

deadline of the particular mission and are compatible with the availabilities

of each resource. In this case the requirement is not to optimise the resources

needed for the m1ss1on but to find a feasible set of assignments.

The progr_am tackles the problem in a hierarchic manner by using several

representations of a mission at different levels of detail. At each level

of detail only those resources are considered which are required for the

whole of an action (or group of actions)corresponding to that ~eveL.

Planning proceeds by taking a high-level representation of a mission and

making assignments for all resources mentioned at that level. Such assign-

ments fix activities within certain time-limits and, consequently, constrain

the assignments which can be made when the mission is expanded into more

detailed activities

The SPADOR project is concerned with repeatedly planning relatively

simple tasks against a background of many activities but such an approach

can be extended to large projects where efficiency considerations are moreimportant.

The traditional formulation of the scheduling problem for large pro-

..
jects is of allocating resources from,pools (such as different types of

manpower) which are continuously available throughout the whole of the

duration of the project. A different situation occurs when an individual

project must be scheduled against a background of ongoing activities (all

making calls on the same pool of resources). In such a case a particular

resource is, in general, not available for the whole time period but only

for

certain intervals. The assignment of,a particular piece of equipment

to a job within the project corresponds to fixing that job within a time

19

slot (with corresponding constraints for other jobs within the network).

In the first case a simple depth-first search strategy (without back-

tracking) is adequate because it always terminates in a feasible (though

not necessarily the most efficient) solution. In the second case, feas-

ibility cannot be guaranteed and backtracking cannot be avoided.

We suggest that, for such problems, a hierarchical search strategy is

appropriate and Pease's work might be usefu~ly extended in the following'

ways:

(i) To design a search algorithm which will give efficient assignments

of resources (because Pease's tasks are small he has not worried aboutefficiency).

."(ii) To investigate the structure of the hierarchical search space with a

view to making intelligent recovery from failure when a set of assignments

prove to be infeasible. The hierarchy should facilitate recovering in a

more sophisticated way than by simply backtracking to the most recentchoice-point.

This can be compared with our use of the Decision Graph

(Daniel, 1977) to recover from planning failures.

7.4 Monitoring the execution of plans

(

The most ambitious planning, plan'-execution and monitoring system to

date has been the STRIPS/MACROPS/PLANEX system developed at SRI (Fikes -and

Nilsson, 1971; Fikes, Hart and Nilsson, 1972; and Fikes, 1971). to enable

the robot SHAKEY to perform plans generated by STRIPS. The interface be-

tween the planner (STRIPS) and the execution monitor or run-time system

(PLANEX) was a triangular table representation of a plan (a MACROP). STRIPS

worked in a very simple domain and could generate only very short plans in a

reiatively long planning time (see Tate, 1974, for a comparison of several

problem solvers). Recent advances in planning techniques allow us to sug-

gest a planning and monitoring system of wider scope and greater flexibility.

In NONLIN, the necessary conditions on actions in a plan and the points

in the plan where they are achieved are represented in a GOST (goal structure).

Goal structure contains information which is more structured than the detail.
of the plan itself. It has proved a valuable tool for detecting and correct-

ing for interactions in a plan and directing the search of a planner (Tate,

1975; Sacerdoti, 1975?; and Tate, 1976). 'A GOST also gives the information

used from a MACROP by PLANEX and can thus replace it for execution monitoringpurposes.

The information in a GOST is such that we need only check that an

action does not alter a GOST entry for any succeeding action to know that the

rest of the plan can be achieved. Only if any condition on a succeeding node

20

is altered is the plan in jeopardy. Since conditions are attached to

actions in-a plan, it is possible to specifically ~ if each monitorable
condition holds before the action is execute-a. -

The use of goal structure as the basis of the plan monitoring scheme

has several advantages from the point of view of the run-time system where

time and program space are at a premium. Specifically monitoring certain

conditions before an action is performed is more practicable in a working ..
environment than asking that an accurate world model be kept after the

execution of each action {as is needed for the MACROPS/PLANEX scheme).

For a run-time system with no feed-back available from the domain, the

condition types available in the goal structure of the current version of

NONLIN may be sufficient to monitor the execution of the plan (the sy~tem

stopping if any condition was violated). For more advanced systems where

sensory information from a domain is available to the run-time system which

can be used to choose between several contingencies in a plan, further

TESTABLE condition types will be necessary together with the associated

plan-time facilities to allo~ conditional branches. and ~ejoins in the plan

being generated.

There have been very few attempts to produce plans which can have

conditionals in them. One typical approach is that described in Warren

(1976) where case analysis on the branches of a conditional is performed

and conditional plans branch but do not then rejoin. The structured way

in which a conditional would be added to a plan when using a hierarchical

representation of a domain should allow the generation of conditional plans

which branch ~ rejoin. We believe our algorithm for question-answering

in a partially-ordered network (Tate, 1976) can be modified to cope with

networks containing conditionals.

Useful further work would be the provision of a re-planning ability

based on the GOST conditions detected as not holding before some action

(

and on the remaining unexecuted part of the plan at that point.
,

The current plan modification system is designed to cope with un-

expected failures during the generation of the plan. If, at some stage

during planning, failure occurs the responsible decision can usually be

identified. Using information in the Decision Graph, the plan can then

be modified by undoing the decision in qu"estion and revising the actions

affected w~thout changing the remainder of the plan. Some modifications

usually take the form of removing a block of actions corresponding to a

21

particular. expansion of a high-level action, undoing any dependant ordering

links and replacing the high-level action.

In the case of monitoring the execution of plans the situation is

rather different. A failure may occur at some stage during the execution

of the detailed plan when some actions have terminated, some are in pro-
---~ -~.gress and some are not yet started. The fai1ure is identified as the in

ability to start some particular job as expected and it then becomes nec-

essary to re-enter the planner in order to correct the plan.

Such a recovery procedUre will differ from the existing plan-time

modification 'procedUre in the following ways.

(i) In general, the situation can be retrieved either by satisfying
,

some unexpectedly unsatisfied condition and then continuing a's before or,

in more serious cases, a part of the plan must be removed and replaced by

different sub-actions. The recovery program must be able to identify

standard types of failure and point to the appropriate remedy.

(ii) The replacement of some of the actions in the current plan is a more

complicated 9rocedure than the modifications required during the plan

generation phase. The plan cannot be modified by simply replacing a group

of actions corresponding to a high-level aggregate because, in general, the

failure will have occurred part-way through such an aggregate. Th~ re-

covery process must be able to use the goal structure of the plan to

generate new patches which do not correspond to any decomposition in b~e

action hierarchy.

Since a failure in execution is often the result of inadequacy in the

definition of the actions in the plan, the appropriate action schema should

be offered by the system for review,' so that such a situation should not

arise again

(

APPENDIX

In this section we illustrate the representation in the Task Formalismof

part of the action hierarchy for turbine overhaul -the overhaul of the

high pressure section.

Thelhighest level network for turbine overhaul is shown below.

2

1

3

preparation
work

overhaul
low pressure 2

final
reassembly

overhaul
Intermediate
pressure

overhaul

high
pressure

Such a network can be represented in the Task Formalism as an opschema:

opschema turbine

pattern «turbine overhaul»

expansion 1. action «preparation work»

2. query «low pressure 1 overhauled»

3. query «low pressure 2 overhauled»

«intermediate pressure overhauled»

«high pressure overhauled»

4.

query.5.

query6.

action

,

orderingsl ---+- 2

2 ---+- 6

«final reassembly»

1 --+ 3 1 ---7- 4 1 ---+- 5

3 --+ 6 4 --+ 6 5 ---+- 6

end;

Ut'~(HlMA CH(CKJOINTfl~[EGAPS
PATTERN «JOINT FREE GAPS CHECKED»
EXPANSION 1 GOAL «TOP CASING REMOVED»
'i 2 ACTION «CHECK JOINT FREE GAPS»

:71 GOAL «TOP C.A.SItlG REPLACED»
ORDERINGS 1--->2.2--->3
CONDITIONS SUPERVISE!} «TOP CA~ING REMOVED »
END;

AT 2 FROM 1

OPSCHEMA OVERHAULROTOR
PATTERN «ROTOR OVERHAULED»
[X PAN S I 0 r~ 1 GO A L < < S H AFT REM 0 V ED> >

2 ACTION «OVERHAUL ROTOR»
3 GOAL «SHAFT REPLACED» .

ORDERINGS 1--->2 2--->3
CONDITIONS SUPE:RVISED «SHAFT REMOVED» AT 2 fROM~,-

~NSUPERVISED«TOP CASING REMOVED» AT 1
-.I' I'" ..AT 2

~-.. .." ..AT 3

END;

OPSCHEMA OVERHAUL("iOTTOMCASII~GSANDAOTTOMBEARINGS
PAT T ERN < < fj 0 T T 0;,0. C ft. SIN G S A tJ D BOT T O..~ B EAR I N G S 0 V E R H ,\ U LED> >
E. X PAN S ION 1 GO A L < < S If AFT K E M 0 V £ D> >

2 ACTION «OVERHAUL BOTTOM CASINGS AND BOTTOM BEARINGS»
3 GOAL «SHAFT REPLACED»ORDfRINGS 1--->2 2--->3 .

CONDITIO~.JS SUPERVISED «SHAFT REMOVED>_> AT 2 FRO~ 1- ,-
, T .,UNSUPERVISED«TOP CASING REMOVED» AT 1 '.

II ":' II AT 2

II II II II AT 3

END;

'--
OPSCHEr'iA TA~EBRIDGEGAUGEREADl~JGS -". ,-

PAT T ERN < < R RID G E G A U ~ ERE A DIN G S T~. ~ EN> >

EXPANSION 1 ACTION «TA~E BRIDGE GAUGE READINGS»
C 0 ~ D I T ION S U t~ SUP f R V I SED < < S H AFT ~ E P LAC ED>) AT 1END;

OPSCII["'A RFMOVETOPCASINGS
PATTER~ «TOP CASI~G RE~OVfD»
EXPANSION 1 ACTION «RE~!OVE TOP CASINGS»
[rJ D;

4

OPSCIIEMA RfMOVESHAFT .
PATTERN «SHAFT REr"OVED» .
[X P A t~ S ION 1 GO A L < < TOP CAS I N G R E t'", 0 V ED> >

2 ACTION «Rf.MOVf SHAfT AND CHECK LEADS»
ORDERINGS 1--->2
(ONDITIOr~S SUPERVISED «TOP CASING REMOVED» AT 2 FROM 1
[t\D;

O? S C Ii f MAR F P LAC E S H AfT AND C H E C K A L I G N:-1 E t4 TAN DC LEA RAN C E S
P f, T T ERN < < S H h f T R E P LAC ED> >
[XPAtJSION 1 ACTION « REPLACE SHAFT A~J'D FIT LEADS»

2 ACTION «ALIGNMENT CHEC~»
3 ACT ION < < C LEA RAN C E C H [C K > >.

ORDERINGS 1--->2 2--->3 -
CONDITIONS UNSUPERVISED «JOINT FREE GAPS CHEC~ED» AT
END;. .

1

OPSCH[MA R-EPLACETOPCASING
PA1T£RN «TOP CASING REPLACED»
[XPANSION 1 ACTIor~ «RfPLACE TOP CASING»

END;

OPSCHEf"tA OVERHAULTOPCOVfR .
PATTERN «OVERHAUL TO~ GLANDS Ar~D DIAPHRAMS» ...
EXPANSION 1 QUERY «OUTER CASING CLEANED AND CHEC~ED FOR DISTORTION»

2 QUERY «OU1ER DIAPHRAMS OVERHAULED»
3 QUERY «OUTER GLANDS OVERHAULED»
I. QUERY «INNER GLANDS OVERHAlJLED»
5 QUER'Y «INNER DIAPHRAMS OVERHAULED»
6 QUERY «INI~ER CASING CLEANED AND CHECKED FOR DISTORTION»--.

