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A retrospective on the "Planning: A Joint AI/OR Approach" Project

Lesley Daniel and Austin Tate

This memo collects together material produced to report the outcome of
the Science Research Council (now SERC) grant on "Planning: A Joint
AI/OR Approach". It is being produced to respond to requests for further
information on the final state of the project (which ended in 1978) and the
task domain being tackled. The task domain involved the planning of overall
procedure for electricity generation turbines. The application part of the
work was carried out in conjunction with the Central Electricity Generating
Board OR group. This part would be called a "Generative" Expert System if
it was written today. For further detail, the final report should be read
in conjunction with DAI memo 25 "Project planning using a hierarchic non-linear
plannexr" by Austin Tate and DAI memo 24 "Planning: modifying non-linear plans"
by Lesley Daniel.

Also as an outcome of the research, a proposal was made to SRC in 1976
to extend the hierarchic non-linear planning work and improve the use of
meta-planning aids such as "Goal Structure" to construct an "Integrated
approach to planning, plan execution and plan monitoring". The proposal
was subsequently funded by SRC but the lead researcher had left DAI by that
time. The proposal is left intact although pages 19 to 21 of the AI/CR
project final report repeat some material. The Task Formalism examples in
the proposal reflect an early version. DATI memo 25 reflects the adopted
form.

An interesting (now widely recognised) link between AI non-linear
planning techniques and the generation of scheduling information for cooperating
parallel processers with a message passing system is explored in a short note
included in this retrospective.

Further thought on the gquestion answering system used in network (as
opposed to tree structured) change levels to a word model are described in
the next paper.

_ The final paper gives the user notes for the NONLIN planner and its
critical path method package as it was used for the later stages of the project.
These notes are included since they describe user interaction procedures to
enable the task formalism descriptions for the domain to be built incrementally
by the experts involved.
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PLANNING: A JOINT AI/OR APPROACH

Final Report

1. Introduction

The aim 'of the project “Planning: a Joint AI/OR Approach" has been
to investigate ways of aiding a human user in the process of constructing
project networks. To this end, we have developed systems based on Al
work on plan-generation.

The planning system NOAH developed by Sacerdoti (1975a, 1975b) for
the computer based consultant project at Stanford incorporated novel ideas
for the representation of a plan as a partially ordered network of actions
{a procedural net). This is in contrast to previous work which concentrated
on the generation of linear sequences of action, e.g. STRIPS (Fikes and
Nilsson,'197l), LAWALY (Siklossy and Deussi, 1973), INTERPLAN (Tate, 1974)
etc. Knowledge about a domain is given to NOAH in a language SOUP to ex-
plain the decomposition of high level tasks into more detailed lower level
actions.

Work at Edinburgh has investigated the use of partially-ordered networks
of actions to represent a plan at any stage of development. Such networks
are in a suitable form for the use of critical path analysis techniques
having only those ordering constraints imposed by the fact that either

an action achieves a condition for a subsequent action, or

an action interferes with an important effect of another action and

must be removed outside its range.
We have adopted Sacerdoti's philosophy of hierarchical planning where plan-
ning proceeds in stages qt progressively greater levels of detail and, at
each stage, the current plan is représénted as a graph where the nodes
represent actions (or goals to be achieved) and the edges ordering relations
{links) betwéen them. The graph is refined by expanding each node into a
more detailed sub-network of nodes and adjusting the orderings accordingly.

In the first phase of the project, we were concerned with the develop-
ment of a general hierarchical planningvéyéééﬁ; our intention has been not
only to write programs which perform well in a particular problem domain but
to structure the programs so that the various aspects of the planning process
can easily be identified. Accordingly the problem was attacked under several

headings:

(1) Task Formalism a formalism for defining a hierarchy of actions and

goals-



Planner a program which uses the task formalism to generate plans
in the hierarchic manner described above.

(i1i) Optimization Procedure since we are interested in practical problems

considerations of efficiency are important and the planner must produce cost
effective plans. Accordingly, we have developed criteria for choosing
efficient alternatives,

(iv) Modifying Plans a decision-graph has been implemented to record the

relationship between decisions made in generating a plan and allow appropri-
ate modification of the plan to recover from failure.

In the second phase of the project the general planning system was
adapted to cope with ‘a practical application to the problem of repeatedly

generating plans for the annual overhaul of power-stations.