END;

0 P S C H F M A F I 1 T 1 r~ G ~ () T H LEA D S
PAT T ERN < < FIT TOP A t~ D BOT TOM LEA D S > >
EX PAN S 1 0 ~J 1 ACT ION < < fIT 60 T T 0 ~1 LEA D S > >

2 ACTION «FIT TOP LEADS»
ORDERINGS 1--->2
END;

0 P S C H E ~I A C lEA fJ 0 UTE R CO V E R
PATTER~ «OUTER CASING CLEANED AND CHECKED FOR DISTORTION»
EXPANSION 1 GOAL «OUTER CASING TURNED OVER»

? ACT ION < < C LEA N A ~J D C HE C K 0 UTE R CO V E R> >

3 GOAL «OUTER CASING TURNED BACK»
OR DER I r~G 1---> 2 2--:-> 3
CONDITIONS SUPERVISED «OUTf_R CASING TURNED OVER» AT 2 FROM 1
END-,

OPSCHE~;A OVERHAUlOUTERDIAPHRAMS
PAT T f R N < < 0 UTE R D I A P H R A r-i S 0 V E R H AU lED> >

[XPANSION 1 GOAL «OUTER CASING TURNED OVER»
l ACTION «OVERHAUL OUTER DIAPHRAMS»
3 GOAL «OUTER CASING TURNED BACK»

ORDfR I NG5-'1--->Z
2--->3

CONDITIONS SUPERVISED «OUTER CASlr~G JUR~ED OVER» AT 2 FRO~ 1
END"I

,

OPSCHEMA OVERHAULOUTERGLANDS
PATTERN «OUTER GLAr~DS OVERHAULED»' ..-

F X P A 'l S I 0 ~ 1 GO A L < < 0 U T [R CAS I N G T URN ED 0 V E R > >

2 ACTION «OVERHAUL OUTER GLANDS»
3 GOAL «OUTER CASING TURNED BACK»

ORD[RI~JGS 1--->2 2--->3
CON D 1 T] 0 r~s SUP E R V I SED < < 0 UTE R CAS] f~ G T U R r~ E D 0 V E R > > AT 2 F VI: 0 M 1

END-,
"'

OPSCHEMA ClEANINNERCOVER

i\ T T ERN < < INN E R CAS I N G C LEA NED AND C H E C KED FOR D 1 S TOR T ION> >

E X PI. N S ION 1 GO A L < < 1 t~ N E R CAS 1 N G T URN F D 0 V E R > >
" 2 ACTION «CLEAN 'AND CHECK INNER COVER»

3 GOAL «INNER CASING TURNED BACK»
ORDERINGS 1--->2 2--->3
CONDITIONS SUPERVISE!) «INNER CASING TURNED OVER» AT 2 FROM 1

E~D;

OPSCH[MA OVERHAUlINNERDJAPHRAMS
PAT T ERN < < INN E R D I A PH R A,.' S 0 V E R H A III ED> >
EXPANSION 1 GOAL «INNER CASING TURriED OVER»

2 ACT ION «OVERHAUL I~NER DI APHRA~'S»
3 GO A l < < I N !II E R CAS 1 N G T U R ,~ E D 8 A C K > >

ORPERINGS 1--->2 2--->3
CONDITIONS SUPERVISED «INt~E~ CASING TURNED OVER»AT 2 FROr-, 1 .

END;

0 PS C H EMA 0 V E R HAUL 1 N!~ ERG LAN D S :

P/.TTERt~ «INNfR GLANDS OVE.RHAULED»
E X PAN S I 0 ,~ 1 G 0 A L < < I N ~J E R CAS I N G T U R ~J E D 0 V E R > >

2' A (T ION < < 0 V [R H .A U L G L A t~ D S > >
3 G 0 A L < < I N ~ E R CAS I N G T U R ~~ E DBA C K > >

ORDERINGS 1--->2 2--->1
CO'~DITIO~JS SUPERVISED «INNER CASING TURNED OVER» AT 2 FI~OM 1

[r..D;
0 P S C HEM A T U R r~ 0 UTE R
PATTERN «OUTER CASl1-/(; TURNED OVER»
EXPAt~SIor" 1 ACTIOtJ «TURN OVER OUTER CASING»

E~~D;
OPSCHE~lA TURNOUTERBACK

PATTrRN «OllTER CASING TURNED BACK»
EXPAIJSION 1 ACTION «TURN BACK OUTER CASI~G»

END;

OPSCl.EMA TURNIN~JER
PATTERN «INNER CASING TURNED OVER» .

EXPANSION 1 ACTIOt~ «TURN OVER INNER CASING»
E folD;

0 P S C H [I'~ A T URN 1 r~ illER B A C K
PATTERN «INNER CASING TURNED BACK»
f X P A ,~ S 1 0 r~ 1 ACT ION < < T U"R N 8 A C K 1 r~ N E R CAS 1 ~I G > >
E IJ D ..,
OPSCHEMA CtiECKlEADSANDR,Er-10VESHAfT
PATTERN («REMOVE SHhfT AND CHECK LEP.DS»
rxPANSION 1 ACTION «CIIECK Lf.ADS AND RrMOVE SHAFT»

2 ACTION «TAKE AXIAL CLEARANCES»
ORDERINGS 1--->2
E!':D;

orSCHEMA OV[RHAULROTTO~B[ARINGSANDCASINGS
rAT T r R r~ < < 0 V E R H A U L nOT Tor., g EAR I t~ G S A ~J D GOT TOM CAS I N G S > >
EX P A t-J S ION 1 QUE R Y < < i~ 0 T TOM CAS I N G G LAN D S 0 v E R H AU l E () > >

2 QUE~Y «nOTTOl'i CASING DIAPHRAMS OVERHAULED»

3 QUERY «CASING JOINTS AND NOZZLE RINGS OVERH~ULED»
4 ACTION «NDT 1&2 HEARINGS BOTTOM»

[ND;

0 P S C HEM A 13 0 T TOM CAS I N G G LA tJ D S
PATTERN

< < BOT TOM CAS I t~ G G LAN D S 0 V E R H AU LED> >

(XPANSION 1 ACTION «OVERHAUL BOTTOM CASI~JG GLANDS»
(ND- ,

OPSCHEMA BOTTOMDIAPHRAMS
PATT~RN «BOTTO/., CASI:~G DIAPHRAr.,s OVERHAULED»
EXPANSION 1 ACTION «OVERHAUL BOTTOM CASING DIAPHRAMS»
END;

OPSCHEMA t~OZ7LE~INGS
PAT T ERN < < CAS 1 N G J 0 I t~ T SAN D ~J 0 Z Z L E ,R J N G S 0 V E R H A U LED> >

EXPAt~SI0N 1 ACTION «OVERHAUL CASlt4G JOINTS AND NOZZLE RIr~GS»-'

£ND;

Of'S CH EMA RO T OROV f R II AlJL
PATTERN «OVERH~UL ROTOR»
f X P A tl S ION 1 A C 1 I 0 ~J < < C H E C K ROT 0 R > >

2 U II E R Y < < J 0 URN A L S A tJ D G L A t~ D LAO R Y NTH S [X A~' I NED> >

3 QUFRY «ROTOR RERLADEQ» .
" QUE R Y < < W 0 I~ K S PRO G R II t'11-'1 E COM P LET [D> >

ORDERINGS 1--->2 1--->3 3--->4..I
END.,

OPSCH[MA JOURr~ALS .

PATTERN «JOURNALS ANO GLAND LABRY~lTHS EXf..MINED»
(X PAN S I 0 ~~ 1 ACT ION < < E X AMI N E J 0 U R r~ A L SAN D G LAN D L A R R Y NTH S > >

E!~D;
OPSCH[MA Rf9LADE
PAT T f R t~ < < ROT 0 R R E n LAD ED> >
E X PA !II S ION 1 f\ C T I 0 ,~ < < R [9 LAD E ROT 0 R > > .

E r~ D;

OPSCHEMA WORKS
PATTERN «wO!{KS PI~OGRAM"iE COMPLETED»
EXPANSION 1 ACTION «SFND FOR WORKS PROGRhMME»
F: I~ D ;

OPSCHEMA REMOVALOfTOPCASING
PATTERN «REMOVE TOP CASINGS~>. -
EXPANSION 1 ACTIOtJ «RE"'OVE TOP OUTlR CASING»

2 ACTION «RE~iOVE TOP INtiER CASING»
3 ACT I 0 ~ < < R G R 1 Fa 2 8 EAR I tJ G S lOP»

ORDERINGS 1--->2 2--->3
END-,

i

OPSCHE~A JOINTFREEGAPS
PATTERN «CHfCK JOINT FREE GAPS»
[X PAN S I 0 tJ 1 ACT ION < < C H E C K J 0 I N T r R E E

2 ACTION «CHECK JOINT FREE
ORDERINGS 1--->2

GAP SIN r~ E R CAS I N G > >

GAPS OUTER CASING»

CONDITIONS UNSUPERVISED «INNER CASING WORK FINISHED» AT 1
UN SUP E R V I SED < < 0 UTE R CAS 1 N G W 0 R K F I ~J ISH ED> > A T 2

END;

..1.

OPSCHEMA CLEARANCE~ -~._- -.-
PATTERN «CLEARA~JCE CHECK»
£ X PAN S I 0 t~ 2 ACT ION < < C HE C K A X I A L C LEA RAN C E S A t~ D BOT TOM L FAD S > >'

2 ACTION «CHECK INNfR OUTER CLEARANCES AtlD TOP LEADS»
r-""-LNU;

OPSCHEMA R£fITTOP
PATTERN «REPLA~E TOr> CASING»
EX PAN S 10 fJ 1 ACT ION < < R E P LAC E TOP I t~ N E R CAS 1 ~J G > >

2 ACTIor~ «REPLACE TOP OUTER CASING»r..-

NU;

MAINEfFECTS
«REMOVE TOP CASING» + «TOP CASING REMOVED»

.-«TOP CASING REPLACED»
r.ND

MAlr-lEFFECTS
«REMOVE SHAFT AND CHECK LEADS» t «SHAFT REMOVED»

-"«SHAFT REPLACED»
END

MAINErrECTS
«r~EPlAC[SHAFT A~D FIT LEADS» ~ «SHAFT REPLACED»

-«SHAFT REMOVED»
END

MAINfffECTS
«REPLACE TOP CASIf.JG» f «TOP CASING REPLACED»

-«TOP CA-ASING REMOVED»
END

MA1NEffECTS
< < T URN 0 V ERn UTE R ,C A S I r~ G > > + < < 0 UTE R CAS I N G T U R ~! E D 0 V E R > >

«OUTER CASING TURNED DACK»
E tlD

"lAJ~rrFECTS
«TURN HACK OUTER CASING» + «OUTER CASlr~G TURNED BACK»

+ «OUTER CASING WORK FINISHED»

-«OUTER CASING TUI~NED OVER»
END

MAl t~ F f f E (T 5
< < T U P; N B" (K 1 f1 N E R CAS I N G > > + «INNER CASING TURNED BACK»

+ «INNER CASING WORK FINISHED»
< < I N t~ E R C A ~ I N G T URN E D 0 V E R > >

c

(ND
(l\f\I r.J E F F E C T S

.«TURN OVER

1

r~ N E R CAS I tJ G> > + < < 1 N t~ E R CAS I N G T URN ED 0 V E R > >
-«INNER CASING TURr~ED BACK»

END
It" I r~ E F F F C T S DON E @ .P R S T R I ~J G ;

PRIMITIVE
<"rINISHrD» ;

Attaching a level to every pattern in the action hierarchy helps the..
planning program control the order in which nodes are expanded. The

opschemas contain expansions, orderings and conditions on constituent nodes

The effects of actions are specified using MAlNEFFECTS which declares the.

effects always associated with the occurrence of the <pattern> in the plan

irrespective of any choice between expansions.

We can now consider how the planning system would use this action'

hierarchy to expand the goal node «high pressure section overhauled»

(it is reasonable to ignore the expansion corresponding to low and inter-

mediate pressures since the interactions between them are very limited.

The system will match the pattern of the goal node against that of the

opschema overhaul high pressure section. The goal node in the zeroth level

network will be replaced by six query nodes and an action node in the first

level network and the user will be interrogated to determine whether the

query nodes should beco~e phantoms or goal nodes (i.e. whether the corres-

ponding actions should be performed or not).

No effects are associated with any of the new nodes but two new un-

supervised conditions are introduced by the expansion. Before moving to

the second level network the planning program will seek to satisfy the un-

supervised conditions -in this case they cannot be satisfied until the

second level network.

In moving from first to second level networks the system replaces the

goal node «top and bottom leads fitted» by three nodes

goal «top casing removed»

action «fit top and bottom leads»

goal «top casing replaced»"

Suitable values for the levels of each pattern would ensure that the two goal

nodes would be expanded within the second level network.

Thus, if the user wished to overhaul the rotor, fit top and bottom leads

and overhaul top glands and diaphrams, the corresponding first and secondlevel

networks would be as shown below (ignoring phantom nodes).

.

first level--

1

4(top and,
bottom
leads fitted

2 4

top glands &

diaphrams
overhauled

finished

3

Rotor
overhauled

second level

2

8

finishe

~

At the second level the.unsupervised condition

«top casing replaced» can be satisfied

The new unsupervised conditions «top 'casing removed» required by

nodes 4, 5, and 6 are made true by node 1 and untrue by node 7. The

planner will remove the interactions and satisfy the condition by linking

1 before 4 and 6 before 7'. The interactions will not be removed until

they have become constrained by the satisfaction of the unsupervised conditions.

'"

I;

,

References
-

Crowson,

W.B. and Thompson. "Decision CPM: A method for simultaneously

Planning .sch,eduling and Controlling Projects", Operations Research 15,

pp407-426. ..
Daniel, L.M. (1974) "And/or graphs and critical Paths", IFIP '74.

Daniel, L. M. (1977). "Planning: Mofifying non-linear plans", DAI

Working Paper: 24, Department of Artificial Intelligence, University ..
of Edinburgh.

Daniel, L.M. (1978) "Search Strategies for hierarchical Planning",

forthcoming DAI Memo.

Fikes, R.E. and Nilsson, N.J. (1971) "STRIPS: A new approach to the

application of theorem proving to problem solving", Artificial In-
telligence 2, pp 189-208. .

Pease, M. (1977) "ACSI: Automated Command System", SRI Technical

Report 13, Stanford Research Institute.

Sacerdoti, E.D. (1975a) "The non-linear nature of Plans", Advance

~~2ers of 4th Internationa~Joint Conference on Artificial Intelligence,

Tibilisi, U.S.S.R.

8. Sacerdoti, E.D. (1975b) "A Structure for plans and behaviour~', ~
Te~nical N_ote !09, A. I. Center, Stanford Research Institute. .

Siklossy, L. and Deussi, J. (1973) "An efficient robot planner which

'c,.. ~enerates its own procedures", Advance pa£ers of 3rd International

Joint Conference on Artificial Intelligence, Stanford, California.10.

Tate, A. (1974) "INTERPLAN: A plan generation system which can deal

with interactions between goals", .MI~Mem~~IP-R:-109, University of

Edinburgh.
11. Tate, A. (1975) "The use of goal structure .to direct search in a problem

solver", Ph.D. thesis, University of Edinburgh.

12. Tate, A. (1976) "NONLIN: A hierarchic non-linear Planner", DAI Memo 25,

University of Edinburgh.

9.

.

An Integrated Approach to Planning, Plan Execution and Plan Monitoring

Austin Tate

Scientific Proposal to Science Research Council 26th July, 1976.

We propose to develop a "system capable of automatically forming

plans and monitoring their execution in the domain of computer-controlledassembly.

We will specify a formalism to enable a domain to be

described in a straightfor~ard fashion. To ensure genorali ty and to mike

this research tractable, we will evaluate the system in two distinct domains

both of which are the subject of current research in this Department. The

research will involve the provision of a conditional planning facility and a

run-time plan monitor which in its later stages should cope with sensory

information from a domain. .

t

(

'-

f -1-

1. Description of work propose~

We wish to allow a task to be given to a programmable robot assembly

system in a straightforward way, preferably by giving a description of the

finished object. Current languages under development for the generation

of control programs for such "robots rely on being explicitly given a fairly

detailed sequence of the operations to be performed. We believe that

recent work on the representation of problem domains and the generation of

plans could- usefully be employed to ease the burden on the programmor of a

robot.
..

Most early research on planning was divorced from the actual use of

the plans generated. However, recent work has concentrated on the benefits

that a planning ability can give wi thin specialized systems. For example,

planning is used in the Computer Based Consultant for instructing a novice

mechanical engineer on some task (Hart, 1915); in an automatic programming

system (Manna and Waldinger, 1914); in a mission scheduler for an aircraft

carrier (Fikes, 1915); to aid in understanding natural language (Schank andAbelson.

1975); and on an electronics trouble shooting system at ~crT. A

planning abil~ty frees a user of the system from specifying sequences of the

primitive operations available and allows the au~omatic choice of actions
.

most suited to an overall task. Some recent planners, used as components of

lbXger systems, have focussed on the need to rep~esent a co~lex problem
domain hierarchically, i.e. at many different levels of detail (Sacerdoti, .

1975a; .Tate, 1916, paper attached). Such planners work at a symbolic rather

than a geometric level and thus cannot be used to generate plans containing

the detailed actions necessary to perform assembly operations.

In this work we propose the development of a hierarchic task specif-

ication language and the extension of a planner able to generate plans in a

domain represented in this language. This will enable control programs to

be generated for a robot manipulator from quite high level descriptions of a

task. We will consider the execution and monitoring of the plans generated

on a particular device. The use of execution-time sensory information will

be studied.

,

We want the task formalism and planner to be unifornly applicable to a

vide range of domains. To achieve this we pl.opose,a common approach to two

problems currently being tackled in distinct ways.

'.

-2-

a) The development of an interactive program to enable a project network

(as uced for critical path analysis) to be gonorated in a etraiffht-

forward and colorect fashion, e.g. for a house building task.

b) The generation of instructions to assemble Bome object on a computer

controlled robot manipulator.

Recent work on problem a) by us has led to a planning system NONLIN .

which is fully described in the paper attached (Tato, 1976). The planner

can be given a hierarchic description of a domain (i.e. tho problem domain

can be specified at several levels of detail). Such domains are at present

restricted to those which can be represented symbolically. Cornputational

processes (such as a geometric modelling package) cannot be interfaced to

allow the level of detail to be low enou&h for that required to perform

assembly planning. NONLIN can generate a plan to perform a task in such a

domain where the plan is represented as a partially-ordered network of

actions. During planning a record is kept of the condi tionn necessary for

any action and the points in the plan where the conditions are achieved (this

rocord is called the gOBl gtrJctur~ of the pl~~). Problem b) hag usually

been tackled by specifying tl'ajectories for manipulators and basic manip-

ulator activities. No planning capabili ty ~es been provided.

We aim to establish that

a)

th6 planner llOlffiIN can be extended to cope with taSk descriptions which

can include low level manipulator move~ents.

b)

the use of sensory information from a domain can be planned for by the

use of speci&l TESTABLE conditions on actions in the plan. This will

involve the provision of conditional planning facilities.

c)

The goal structure of a plan, extended to incorporate b) above, can be

used to monitor the executio~ of- the plan and aid in re-plnnning when

necessary.

{

We thus hope to show that an integrated approach to planning at several

different levels and execution monitoring of a plan is possible. The

program of work could not be undertaken with the resources asked for if not

for the fact that simultaneous work is being undertaken by two projects at

Edinburgh on the t\(o problems me~tioned.'

"

-3-

8,)

,

the project "Planning: a joint AI/OR approach" under the direction of'

Profes~or B. Meltzer is nearing the end of its first year (Daniel andTate,

1976). The work on NO~lLIN is a result of this first year effort(Tate,
1976, paper attached). .

b)

tho project "a computer aided assembly systemn is about to begin under

the direction of Mr. R.J. Popplestone (Popplestone, 1976).
,

The close co-operation we have with the planning group will continue

and this \1ill enable the evaluation of the use of the planner on, for

example, the h~use building task they are considering.

The work on computer aided assembly will make availablc a run-time

mini-computer system and software to enable the evaluation of the integrated

!approach on problem b).

The cross-fertilization of ideas between the ~fO different npproaches

being tackled by the attempt on this project to develop an integrated

planning approach to both tasks could be very fruitful. We have chosen the

wo .tasks for the evaluation of our approach because of the availability of

local expertise and continuing work on these. A specific co~ tment to an

integrated approach to the hl0 different tasks will avoid the common-pitfall

encountered on DallY projects of ~ lack of generality in a final system.

(

! -4-

2.

r
R~lntiontopreviouB find curr~nt wQrk

2.1 EIClnniM Md Task Specification

Recent work on the generation of plans has been concerned with

producing pl&~s which could be used to transfer the kno\fledge of an expert

or experts in a domain to a novice. Work of this type hns been performed

on the Computer Based Consultant Project (Hart, 1915) at Stanford Re8ear~h

Institute and on an Electronics Troubleshooting System at MIT. Experts

in some field provide a collectinn of job descriptions each of which may

require the kn~wledge of other experts to break down sub-tasks. The system

builds up a hierarchy of jobs which can be used to generate plans at various

levels of detail. An apprentice or novice using the system is interactivel~r

directed through a task at a level appropriate to his snll by the system.
aSking him to perform taSks at a higher level first. If the higher level

tasks are beyond the apprentice, the expert knowledge encoded in the system

is used to choose some way to break down a task. The planner ensures that

all the plan can still be performed succes8fully when these more detailed

steps are added. Accommodation of further detail into the plan may cause

re-ordering of part of the plan. The lower level tasks are then given to

the apprentice who again can signify his ability to perform them or not.

The Co~puter Based Consultant is a system intended to guide an appren-

tice mechanical engineer through various tasks ~ a workbench. Typical of

the tasks is the assembly of an air compressor. The planning system used

in this project, NOAH (Rets ~f !ction ~ierarchies), was developed by

Sacerdoti (1975a, 1975b). It incorporates novel ideas for the represent-

at~on of a plan as a partially-ordered network of actions (procedural net).

This is in contrast to most previous work on planning which concentrates on

the generation of linear sequences of actions, e.g. STRIPS (Fikes and

Nilsson, 1971), LAWALY (Siklossy arid Dreussi, 1973)p n~ERPLA1i (Tate, 197~),

etc. Knowledge about a domain is given to NOAH by writing code in a

language SOUP ([emantics ~f lT~.er '!?rograms) to explllin how to decompose any.
task to lower level tasks. ,

i
Work at Edinburgh, on a project nplnnning: a joint AI/OR approach"

(Daniel and Tate, 1976), is concerned with the problem of large scale

project planning and the development of an interactive program which guides

a user through the entire planning proce.ss. For project planning, a net-

work cust be set up so that critical path snalysis and other optimization

"

-5-

proceduros can be used to decide whore resources should be dirocted to

most efficiently achieve a task. Howevor, tho network typically is

difficult and timc-conauming to set up. It is also difficult to ensure

that the ordering constraints on tasks are in their least constrained form.