2. Task Formalism

At the outset of the work the problem of specifying a domain to a
problem solver in a hierarchic fashion was recognized as being of primary
importance and a uniform and straightforward method of description was
sought.

The formalism allows high level definitions of a task to be given;
each part of which can be expanded into lower level descriptions and so on
down to some arbitrary level which the user of the brogram requires as out-
pﬁt. Each lower level component can be specified in a modular way - not
requiring knowledge of the exact form of the other components.

The specification of an action must specify how it may be expanded
into more detailed sub-actions (there may be alternative expansions for an
action e.g. different methods for installing electrical wiring) and how
the constituent actions relate to each other. Rather than explicitly ex-
pressing orderiné constraints in terms of precedence relations between
actions, the task formalism allows specification  of the conditions which
must hold before an aétion can start (e.g. the walls of a house must be
finished before the roof can be built) and the changes an action makes to
the world (i.e. making some conditions true and some false) leaving the
Planning system to deduce feasible ordering relations. Thus, the task
fofmalism allows individual actions to be specified independantly of other
actions in the plan.

The task formalism allows the specification of a hierarchy of actions
in terms of schemas (called opschemas) for an expansion which specify:

(i) pattern the pattern of an opschéma determines for whicﬁ actions

the expansion is suitable,
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(i) expansion the constituent actions (or goals) are specified as a partial orde
(ii1) conditions the conditions which are required by the constituent actions.

(iv) effects - the changes which are made to the world model.

3. Planner

The planning system uses a hierarchic specification of the problem domain
(expressed in the Task Formalism) to plan at progressively more refined levels of
detail. At each level the plan is represented as a graph where the nodes represent
actions (or goals) and the edges ordering relations between them. Each node has
associated with it:

(i) the node type action, goal, phantom (a goal which has been achieved in

another part of the plan).
(ii) pattern i~ . ’ : ms T mTs oI T oo S ot
against the patterns of opschemas. R

(1iii) node context contains the effects of the node.

(iv) the node was inserted as a result of the expansion of its
parentnode.
(v) prenodes a list of nodes linked immediately before this one.

succnodes a list of nodes linked immediately after this one.

Two other data. structures are built by the planner:

TOME - the table of multiple effects stores information about facts made true or
false at different nodes.

GOST - the goal structure records the conditions on nodes along‘with the con-
tributors to a condition (those nodes which make the pattern true). The
goal structure thus specifies a set of time "ranges" for which the truth of
certain conditions must be maintained. The use of goal structure in
problem solving was first described by Tate (1974, 1975).

The planning cycle consists of expanding nodes in the network - i.e. replacing

a high level action by a subnetwork of more detailed actions - and then looking

for interactions with other parts of the plan. ]

Goal nodes are expanded by first looking to see whether the goal is already
achieved by soﬁe other action in the plan and, if necessary, adding links to
make the goal true at the point required (e.g. in overhauling machinery it

is necessary to remove the cover to gain'access to a component and it is

worthwhile looking to see whether'an action to remove the cover has already

been included because of a repair to another component, the node is then

made a phantom node and a record of this fact kept by adding a phantom

condition to the GOST. If the goal node cannot be made a phantom it is

expanded, in the same way as an action node, by finding an expansion



opschema whose pattern matches the pattern of the node.

The éxpansion of a node causes the introduction of new conditions (on
the new nodes) and new effects and the planner seeks to ensure that the
conditions are satisfied and the effects do not interfere with conditions
on other nodes in the network. It may be necessary to add new links to
the network to remove an endangered condition out of the range of a node
which denies the condition (e.g. in a housebuildiné task, it is necessary .
to have access to brickwork beforé electrical wiring can be installed,
plastering the brickwork denies this access and cannot be done until after
the wiring has been installeg).

In general, an interaction involves three nodes (A, B and C below).

If action A achieves a condition required by action B and made untrue
by action C, an interaction occurs unless C is already a predecessor of A
or a successor of B. The interaction can be resolved byladding a link to
ensure that C is outside the range of the condition in question and three
cases must be considered:
(i) the interaction is totally unconstrained because C is parallel to
both A and B - in this case, the interaction can be resolved either
by linking C as a predecessor of A or as a successor of B.
the interaction is constr;kned'because C is already linked as a
successor of A - the inter§ction must be resolved by linking C as
a successor of B,
(iii! the interaction is constrained because C is already linked as a pre-
decessor of B -~ the interactioq must be resolved by lihking C as a

predecessor of A.