This is essential to allow the optimization to achieve the best results.

As in the work of Sacerdoti, we have been investigating the use of B

partially-ordered network of actions to ~present a plan at any stage.

Such networks are in a suitable form for the use of critical path analysis

techniques. Any ordering in the network results from the fnct that either

1)
11)

an action achieves a condition for a subsequen~ action

an acti_on interfcres with an important effect of another

action and must be removed outside its raD88.

A formalism (TF) has been specified to enable a task to be described

in a hieral'chic fashion. Task descriptions can be nTitten independently

of their use at higher levels. Thus experts at a higher level, middle-

management and tradesmen, can each describe their tasks ind~pondently and

in their o\m terminology.

A s~plified "ACTScnFY~n from a house building specific~tion in the

Task Forcalism is given below.

A~l'SCHE!".A DECOR
P ATTERll DECORATE
EXP}~lSION [AND CONDITION tnrSUPERVISED «ROUGH PLUMBI1TG II,rSTALLED»

CO1TDITION illlSUPERVISED «ROUGH \"i'IRING nrSTAJ..LED»
ACTION «FASTEN PLASTER BOARD MiD PLASTER»

; [[MlD [COllDITIO~l UI{SUPERVISED «DRAIllS I1{STALLED»
-A(,WrIOll «POUR BASE!1E1iT FLOOR»

A(,WrIO1I «LAY FI1lISHED FLOOR»
CONDITION SUPERVISED «FLOOR }'TJllISHED»

A(,WrION < <:FDaSHED C/-.RPEIffRY> >
CO!illITIOll illlSUPERVISED < <PLtJI'ffiIIiG FnaSHED> >

-ACTION P.U1lT]
CONDITION SUPERVISED «CARPENTRY FIllISHED»
CONDITION SUPERVISED PAIl~ED

-ACTION «SAND Mffi vAlUnsn FLOOR»)] .

EFFECTS + DECORATED .Ji;..
ENP" ,, ~:t

.t

~
'-
!

.2.

P-

.
The partial ordering on the actions is (

-6-

The DECOR schema specifies a partial ordering on 6 actions which together

will achieve the "DECORATE" task. SUPEaVISED conditions are made true

wi thin the expanoion of the task (e.g. the J.CTIOlf PAINT (5), achieves the

SUPERVISED condition PAINTED on ACTION 6). .UNSUPERVISED conditions are

made true by other experts (.:Jainly here by an ttruSTPJL SERVIC~n expert).

Another condi tion type, "USE'mEIf", would say that an ACl'SCHE:1A. containing

it should not be used unless the condition was true. Thel~e is only one

effect of this ACTSCHEMA I + DECORATED) as the other effects are defined by

the lower level actions.

A planner; NONLIN, has been specified and is implemented in an

experimental version which can take task descriptions given in the formalism.

It generates a plan at progressively greater levels of detail and can handle

interactions between the components to produce a plan as a partially-

ordered .network of actions. The algorithms employed in the planner have

been designed so that over-linearization is avoided where possible and all

choice points are kept for later analysis or re-planning. A aitlple. clear

rcpresontation of the goal structtU"e (GOST) of a plan is kept (the

conditions on nodes of the network together with the points where the

condi tions are achieved). An example of a GOST entry during a house

building task might be

«SUPERVISED «SCAFFOLDING ERECTED» TRUE 6» with value [4].

This ~ould mean that «SCAFFOLDING ERECTED» had to be true at node 6 and

was made true at node 4 (nodes in a network a..re ntmbered). The GOST

specifies a set of "ranges" for which patterns have a certain value. Goal

structure provides information about a plan which is much simple~ than the

detail of the plan itself. The use of goal structure to direct search in

a problem solver was first investigated in Tate (1975). NOIffiIN and the

task formalism.(TF) are fuily described in the paper attached (Tate, 1976).

2.2 Automation IJan.~tlRes-

(

Recently there has been effort to prod~ce a sui table language

for instructing industrial robots (such as the UlID1ATE, M4F VERSATfuUl, etc.)

to perform some production process (especially assembly). This is

especi~ly important for batch production which is characterised by short

runs. There is a need for versatile machines, 'iip.ich can be readily

progrncmed, if the process is to be performed automatically. It seems

likely that industrial robots will be controlled by mini-computers which

may Dake use of tactile and simple visual information (Industrial Robot

!

-7-

Technology, 1976). Kno'tl'ledge about the naturo of the tasks being

performed wi.II be needed to produce progr3ms for these controller3. Since

the ,life expectancy of some industrial robots can be as long as 40,000

working hours (Engelberger, 1976 for a UKn'~TE) the reprogramming may have

to be done many times in the device's life.

AL, (A language for automation -Finkel g! El, 1975) has been develop~d

at Stanford University as a language for the specification of assembly

instructions to two manipulators and for the use of sensory information in
\

the plan to be performed. In the system prescntly in use under AL, ~rolip-

ulations are mostly described in terms of trajectories and pri~itive manip-

ulator motions. Advanced versions of At and the work to be carried out at

Edinburgh on a c~puter-aided assembly system will allow a higherbvel of

description. A sequence of goal states ~rlll be given each of vhich will

be specified by relations between components (e.g. that 2 faces are'~GAI!\ST"

each other). Expert knowledge encoded in the system Hill be used to

genarate the necessary trajectories and manipulator motions to achieve each.

goal state mainly by an analysis of the geometric constraintD on the

specified goal positions. The form of language used to describe this

knowledge and the method for describing how relations between bodies cfu~ be

translated to machine motions is 9till a mattor for discussion. To aid in

this task a mathematical process can be used to generate the position of

individual bodies when body descriptions are available and a set of spatial

relations given (Ambler and Popplestone, 1975).

The work on the SRI Computer Based Consultant project is also in the

domain of assemblies of mechanical parts though the final output of the

system is to a human apprentice and planning is thus at a relatively high

level. During the formation of an assembly program AL needs to generate
I

a low level model of the state of the world at any point in the plan. A

representation "for the plan such that both high level and low level

planning can be performed \fould be investigated as part of the proposed

project. A formalism adequate to meet the needs of representing high and

low level tasks in a uniform way ~ould also be developed.

(During automatic assembly under mini-comp~ter control the run-time

ovorheads of computation and size of program must be minimized. The

program must incorporate most of the knowledge about how to deal with small

errors of positioning, correction of arm trajectories and so on. A good

"

-8-

run-time monitor must ensure that errors do not get out of the bounds which

can be h~}died by the program. The planning model generated during the

formation of run-time code by AL provides a set of expected values for

variables etc. which are given to the run-time Bystem mId which allow the

moni to ring to take place.

Our su~gestion is that the goal structure of a plan generated by the

planner IfO!ffiIIi (Tate, 1976 -paper attached) provides just the information

necessary to monitor the execution of , the plan and thus is the infol~ation

w1rlch should be passed to the run-time system and used by it. For a
, ,

manipulator which assembles by dead-reckoning, t11e condition types avail-

able in the goal struct-ure ,\Of the current version of NOlffiIN I!1ay be

sufficient to monitor the execution of a plan (the system stopping if any

condi tion ~ms violated). For more advanced systems where sensory

information fI"Om a domain is available to the run-time system, further .
TESTABLE condition types will be necessary together with the associated

plan-time facilities to allow conditional branches and rejoins in the plan

being generated. "

(

"

-9-

3. ~he'Use of Ronl ~~~1'\tcturo for T\lanniM. plan executj on and T)lRn roO!!:!. ~~riM

The roost nmbitious planning, plan exocution and monitoring system to

dnte has been the STRIPS/MACROPS/PLJJmX system developed at SRI (Fikes and

11,ilsson,1971; Fikes, Hart and 1~il."Json, 1972; and Fikes, 1971) to enable

the robot SHAKE! to perfo~ plans generated by STRIPS. The interface

between the planner (STRIPS) and the execution monitor or run-time system

(PLAllEX) \res a triangular table representation of a plan (a }~CROP). STRIPS

worked in a very simple domain and could generate only very short plans in

a relatively long planning time (see Tate, 1974. for a comparison of several

problem solverS). Recent advances, in planning techniques and robot devices

allow us to suggest a planning, execution and monitor system of wider scope

and greater flexibility.

In NOiffiIJ~, the necessary conditions on actions in a plan and the points

in the plp~ rlhero they are achieved are represented in a GOST (goal

structure). Goal structure contains information which is more structured

than the detail of the plan itself. It has proved a valuable tool for

detecting and correcting for interactions in a plan and directir~ the search

of a planner (Tate, 1975b; Sacerdoti, 1975b; and Tate, 1976). A GOST

also gives the'information used from a l1ACROP by PLAlt&X and can thus

replace it for e~ecution monitoring purposes. The information in a GOST

is such that we need only check that an action does not alter a GOST entry

for any'succeeding action to know that the rest of the plan can be achieved.

Only if any condition on a succeeding node is altered is the plan in

jeopardy. Since conditions are attached to actions in a plan, it is

possible to specifically ~ if each monitorable condition holds before the

action is executed.

(

The use of goal stl~cture as the basis of the plan monitoring scheme

bas several ad~antages from the point of view of the run-time system where

time and program space are at a premium. Specifically monitoring certain

condi tions before an action is performed is more practicable in a working

assembly system than asking that an accurate \torid model be l:ept after the

execution of each action (as is needed for the MACROPS/P~mx scheme).

Such a process should allow for the use of information from sensors when a

conditional planning facility is available. The test and branch conditions

will be represented to the run-time monitor through the goal structure.

We hope to be 8 ble to provide a re-plannip~ ability based on the GOST

conditions detected as not holding before some action and on the remaining

\U1executed part of the plan at that point. "-

-10-

4. Re lev~t wo&~.~t_Edin bur{?h-

As mentioned previously, we have chosen two tasks to eXI>lore our

integrated approach bocauae of current worlc at the Department of Artificial

Intelligence (AI) at Edinburgh University on these tasks. In order that

we can make clear the scope of the proposed project, we will first briefly

describe and mention the l1.mi ta tions of this other work.

4.1 hO.;0Ct Pll'..nni!?;/!,

The work on the project "Planning: a joint AllOR approach"(Daniel.

and Tate, 1976) has been described in section 2.1.

A formalism and plromer have been specified to allow hierarchic

description of problem domains and the generation of pJ.ans in those domains.

T11e lowcst job level described may be actions su~h as "lay foundat~.ons" or

"install kitchen equipment" (see example in section 2.1). A.1l planning is

at a symbolic level and constraints on the ordering of actions in a plan

arise through the achievement or destruction of symbolic state~ents sbout

any time point in the plan (e.g. "floor boaxds layed" may destroy some

required condition "under floor access clear"). It is not possible to form

plans whose goals are specified fl'om some computation, e.g. "hand at {x,y,z)t:

where (x,y,z) is a transformation of the position of an object computed by

a ~~ometric modelling package. Extension of the planner and task fornalism

to cope-with lower level or non-symbolic domains will not be undertaken on.

the AI/OR project.

Work currently in progress on the planning project is ai.I:led at

producing a system in which choices of operator, choices of instantiation

for variables or the insertion of action ordering lir~s in the network are

represented in a "decision graph" which can be used to select alternative

appl'oaches to be taken by the planner (Daniel, 1916). Such a scheme may

be based on the process used by Hayes (1915) for a travel planning system.

Later "r(ork will allow the actions in a network to be assigned "costs". which

can be used for critical path analysis optimization.