4. Efficiency Criteria

Since we are interested in practical problems considerations of effic-
iency axe important and the planner must prodﬁce cost~effective plans. A
preliminary step was to determine criteria for judging the efficiency of
alternative plans. éuch Plans have a sét of constituent actions each with

cost of execution and duration. A suitable measure of the efficiency of



a plan must trade-off the total cost of the constituent actions against

the overall duration of the project. In many cases it is easy either to

assign an overhead cost to the duration of the project or a penalty cost

to any delay beyond a fixed duratibn. For example, if the project in

question is the overhaul of a power station, the cost of having the station

out of action can be measured as the additionalvcost of generating power by

a less efficient alternative. For example, the overhead cost per day

may be greater for a modern nuclear power station than for an old coal-

fired station. It is very common for building contréctors to insert

penalty clauses in their contracts whereby they undertake to make penalty

payments for-delays beyond an agreed completion date. '
One possible formulation of the problem of generating an efficient plan

is fhat of choosing a set of activities P which will pexrform the specified

task and minimise the objective function

c=1I°%% +«xr
ieP
where ®i is the cost of the ith job
k is the overhead cost per day
T is the duration of the project in days

There have been several studies (Crowston & Thompson) which have assumed

the choices of alternative-actions can be incorporated into a single
graph which allows alternatives to have different predecessors and, in
previous work (Daniel, 1974) we have considered ways of searching such a
graph for a good solution.

We now considexr ‘'such an approach to be inadequate for the following
reasons:

(1) The coéplexity of carrying along alternatives is too great because of
the combinatorial explosion of interactions between different actions.

(ii) The representations (e.g. and/or graphs) proposed for networks with
alternatives aré inadequate for the complexity of the problem.

An alternative approach to the problem of ¢hoosing efficient plans sug-
gests that plans can be generated at'different levels of detail and that, at
each level in the hierarchy choices be maée between different actions and
different ways of resolving interactions. Thus no alternatives are kept in
the network as it is expanded to the next most detailed level, but efficiency

criteria are considered when choices are being made.
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5. Modifying Plans

At various stages in the planning process choices are made between
alternatives. However well orgénized the planner,there is always the
possibility that a wrong choice will be made resulting in either an.in-
feasible or a very inefficient solution. Recovery from such a failure
involves identification of the decision responsible for thebfailure and
appropriate modification of the current plan. In oxrder to facilitate .
such modificatiocon proéedures, a separate structure called a "decision graph"
has been implemented to record the relationships between decisions made in
generating a.plan. '

Hierarchical planning corresponds to choosing between alternative plans
at each level in the hierarchy. Because, at each lével, the planner-is
working on a complete plan, global information is available to direct the
choice and, moreover, because high level plans have relatively few actions,
it is possible to make a comprehensive investigation of the search space
for that particular level. A planner which explored the whole search
space at egch level of detail and did not back-track between levels would

have a complete search space as shown in fig. 5.1.

fig. 5.1
The expectations of such a system are:
. It is possible to explore all alternatives at each level of detail
in order to yield the 'best' plan according to some criteria.
. The 'best'’ plqn at a particular level will always generate a good
plan when examined in more detail - i.e. it is not necessary to
: baék-up to higher level choice points. ., »
In fact the search space at a particular level is often laige ang,
since, high level plans must be inaccurate, the decisions made at these
levels sometimes prove to be wrong and must be reversed. Consequently,
in desiéning a search strategy it is necessary to'consider how to structure
tbe search within a particular level in order to get a good solution with-
out necessarily searching the whole space and how to recognize when it is

necessary to back-up to a decision made at a higher level of detail



The decision-graph based on Hayes' (1975) work on a journey planner
allows the'system to back-up and undo decisions made at higher levels with-
out throwing away all the work done since the decision was made. Only the
affected parts of the network are modified when a decision is undone.

The basic assumption behind the structure of the decision graph is
that the decisions made 1n generating a plan are of two types:

(1) Choice of expansion for a node.

(11) Choice of links to remove an interaction. '

Such choices are interrelated inasmuch as an interaction and consequent
link may depend upon a particular choice of expansion. The purpose of.the
decision graph is to record such relationships. Every node in the plan
(net node) points to a node in the decision graph (d-node) corresponding to
the expansion which introduced it. Every time an expansion (or phantom)
is made,anode is set up in the d-graph with pointexs to:

(i) the net node being expanded.