(.

Since the planner and task formalism to be used as a basis of the

proposed project is in fact used at present for the above work, we expect

t1mt close contact with the planning group will ensure that the planner and

formalism in use remains compatible \fi th the noed to extend both to cope

with the lower lovel tasks. When thoy become available, the incorporation

of the decision graph and cost analysis components will be desirable for

the ability to deal with col~plex low levol tasks. In particular, an

assembly program produced for some batch production proccss must be as

-11-

efficient as possible since it may be repeated many times. Plan-time

effort is worth expending to produce a good program. Tne assignment of

costs in terns of time or energy used (depending on the application) to

actions and the ability to generate low cost Dolutione will therefore be

important in the proposed wOi.k.

A\],tomatic A9se~blI

The project "a computer aided assembly system" (Popplestone,

1976) aims to construct and evaluate a langu~e for specifying assembly.operations.

The complete system will be given spatial relationships

which certain bodies must ha~e to one another and will be required to

generate a program for a run-time system which will perform the taSk on the

existing Edinburgh hand/eye device. The form of language to be used for.

specifying assembly operations is still to be dacided, and we would hope

that the "lirJking'f nature of this proposed work would have some :influence onthis.

Part of the work will involve the provision of a-facility to locate

the position of any feature of a body from a specified set of s~bolic

relations between the bodies in a world (e.g. AGADfST and FITS). This ,all

be an extension of the work descl~bed in Ambler and Popplestone (1975).

I rlll refer to ihis later as a "position finder". A run-time syste~ will

be developed to control the primi~ive manipulations available and an inter-

face specified for its use. }1ethods of interfacing sophisticated sensory

feedback into an assembly operation will be explored. Later in the project,

an investigation of the use of the space occupancy of bodies to modify

certain programs (e.g. to avoid hand/object collisions) will be conducted.

.(

(

A previous assembly system for tIe Edinburgh hand/eye device (Ambler

~ Ai. 1975) relied for the actual final assembly of an object upon a

sequence of pre-progracmed primitive manipulator motions together wi th two

"fitting" operations which used force sensing. The system had a sophis-

ticated module to locate objects. recognizefuem ~d put them in specified
n storage" positions. After this phase the system merely ran through the

sequence of primitive operations to assemble the object. presuming the

components were in these fixed positions. No' planning was involved.

The new assembly system will rely on a human instructor to specify a

seaucnc~ in which the assembly operations are to be performed. It is not

-12-

within the Bcope of that work to considor how to determine the sequence

automatically.

Since this is precisely the task for which NOAH (used in the Computer

Based Consultant) and NO1~IN were designed, we have an opportunity here to

bridge the gap between curro~t planning and automation language desienwork.

The facility for providing opecifications of assembly operations

through the task formalism (say as a library of primitives) and allowing, .
the planner to find the appropriate ways to combine them to achiev~ some

goal should reduce the amount of specification necessary for any particular

task. .

(

'"-

-13-

5. E:~ORT('..mme of,"ork

].'a~t~ .1.

5.1

The first part of the work will be mainly concerlled with the

provision of facilities known to be needed for the generation and use of

lower level plans. To some extent these will be developed with "dUffiIn.V"

modules representing facilities to be experimented with in Part 2. There

will be 4 aims in the first part.

1.

~Q!))J)utatio[l~

Current planning systems do not.meet the needs of low level (raanip-

ulator) planning because they work symbolically and the interface of

computational systems such as a "position finder" io not possible.

We will provide facilities to allow plan-time and rtm-time comput-

ations to be performed to instantiate or modify a plan. In order to

develop the planning system independontly of progress on the assembly

project a.simple "position finder" will be used at first (possibly

using a data base of explicitly asserted positions). We 'fish to

incorporate the use of computations in such a \iay that the task for-

malism can be used to describe thorn naturally and independently of the

level of the task given (e.g. it vlould also be possible to use com-

putations to provide calculations of quanti ties of materials for house

building tasks, etc.).

2.

C6nQ-t tiOTi~.1 PlanninR

,

Condi tion types will be added to allow execution time testing of a

world and plan structures designed to allow conditional branching on

Buch tests. Conditional plans will be necessary in lo1i level domains

to cope ~dth, for example, the se'feral stable positions a component

may be prese~ted in by a feedi~g device. There have been ve~ few

attempts to produce plans which can have conditionals in them. One

typical approach is that described in Warren (1976) where case analysis

on the branches of a conditional is performed and conditional plans

branch but do not then rejoin. The structured way in which a

condi tional would be added to a plan when using a hierarchical

representation of a domain should allow the generation of conditional

plans which branch ~ rejoin. We believe .O\tr algori thIn for

question-ans1iaring in a partially-ordered network (Tata, 1976, paperattached)

can be modified to cope with.ne~Torks containing conditionals.

'"

=t"*-

Run-time Svatern-

3.

We will begin wol'k on a run-time system to take a plan from the planner

8.l1d execute it on the Edinburgh hmld/eye device. Acco\U1t should be

taken of the mechanical inaccuracies of tJle device. Initially, the

run-time system will be based on tho code available in the present

manipulation package for the robot.

4. Pro.iect Plrmning,

Co-operative efforts may ensure that a broadly similar pll~~ner is used

for the pr~ject planning as wil~ be required for this proposed work

(the plllIlner currently used for the project plDnnir.g is llO;1LIlf). The

capa.bili ty of adding the "decision graph" and cost analysis components

as they are developed in the plroL~ing project should be p~'eserved. -

At the end of the first phase of the work 'iEJ will have hierarchically

specified a collection of asDembly operations such that the plenner can be

given commands at a high level and used to generate code for a run-time

system on the EdinbUl'gh hand/eye device. We would hope at this point to
be able to generate and use Borne plans ~lhich did not reqtnre the use of .

sensory information (i.e. assembled by dead-reckoning).

5.2 Part 2

~. Planning systems have not in general concerned the~selves with

the requirements of executing and monitoring a plan after its generation

(with the notable exception of the STRIPSft~CROPS/PLA1ffiX system). We

thus anticipate that part two of the 'Work, together with the provision in

part one of conditional planning facilities, will provide the greatest

challenge and require the roost effort. This w~ll be to evaluate the use

of the integrated approach in the domain of automatic essembly. At first

we will choose a task such as the assembly of a model car from a kit of

parts since such assemblies can ~e done at present in a "blind" fashion

(Ambler ~ ~ 1975). Wi thin the framcwork of exploring this problem there
will be 3 airjs in part two. .

1. t!seof~oa.1 structure for _mopitori~[; the execution ofa :PJ~

~
We aim to show that the goal structure of a plan (a GOST Generated by

NOIJ1IN) can be used as the ba~is of an executio~ monitor. The run-

time sYDtem ",~ll therefore be extended to perform moni torinc using

goal structure. Any monitoring error would probably be treated as a

-15-

stop condition at first thou~h we expect to be able to add are-

planninc capability in due course.

2.

ExecutiM Conditional PJan~

We will experiment with ~ESTABLE conditions and conditional plan

parts in order to use ~~ sensory inform~tion (e.g. force on the

hand) to guide assembly. As more sophisticated sensory facilities

are developed on the assembly project, we hope to interface to these.

\1e anticipate that the goal structure of a plan can represent the

use of run-time conditionals ~~d can thus be used to monitor the
..

execution of plans containing them.

,.

:U::siM ComputatiQ!!~

An interface to computation~ processes such as the "position fino.ern

described earlier and to numoric data bases will be made through the

facili ties provided in part one. So~e sta11dardization of tl1e data

bases used betwoen the projects would help in this task and efforts

should be made to achieve this (it is not the case at present). Since

geometric modelling is one of the most co1:1plex computational taslcs to

~hich we will interface, we must be prepared to make such simplifications

as are necessary to enable 1 and 2 above to be achieved.

..
.The project will thus investigate the use of a planner and run-time

system in two differing domains and find a task fol~alism adequate to cope

wi th the needs of representing ta~ks in those domains. In particular we

hope to demonstrate that the system can generate plans with the detail

required for their execution on a computer controlled assembly device.

We will investigate the generation and use of conditional plans.

,

"

-16-

!!lcxaInt)le of the tRsk for;na.li~min u~~6.
We give here an example of a piece of code which is in a crudely

extended version of the Task FO1'Inalism (TF) cUlTently accepted by liO!lLIN.

This is part of a problem description given to a modified fo.rm of NONLIN

to clarify sC'.ue of the ideas in this proposal. The Fomalism has been

extended to provide a weak "CO}1PUTE" facility. The syntax here would not

be preserved in the system proposed and work is already in progress to

separate the action parts of an expansion from the specification of

conditions and their ranges. The code describes a way to pick up a block.

1.2.

3.

4,

5.6.

It ensures the hand is emp~y.

It approaches the block thl"Ouoh an approach position

«X y HI~JZ» (where HIm~ = Z + 20 cm).

It sets the fi~rs 5 cm wider than the width of the block (the

block width is found through the value of B10~"lIDTH in a numeric

data base).
It lowers the hand to a position computed by the function POSITIOlf

«block to be picked up» which returns a vector «X Y Z». Real

position finders are more complex.

It closes the fingers to grip the bloCk.

It moves the hand (now holding the block) up to the approach

position «X Y HIGRZ».
.

?*X is a variable X. .The variable may be given a restriction in tl

ttYARS" statement. Facilities exist for giving a partial-orderi~ on

actions in an EXP~mIOlf as well as the fully ordered sequence given here

(an exa.TJlple of this is given in section 2.1).

OPSCHEl.iA PICKUPP ATTE:R1i < <HELD $*B 1> > .

1 EXP AllSIOll GOAL E.jpTYHAlm
-CONDITION USE1illEtf «CLEARTOP $*B1»

COJ~DITIO:l USE\\'HEJ'r «011 ?*B1 $*B2» tCONDITIOIT USEvm~T «OVER S*B3» .

CO1TDITIOI~ CO!.:PUTE' [~< ~*X' ~*Y 9~Z» = POSITIOJT ~*B1] use of a simple
COl~DITION cO:.lPU'rE [S*HIGIIZ = + ~*Z 20] computational facili t;

.? ACTIOlf «1-10VE!IAlill « $-'kX $*Y $*HI'~Z» » .
COl1DITIO!i CO:.WUTE [$*rlIlYrH = BLOCh"\IID"rH] use of a n\mleric data base.
CO1illITIOll COr.WUTE [$.'(.FIl'~GER\fIDl'H = + ~*WID'rH 5]

:i ACTIOlf «SETFIllGERS ~"FI11GER,"TIIYrH» (
! ACTIOI~ <OIOVEHAlrD « ~*X ~*Y ~.*Z» »
.5. ACTION «SETFINGERS S*1ilD'fH»I .
.§. ACTIOIl «riOVErWill « f*X ~*Y :?*llIGHZ» »

EFFECTS -EI.iPT11Wffi :' .
+ «HELD $*B1» .

-«OVER $*B3> >
+ «OVER ?*B2» .

VARS B1 U1~DEF B2 millEr B3 illlDEF x UJ{DEF Y millEF z mmEF HIGHZ mrDEF
vlID'I'H millEF E'IIIGrnWIIYrH mill1rr': .

EllDj

-17-

PICKUP is a relatively low lovel job specification in the hier-

archicAl des"cription of the domain. The rest of the package gives ways

to l\chieve EI.IPTl1Wffi etc. and gives higher level actions (e.g.

«PWf X ON TOP OF Y» which uses PICKUP as a component). Lower level

descriptions of J.l0VEIWffi and SE'rFINGERS ',-(ould be needed for a practical

system as would a more general approach position mechanism, etc.
.

~

(

-18-

7.

Wider Jugtifi£~t~°!l

1. JIicr~rchic Ta.~k S'f)ccificatio!!

.
Robot devices for performing mass assembly and finishing processes

are becoming widely used in industry (Industrial Robot Technology, 1976).

The development of progTrunmable robots (controlled by a mini-computer) has

extended the ~pplicability of these devices to the economically important

field of batch production and special purpose "one-off" processes. Since

such devices Jnay need to be re-programmed many times during their working

lifo, the generation of control pl.ogr~s should be straightforward. The
., .

specification should preferably be done at the level of someone describing

a finished article or job. The planning of an assembly using a hierarchicplanner

and task formalism will enable co~!plex tasks to be dealt with at

high levels first and expanded to detail in a structured way. It w~ll allow

a natural interface to libraries of detailed pro-programmed sub-tasks (e.g.

pr-ovided by the manufacturer of a versatile industrial robot).

2.

'!1_~in.u.Al ternat~~

In the domain of automatic assembly, a large computer may be used.

to compile a 'contro1 program to be repeatedly executed on so~e device. It

is worth expending compile-time effort to produce a good progrp~. A sys-

tem such lis we "1i11 develop can be given a1 terna~i!e ways to perfom

assembly operations rold then the planner allowed to select those appropriate

for some overall task. This is a capability not being considered in cur-

rent research on automatic assembly lano~ages. The capability of

attaching costs to actions in a plan will allow us to generate cost-

effective control programs.

,. _~~ec!!ti11f!, ~nd J.lopitorinJ; P;a!l.~

(

We consider it important that 'fe will be using a run-time system

to execute plans since much recent work on planning has been divorced from

the actual use of plans on a real device. The systems have, therefore,

tended to becooe rather stereotyped and deal with problems which have

difficult features but which are intrinsically simple (e.g. block stacking

problems). The only comparable work on a planner and run-time plan

monitor was the STRIPS/}illCROPS/P1~~X system developed at SRI in 1971-2.

Recent advances in planning and in the capabilities' of computer-controlled

devices make it desirable to constl~ct 'an up-to-date system.

"

-19-

4. Condi tional Plorulin~

Our research is scientifically interesting as we will be invest-

:i.gating the generation of conditional plans (which has much in co~on with

automatic programming) and the use of such pl&~s to allow sensory information

from a domain to be coped with. The use of sensors will be vital for

versatile assembly robots.

.,.

(

-20-

~Amblel~,

A.P., Barrow, H.G., Broi\~, C.M., Burstall, R.M. and Popplestone, R.J.
(1975) A versatile systeu for computer-controlled assembly. Artificial

~rntellil;enc,~c. ~, 129-156. ~~-

Ambler, A.P. and Popplcstone, R.J. (1975) Inferring the positions of bodj.es
from specificd spatial relationships. A~tificiB.1 Intell)~enc~, ~,
157-175.

Daniel, L. 11976) Forthcoming fi\T Mem~, University of Edinburgh.

Daniel, L. and Tate, A. (1976) Planning: a joint AI/OR approach. ~

F~~s)etter.. .?2.

Enr;elberf;er, J.F. (1976) Performance evaluatjon of industrial robots.

6th Intel'na.1:iOl1111 S ,Dosi\'.m on Industrif.ll Robots, liottinghamr U.}~.

Fikes. R.E. (1971) l'!onitored execution of robot pll:!.ns produced by S'l'RIPS.

Proce~d~~~_~~ofl"r'J?~ C2Q~r~as 197~1~. Ljublijana, Yugoslavia.

Fikes, R.E. (1975) t.utomatic plmurlng fro~ a frames point of view.
_Theo!:~t~~CB.l Issu.os~J_n N~tu;~~lL~~~~~~, Cambridge, I'iass.

Fi1ces, R.E.,' Hart, P.E. and Nilsson, N.J. (1972) Loarning and executing
generalized robot plans. A~tificjftlIn,i,elli£en_g~, 2. 251-288.

Fikes, R.E. and Nilsson, N.J. (1971) STRIPS: a new spproach to the
application of theorem proving to problem solving. }.rtificjal-
-~~~1.1.i.JZ~~, b 189-208.Fil~el,

R.. Taylor, R., Bolles, R.~ Paul, R..and Feldman, J. (1975) An
.overview of AL, a progr~ing system for B.utomati~. lL~~~~e_~ape,~-

r()~f- 4tJ}.kt~rnatio11-~1~i_n~ Confe~~np_eop J...rti_ficial IntelliEc~PE~.

Acl!~_c:.e~

(

.Tbilisi, U.S.S.R., pp. 758-765.

Hart, P.E. (1975) Progress on a computer based consultant.
T\a'Ders of 4th International Joint Conference on Artificial In.l;;ellif!ence--"'== "" ."'-- =c ,, "

Tbilisi, U.S.S.R.

Hayes, P.J. (1975) A representation for robot plans. ~dy~~ce~apers___o!
~~~n~,ernational Joint Conference on Jl.rt_ijicial Intellil:ence_, 'fbilisi,
U.S.S.R.

Industrial Robot Technology (1976) !g_,rA.nc~1)a!)ers of 3rgQonference Q~
~$!.~W~~J1-°l}--~7~_Tegh~Q!0.:;~ and 6th IntG!:!2~tional S~P2s~~ o~
_~lldustrialRo bo~, Uotting:'1aIn,. U.K.

Manna, Z. and 1valdinger, R. (1974) Knowledge and reasoning in program
synthesis. Technical lrote. _9_8, AI Center, Stanford Research Institute.
Also in !~tificial Intel1i~ens~, i, 175-203.Popplestone, 

R.J. (1976) A computer aided assembly system. ~-qRra~i
~Q~ J;},1 (G/IU/187641.Rosen, 

C.A. and ITitzen, D. (1975) Some developments in programmable
automation. Technical Note 100, AI Center, Stanford Research Institute.---

Sacerdoti, E.D. (1975a) The non-linear nature of plans. A~van_cepaper~
of !t_Lrnterna~J_J_oint Conferenc.e on ~tificial In!elliR"enc~,

Tbilisi, U.S.S.R. ..

Sacerdoti, E.D. (1975b) A structure for plans and behaviour.
F_QtelQ_~. AI Center, Stanford Research Institute..

Technical--



-21-

Schank, R.C. and Abelson, R.P. (1975) Scripts, plans BIld knowledge.
.Artv~n9~TlflP~rrJ of 4th JnternationnJ. .Toint Co!:!feTenc~ on t..rtificin!.

Intelli~~ence_, 1'bilisi, U.S.S.R.
Siklossy, L. and Dreussi, J. (1973) An efficient robot plahner .,rhich

generates its o.,m procerl"l1res. ~_d!~nce 'PV'D~rs of 3rg Int{:';!.n~ti onal-
~oj"QtCo~fcrt~nce- on A~tificial JnteJ li&enc~. Stanford, California.

Tate, A. (1974) IliTERPIJi11: a plan generfition cystem which can deal 'rr'ith
interactions between gonls. M!BU Memo )1IP-R--109, Uni versi ty of
Edinburgh.

Tate, A. (1975a) Interacting goals and their use. Advrlnce ~~~~r_s of 4th
!~ternAtional Joint Con!crenQe_on A'I:"_ti_fi_c_iaJ_,~n~~11iR~,nC!)~ 'I'bilisi,
U.S.S.R.

Tate, A. (1975b) The use of goal structure to direct search in a problem
solver. roh!~e~hesis. University of Edinburgh.

Tate, A. (1976) I~O:iLIll: a hierarchic non-linear planner. Ycq~thco~.un$
~\I Memo. University of Edinbureh.

Warrcn, D.H.D. (1976) Gene):ating conditional plans and programs. ;-~--=--~~-
'p'fiPers Qf==Q1e Stl.~er COi1fercncA on P..rtificiaJ. I~"~c;J,.ige~ce llng
.2i_nul~1:~qno-f ~E;ha\~i~\~=will~};;jI~t1r-gh. .

Ad!anc~.,



Using TF to describe parallel processes and NONLIN as a compiler to establish a

partial order on their execution to achieve some goal.

Work in Artificial Intelligence on generating project networks by the useof 
hierarchic non-linear planning has led to a formalism for describing task

domains (Task Formalism -TF) and a hierarchic'non-linear planner (NONLIN) which
can use TF descriptions to plan to achieve a given goal. In discussion with
Owen Evans and others at the ICL Stevenage Research Centre during the Summer of
1976 it became clear that TF could provide the basis of a language for specifying
parallel processes and the communication channels between the~ and that the planner
NONLIN could then ,act as a scheduler and compiler to ensure that the processes
achieved a required goal. This note briefly describes the tie up between TF
forms and their interpretation as a process description language.

The main component of a TF description is a schema which describes the
sub-processes necessary to achieve the purpose of the overall process. The
sub-processes are mentioned explicitly by name (as ACTION nodes of the expansion)
or by pattern (leading to non-determinism -as GOAL nodes of the expansion -or
in the next NONLIN as ACHIEVE conditions). A partial order may be imposed
on these sub-processes.

Inter process communication is facilitated by way of messages broadcast by
a terminating process (at a particular time point changes are made on a world
model via the effects of the schema -the machine state is altered) and by the
conditions on processes. Effects are defined as a pattern (an e~tension of the
notion of a variable) being given a value by the process. Comple~ messages can be
sent by this scheme. Conditions on processes are present for a variety of
reasons but aJ.l conditions must be satisfied before a process can run. They thus
act as triggering monitors on the world model (machine-state) for this process to
start. The condition types available describe to the scheduler (the planner,
NONLIN) how it should go about satisfying the activating conditions for each
schema (or process). Supervised conditions describe conditions to be made true
by a particular sub-process of the process stating it, defining a protected range
for the statement. Unsupervised conditions describe conditions to be made true
by an outside concurrent or earlier process, i.e. a monitor on the messages
broadcast by other processes. Usewhen conditions describe environmental
information about when it is useful or meaningful to invoke the process. These
may check the global machine's state (global \vorld model) .

Sub-processes and a partial order on them are provided by the expansion of
the schema. These describe how the purpose of the high-level process may be
achieved in terms of lower-level processes.

Time slicesforproceSS$can be allocated using.the time estimates which may
be provided in TF schemas on sub-processes. The critical path information
available allows estimates of processor usage and job length etc to be made by
the schedulerwhen it is dealing with several separate jobs.

4

Austin Tate
22nd June 1977



..
,...

it

A net marking algorithm for Question Answering in a partially
ordered network of nodes

Austin Tate 21 June '77

Tate (1976) describes a question answering process for partially

ordered networks of nodes. The process relies on having the nodes in

the network marked with reRpect to the node at which a query is made

(say node N) and usillg these marks to find a set of "critical" E-nodes

for node N. Critical P-nodes are those which, in a possible

linearization of the network, could establish P with some value which

could be maintained up to node N. Given such a marked net, a very simple

process can be used to. determine the answer for any query, or, if the

answer is indeterminate, to suggest links in the net which would make

the query be sati~fied (if this is required).

Presented below is a net marking algorithm which does not require

the marks at a node to be cleared each time the net is to be marked, and

which} for each marking,

a) traverses each link before node N at least once and at most twice

b) traverses each link after node N exactly once

c) does not traverse any link in parallel with node N.

This is an improvement over previous schemes in use.

Mark Variables and the values they take

3 integer variables are kept BEFORE initialized to -2
NODE initialized to -1
AFTER initialized to 0

., '-

Each new node added to the network has 3 mark variables

A mark to say node is before node N .

B mark to say node is before a critical node for P at node N

and possibly a 3rd mark variable

C mark to say node is a P-node.

All mark variables are initialized to 0 when. a node is.' first put

in the network. Before marking a network, the mark variables BEFORE,

NODE,; and AFTER are each incremented ;by. 3 giving unique in,tegers wh'ich

will be recognized. as the position of a node in the net with respect to

node N whatever the present marks are at each node (avoiding mark clearing)

Due to the initial values, on first use the marks will be 1,2 and 3.



PAGE 2

The marking algorithm

1. An optional first phase is to mark the C mark variables of each P-node.

Whether it is necessary depends upon the efficiency of determining if a node

is a P-node.

Get TOME (Table of Multiple Effec~ entries for the statement the query

is to be made for (say P). This is a single lookup in NOAH and NONLIN.

Mark the C mark variable of each node on the list of entries. The mark

could be the integer in variable NODE to save mark clearing again.

2. 

Initialize the critical nodes list to NIL.

3. "Before" marking:

traverse the links before node N (along PRENODES links) depth-first.

At each node:

NO

Is variable A marked with integer in BEFORE?

YES -terminate this branch of depth-first search.

mark variable A with the integer in variable BEFORE.

Is node a P-node? using mark variable C to find out

YES 

-
or some other means.

critical P-node possibl~ found. Add to critical nodes list.

Mark the A and B mark variables of all nodes before this

node. Use depth-first marking, terminating any branch on

which there is a node with mark variable B already equal

to the value in variable BEFORE. Do not look for P-nodes

while marking the A and B marks of these nodes.

When this is done, continue normal depth-first marking

looking for P-nodes at the point where the possible critical

P-node was found.

-Continue depth first search and marking.

4.
NO

"After" marking: .

Simple depth first marking of each node's A mark variable for nodes after

node N (along SUCCNODES links) with mark in variable AFTER.

5.

"Node" marking:

Mark A mark variable of Node N with integer in variable NODE



PAGE 3

6. Scan down the list of possible critical nodes found. Remove any node

whose B mark variable is set to the integer in BEFORE. These nodes

have been found to be before some other critical P-node and thus are

not genuine critical P-nodes themselves. The remaining list contains

the critical P-nodes before node N.

7. Get the TOME (Table of Multiple Effects) entries for P and extract any

node which has an A mark which is not the same as any value in BEFORE,

NODE or AFTER (in fact can say any node whose A mark is less than the

value in variable BEFORE since all 3 variables are always larger than

any old: mark in the network). This phase gives the critical P-:-nodes in

parallel with node N.

After the process,we have a marked network and the 2 sets of critical

P-nodes necessary for question-answering by the scheme presented in

Tate (1976).

Further queries at the sam~ node(~)

If links have not been altered in a network,
adWantage may be taken of the fact that the A mark variables of a net

marked with respect to a node N will not alter if a query for a different

statement P is made at the same node. This will commonly be necessary in

order to establish the truth of several conditions at a node etc. It is

then only necessary to mark the B marks of all nodes before any P-node which

is itself before node N (found by looking at the P-nodes'A marks). Again a

unique number can be used for the mark (by incrementing the value of variable

BEFORE by 3 and using this value). The critical nodes for the new statement P

at node N can then easily be found by checking the B marks of the P-nodes

which were before node N to see if any has had its B mark marked (then it is

not a critical P-node). The parallel critical nodes are found in a similar

way. to' step 7 above.

Reference

Tate, 

A. (1976) Project Planning using a hierarchic non-linear planner.

DAI Research Memo No. 25



c

(HOW TO USE THE NONLIN F'LANNING SYSTEJ1

AUSTIN TATE 19 NOV 1976
f

(i1 .,Introduction

(-

(

c

This note de:-cribes how lo use the NONLIt~ plannin9 :~sleM on the
Edinburgh [JEC 10 F'OF'-2 :~sleM. NONLIN i: a hierarchic norl-linE-ar planr.er
based on the NOAH plarlner developed al SRI b~ Sacerdol i (1975). NOt~LIN wa~
developed as a vehicle for rEsE-arch on the HF'lanning: a joirll AI/'Of':
approachN SF:C pr-oject, ([Janiel and Tale, 1976). It form: the first
alleMPl al an inlero.cl ive prOgraM which can aid a user in lhe construct ion
of project r.etworks sLlitable for lhe appl ical ion of Opt?r.Q.l ional
Re~earch opt imizal ion. str.ale9 ies. HowE.vEr, it is nol spec ial ized lo an~ part icular
lQ.SK doMairl and can be used as a gerleral plar.nin9 ~-~steM. The IJser coMMIJr!icale~- lo
lhe s~sleM lhrolJ9h a declaral i ve Task ForMal isM (TF) ,~nd through other int,eracl i ve
fac i 1 i lies. NOt~LIN and a full BNF descr i pl i on of TF are docUME-nl Ed in
[JAI Resear.ch M'?MO 25 (Tale, 1976). This reporl should be corlslJlled
along with coMMenls in the source 1 i~-t irl9s as docuME-nto-l ion of thE. prO9raM.This 

presenl rlole also serves lo ir.dicale addil ions lo lhe facil il iES
pr.ovided in the curr.erll iMPlemE-nlalion. r~ew facililies nol docuMerlled in
MeMO 25 will be indicaled as such here.

(

The F'OF'-2 source code is available in the file
F'OF':NOt~LIN.F'OF'. A package of crit ical path rolJt ir,es is in
F'OF':NONLIN.CF'H. Thi~. text is us;ed in the help facilities and is in
F'OF.:t~ONLIN.TXT. The~.e 3 files lo9G.lher with saMPle data in TF
(~ee later) are backE.d UP on [IECTAF'E 0O92G with t-he saMe file nO.MG.s. (

N.B.

F'OF':(filename) is a F'OF'-2 1 ibrary file <filenaMe> irl F'F'N 140,141.. ('

2. 

To run NONLIN

R F'OF'2
<Me-~sage- pr-int.~d b'::! F'OF'-2 ~'::!st.eM>

COMF'ILE(LIBRARY([LIB NO~~LIt~]»; (

The planner will print. out Me~SageS a~ it. coMPiles t.he HBASE dat.a base
~Yst. eM (Bar.row, 1975). HBASE pr i Mil i ves are ava i 1 abl e for use
ir,depender.tly if nE"eded by a u~"er. The N(INLIN ~Yst,eM asks if YOU rEqlJire
HELf'inforMation. If YOU lype H followed by a {carriage rGlur.n} it. will
print out. t.his docuMer.t. Otherwise just. "t.ype {carriage ret.urn>.
The SYSleM then a~ks if YOU wi~h t.o coMPile lhe crilical path routines
(lype Y or N followed by a (carriage relurn}). The plar.ner is t.hen
al,'ailable.

I.

.
H~ASE occup i es aboLll 4k words and NONLIN a furl her 9k wor-ds of

IE-lore on the [lEC 10. NONLIN has been used lo generate project networks
UP lo aboul 150 aclivilies (lhis taking aboLIt, 180 seconds CF'U) for siMPle
house building doMains. (

(

(

-~---

-",-,.;,~.



3. 

Modes of use of NONLIN

<.:

The s~sleM can be used in 2 different wa~s, Stand-alone orinleraclivel~. 
.I <:

3.1 Stand-alone use

t
TF code can be t~ped directl~ to the s~sleM or can be coMPiled

froM a file. If all relevant inforMation for a task i~ given beforehand
and then planning requests l~p<:d al tJhe ~~sleM' no <:xlra inforMal ion will
be sought. b~ NONLIN arid it will produce the answers (if pos~ible)
without user interaction. (~

E.g., if a file for- a house building doMain is ir, file HOUSE1.F'OF' and
il gjVG.S all r-elevanl ir,forMalion lo plo.n lo do the
ACTION «BUILD HOUSE>; we could
COMF'ILE «(HOUSE1.F'OF']) ;
F'LAN ACTIOt~ < (~UILD HOlJSE> >; (

The s~s.leM will then expand the ACTION usirl9 the TF forMs. sjlJen and will
cor.recl for Q.n~ intero.ct jorrs found. ThE. pr.ojecl network will lhen be
pr ir.led as a table of the rlodes. in tJhe rlelwo~k with forMal

(

((node rlo.) (nclde !:,ype) (pr.ev iolJS node nos) (S\Jcces:.clr rlode nos) (rlode patlern>

SOMe TF dOMa i rl desc~ i pt i oris wh i ch can be used i rl st and al orle rash i on a~e
given on DECTAF'E 0O92G.

HOUSEl. F'OF' a house building doMairl which carl be used lo
F'LAN AGT I Ot~ < < BU I LD HOUSE> > ;
Il generale~ a rlelwork with 29 nodes.

(HOUSE2. F'OF' As above t~or a project network of 48 nodes.

HOUSEC. 

F'OF' HOIJSEl doMain with dur-alions on activities -mLlst have
the cr it i cal path package ava i lo.ble.

NLBI_OCK. r'OF' Sacerdoli (1975) block slo.cking domain. Carl give goal~ of
< <ON x y}} and <CLEARTOF' x}}.E. 

9 ., F'LAN GOAL < < ON A B}} GOAL < < ON B C}};

NLROBOT .F'OF' A block slackirl9 doMain wilh a lower- level of dElail to gE-ne~o_lE
act, i ons ~-uch as < {MO\"'EHAt~D < < x y z> > > >. U~c:-ful as an
exo.MPle of how t,o us.e COMF'UTE cond it, ions. How(?ve~, I have
not had t, iMe t,o debLI9 t,h is package so il only works fo~
c(?~t,ain patt,e~ns.

,

See Tale (1976) for how lo give !:lour own probleM in TF and the general
forM of F'LAN s.taleMents. You Ma!:l find the above exaMPlii:S of u~e in lh is
also. Since MeMO 25 was wr illen the F'LAN staleMenl:. has been exlendE'd to
allow F'ROTECT <pattern> ...; 1:.0 be written after the GOAL or ACTIONslateMents.

E.9 ., F'LAN GOAL < < ON A B) > F'ROTECT < < ON A B) > < (CLEARTOF' E) > ;

If a use~ wishes lo delete the TF desc~ip~ion lo dE'sc~ibe a newdoMain he should fi~sl l~pe .

NEW[IOHAIN ..



3.2 Inle~aclive Use
{

{
Facililies have been added since MeMO 25 lo allow a lop-down

approach to lhe general ion of lhe TF descriptions. If lhe full detailsof 
a doMain are nol available when SOMe lask is given lo lhe planner,

lhe s~sleM will proMPl a user lo provide extra inforMal ion as il is found
lo be needed. The facil ilies in lhe presenl planner are onl~ a weak forM
of the interactive facilities it is hoped will be provided in a More
coMPlete s~sleM afler the Hplanning: a joirlL AI/OR approachH work iscoMPleted.

(;

c
The facilities provided allows a task lo be planned coMPletely

lop-down, the SysteM proMPlin9 when lower level delail i~ needed, doW!1
lo SaMe level which a user indicales can be considered priMil ive.
More usually, lower le'Jel delail will be provided as a library of
preplanned lasks or priMil\ivEs and only lhe top level ta~.k Musl be
broken down.

E.::

(

(When a scheMa canrlol be found lo expand SOMe pattern, the
SysteM will ask if YOU wish lo

(

1. 

ABORT ll=!pe 0

2. 

CARRY ON l~pe 1
Fail lo exparld the paller-n and hence choose an CI.ller-nCl.l i'Je
in the ~.eCl.r-ch space of the plarlrler-.

(

3. 

GIVE EXTRA TF FORMS type 2
Give ACTSCHEMAs, OF'SCHEMAs, F'F:IMITI\"'E Or'
F'RIMITIVE ..WITH EFFECTS.. declarat ions IJnly.
The.systeM will gO into F'OF'-2 r-eady Mode to enable this
lo be done. When ~ou have given lhe inforMaliorl lhe
SYSleM can use, lype GOON.

(:

To aid in such interactive use, the s~steM gives diagnostic inforMal ion
if il fails on an~ ~ub-~~ask and considers alternatives. One error
not described in MeMO 25 is

UNSUF'ERVISED CONDITION NOT SATISFIED AT NODE n (po.llern>

This error. could indicale an ~rror in describin9 a condilion (check
~pellin9) or indicale lhal the task which should ha'Je eslabli~hed this
condiliorl failed lo adve"rlise lhal fact. It Ma~ also be that tJhe
s~s"leM has linearized the nelwork in such a wa~ tha~ the corldiliorl
could rial be salisfied. For thal re'~sorl Q,fler 9i'Jirl9 ~he error report
the planner thus 90es on lo consider alternatives.

,(

(

After a lop-down approach lo generat irt9 a net,wclrk, il May be useful
lo read bo.ck the TF descript,ion so that. it. May be reused. This co.n be done
for each (scheMa) in t.he list ALLFNS by:

OF'EXF'ANSION«scheMa» -) ALLNOItES; LEf~GTH(ALLt~OItES) -}. NIJHNOItES;
F'RINTNET(); t.o print the e"xpans.ion.
GENF'R <OF'F'ATTERN « scheMa() ); lo get its F'ATTERN
AF'F'LIST<OF'CONDITIOt~S«sc.heMa»~GENF'R); ~o print t,he conditions.

The list of r'RIHITIVES car. be printed froM the list. F'F:IHLIST.

c

4. 

Gelling furlher solulions

(



(

If a t:.ask is successfull~ solved, it. ma~ be possible lo get:. olher' solutions
from the choice points generated b~ the search c
REF~AN reenters the planne~ to get further solul ions.
unl il no further s91ut ions a~e 9 i veri.

It. can be dorle
<:

co.oJ. Dia9noslics o.nd olher irllerac~iv~ facililies.

cDelecled errors Cll TF definil ion l iM~ o.nd al F'LAN I:. iMe Clre
described in Tat.e (1976). Also irll:.hat pClper is a lisl of furlctiorls
which can be I~sed to exaMirle CI projecl:. network Clfter an error or ,juring
user i nt erClcl i or.. (

e.g., F'RINTNET(); pro in~s ~he project ne~work.
(

Various switches can be set to give GxtrCl. dio.9ncl~tics (I.rld tr"(I.ce
irlforMalion, e.g., BUGEXF'Ar~D. 5G"e Tat.e (1976) for these switche: and
their effects. (

Sirlce memo 25 appeared a f'unclion lo prinl lhe crilical PQ.lh
dala at an~ stage of' n.?Lwork corlstr'uctiorl has t.een pro'Jided. (

F'F:CF'DATA(ALLNODES) 9ivEo~o inforoMat-ion for eo.ch rlode in t-he net-worK irl the forM

(
<rtode no.> <rllJde pQlterrl> (durQlion> <G"orly finish> <lole fir,iEh)

Note that <slack> = <laLe finish> -<earl~ firlish> = 0 for critical rlodes.

(.References

c

Barrow, 

H.G. (1975) HBASE: F'OF'-2 1 ibrary docl.JMenlal ion ItA!.

DClI.iel, L ar.d Tale, A (1976) F'lanning: a joint AI/OR approach
AISB newsl<:-ller ('

Sacerdot i, E.D. (1975) The ndnl irle.ar nature of plo.ns IJCAI-75

TC1.Le, A. (1976) F'rojecl plC1.nliir.g using 0. hierC1.rchic non-linear planner
ItAl res.earch MeMO no. 25.

~

l

c

(



(;'--

: C!J~'::LE{::t~ONLIN.F'OF'J);
CI-!~ASEJ ;;:EA[ry.
(~~~SE: ACTOf::] "'EADY.
rl..j~',~c;,- r' OI,JT"""" ~'E f:, ('y_t;'..,~t:.-I.I'I-I. .

(

E
ACTQF:' ;;'ESTr;;ICTIOr~ Or~ '¥'Ar:IAPt_E'3~ $*. -r"s'" ~;.'r tJ.!"- t:""I~"" """"'C:-C "11".' b.J:'1 ~.L1_1 ;-11"'].'."1:. ""-~I...':"'.'-- ,..",'-] '--.

(NQNL:!:I..J F'I_Ar~t.!E;:;: r.:EA!:/Y i\J,:NEME:E:':: 1 c:;'76
~+* :.':.'+ ** ***.~* 4,* * * ***:';4 cO: + ++:0: .:o;~* ca; * 4, +*~. ****+~

(7;;13 :1:'; A NOrJ-LI~-!EAF: ~'LAr~~-ilt.J!3 S'f~,TE~ !.lHICI~ ACCEr'j'; ~iC:Mt-:~J rIESCF'IF'r:QtJ'=:j'
F'TTT'='I;J : N T"c~;o r::1-j;:'~" L T(:,;'" ,'-"r:', -,i-iE ;:;""'='-1-1: "" 7~ ~,I~

l-'!M E :l;;::i: 7~J "1 ~ T ioir::H(1
!/-,t_,,_H-'I,,_,,':H_,.lllo '-'--",,-1.-'-', ,_",0_',_,-;'-.jII;";1::

Er:;' ':-'~ r Fr nlU rI7:=:H '!="1;r:"'-i-IE:-;o '-i E, c, T~Jr::I-!r::,...~ji;;~: 7' 1 ~'" "'1..;" :-J:iW O
-'1._,'__0. -, H_,_o_f',t, _I 4,,_,!I.-,,__I~rr:. ,_oJ

.~

" .7' ::::.F: N):

1" F'

(

r "' I ~T rAL r', ..T " r .~ " j-'- -'E r- II --r-~ i_I' 1-,-- !-H.~:-,L;;.,H.:!I:."'. '-,,-!..!"':J.:.!..
C- " -~T' ,-- ",.f '-T!-I -~ :,-'to:..r"1...!_v~= .,:All.,.!:.!""'"'!:.Li

.--..

.-, ~-" '---~r-..:. 'N!. II;"! 1:."'0;- -_! .
: J:'i i::.iJ Ar" T..l '-lt.J "": )-,"" "- -""oj ¥-

+- :l:

(~

I-E'.}EL f)

~t~ ExF't.r.JSIOr-i 1'3 rJf].T i:3IVEN r=OF' A AT ~~OLiE :
J:II:I .,!.f~lr_1 WISH TI:-; ;iBOF~T':O:', 1::f:.r;~F:Y. Or~l:l) OR ADD E;":-;-f::r:., SCHEMA:::(:::: :J

~'EADY
:: ':;1-.

c

"'-"~" E "A "" QI '"""- 111'-" 1"::.1 "" ~~'( ~T;"~I""_,::,

I="' T T~-='N ~
,., -'" n

;::"::::'AtJSIQi'~ 1 AI:"TI!:-Jr-l ".:
-, '"-"~- l ;- 'r 'l "

"" Hi_"! -'( .

-"'-- r -N -
:: ~IL! -:J L

4 4C7IOt~ ~
:J;;:!::JE~:"!:tJ'3'; 1 ---:: :2

: : CQt~['ITIO~S Si_IF'~~":VISED ':' ';T : F"j=;fi;"'1 1

..II'Jc::I F'r:~'\ JT'=:~rl ,1 ""T ?..J "- --, , H -
~; Et~:1 ;
..,-,-.,-" t J
..1~'.JL"'Jt;

<:

C

(I E\' E' i)
-"L- ~

~r'~ E:%:F.~t-!SIC:N IS !'!OT GIVEr~ FOF: B AT NI::-;DE ..,

[11::-' YOI_I lJISH TO AE:Or;:T(O:I! C~F:F:Y jJN~lj Of;: ADD E::.:Tf:.A SCHEri;'S(2:. ~ : J

r::~E;:'D~'
." F'~'T"T T ~:I'- t:I I""~I t:.-= F-'-- T '-."..h,~'"!..l¥~ Q ~~I~ .t~ -r~

:: G;J::lt~

T~'T G

=== 1 r-,JTr:.-;:;' H4 r' TTO!N 7' ! Tt-./F"~r:' I 7.'T"j u-l t'jC-_I, :-1P -~ I ~ .,..}

+++CI-IIJII:E AII~IEII AL TL:;:NE~\\
Tn ;::"TTr; F'"( i!"I'=;lit:'~;:;'\ ) ~C:~T! '-:'-I-JTITTTr:,,'c;.-_H._~ _'~~_I 1 -,,",' I'~ .

t-\ LI~.Jt:; TO MAt;:E Q HAI)E VAI_:_IE 1 AT NODE S

=== i' TNT Eh'A
l~-1 ;I-!~I 1 i T~'~~~' I 7"~ 1 T u-' r~~~.I 1'( -~...:'(-_.f' _H.L .:)

NI-i tJ l T:-J .":) Tf:-';..<T'\J ATf:'1.'..; I"'".r CF'lj TIME = 1 1"0 '- E'-'"
J. 1 :, '~;:;

(\-'I ~,--'-"

DUn;
!::IJMi-.r T~_..
"'I"":T;0,-

ACT'

ACT:

r.~ -';;:- y
--:r- "l ? l' 5 ~ 2-

~7 ~-r/
~ ){,

t~IL [3J
[5J NIL
[ 1J 'C 7 6J
(7J [5J
[ 6 4J (2J
[: 3J [5J
(3J [4]

c;

..
5
6

x
V
I

Z
B

c

, ,

"'~

E "i'l'-. ~..
MY
MY
ION
ION
IONrON



:J'~
,

(CONTEj:r 17

«

F'
Q
F'

7 »
.S ) >

4 »

0
1
1

(

: t:'RGOSll

~,COt~TE}:T 18

SI_IF'I:=:F:V I S
IJNSUF'ERV

;:'
Q

c;

co
,J

[
[

.:;J

6J
/'"

(

(

: ;:;'r::-i='! ...~I

-_;-tl~

---CHOICE TAt;:Er~ GL TLINEHP-
Tj:;'Y TCI :;ATI~F'j' !_lt~'::IJF'EF:\;I~;EII (ONDI;IQr.~S.

(-) t..It~t;: TO fo\(.;.t;:t: Q HAljE \}~I_LiE 1 AT ~CiDE :::
=== (\ TtJ- j E ;:;'t:.L-.TTi-!~.J " Ti"E ':":',7' T il-I"J'=.-'-.. .,. 1. .I.'--.'<..,.__rl__I_'

(

;JOf.JL:::r~ 

2 T~~'M!f.jp.TEII. C:F'Ij TIME = () ~/."~ '~~r'"

J ..:...:'::' ,:,1:.-;::.

(1 j:'! .';.jH E..[ t
_MI.. -r'

I:1(jHi'lY"

DfJHi'I)".
~'I-"'" .rlNH_. f 1.-

ACT I i:IN
AC:T I IJt4
ACTIOt~

><
4 y ~

~ '5"-/ ~ 5---~7

~6/
~

~'!L []]
[7J ~~IL
~ ..., r ' 1;

]I..i-, -Q "'I~ - ] [ -., L .:, :'_!

[ 6 4J [7]
[3J [5J[5::1 

[2J

'--? 2. (.;:.

':;
.~.
?

x
y
.,.
l-

f{ ('-

Ii

: 

J:;:!::F'LANI

(
~~O I.JA Y T 0 F'~:I:II:.EED
~Gt PI:!P. (

(

(

(

(

-i.

.L

~~,:...~"'-:--;'-