(ii) the parent d-node - i.e. that which introduced the net node being
expanded.

(iii) the new net-nodes introduced by the expansion.

(iv) any subseguent expansions of these nodes.

(v) any interaction d-nodes consequent on this expansion.

(vi) any phantom d-nodes corresponding to phantom links using a pattern
achieved by the expansion. ‘

(vii) in the case of a phantom - any d-node corresponding to a phantom
link required to establish the phantom goal.

Every time a link is introduced to enable the creation of a phantom
net-node,a d-node is introduced with pointers to:

(i) the net-node and corresponding d-node made into a phantom.
(ii) the net-node and corresponding d-node achieving the pattern.

Every time a link is introduced to remove an interaction,a d-node is

introduced with pointers to:

(1) the link being.introduced.

(ii) the netnode and coxrresponding djnode which needs the condition
involved in the interaction.

(iii) the netnode and corresponding d-node which achieves the condition in
question.
the netnode and corresponding d-node which deletes the condition in
question.

The only way in which a plan can be modified is to undo one of the two

kinds of decision involved in the pldn -~ i.e. to remove an expansion or a



link (either phantom link or an interaction link). ‘

Removing a phantom link is very straightforward only requiring that
the netnode in question be reinstated as a goal node and that the GOST and
decision-graph be modified accoxdingly. Removing an interaction link in-
volves either choosing an alternative to remove the interaction or undoing
an expansion which introduced one of the actions involved in the iﬁteraction.

The steps involved in undoing an expansion are: ' -
step 1 Trace down the decision~graph and the netnodes (and their expansions

if any) and links dependant on the expansion.
step 2 Remove these nodes and links and replace by the single parent netnode.
step 3 All remaining links which connected to any removed netnodes are now
. attached to the parent netnode. -
step 4 The TOME and GOST are modified for every deleted netnode as.follows:
(1) xremove all conditions and effects which are needed/achieved by
 the deleted node and not the replaced node.
(2) remove them as contributors to any condition which is not
_ achieved by the replaced node.
step 5 For all conditions which now have no contributors,undo the expansion
which was dependant on it (i.e. phantom nodes replaced by goal nodes).
step 6 Look for interactions arising from the removal of links from the
graph. "

More detailed descriptions of the task formalism and planning system iNONLIN)

can be found in Tate (1976) while the optimization schema and decision graph

are described in Daniel (1977) and Daniel (1978).

6. A Practical Application

6.1 Introduction.

In the second phase of the project we sought to apply the ideas developed
in the first phase to.a practical problem in a particular domain. For a
practical applicatioﬂ involving the generation of networks of the size usually
used for critical path analysis techniques (several hundred activities) it was
important to avoid large search spaces. We looked for an application Qhere
a large class of networks wefé required; each member of the class having
great similarities with all the others but important differences which re-
quired a new network to be generated for each indiwvidual project.

The advantages of such a problem domain are
(i There is enough historical data of plans previously generated to allow

an action hierarchy to be set up.



The choice of plans to be generated is sufficiently restricted to
keep the seach space under control.

(111) The difference between individual plans is sufficient to make it
worthwhile to have a system which aids in their generation.

The chosen application was the annual overhauling of power-stations
where each annual overhaul is different from previous years but still has
the same overall structure. Another possible application might be the
construction of a set of houses of : a particular type but wnere, in
each individual case, there are choices to be made between restricted
alternatives.about such things as type of heating, type of flooring, type
6f bathroom fixtures, etc.

6.2 The problem domain "

Within the large task of power-station overhaul we selected the sub-
project of overhauling a turbine as being the size of pfoblem the planning
system should cope with, The networks involved usually have more than
five hundred activities but the problem is highly stxructured in the follow-
ing ways.

(i) A turbine consists of 4 secﬁions: high pressure, intermediate pressure
and two low pressure sections.

(ii) Overhauls on each of the four sections can proceed independently of
each other except for one alignment check along the whole length of
the roter.

(iii) The overhaul of a section comprises the removal of layers of covers
and the roter, giving access to various components in the process,
and replacement of parts as access is no longer required.

(iv) An individual overhaul varies from previous ones inasmuch as different
components may or may not be overhauled and there are different types
of overhaul for each component. The choice of which type of overhaul
is to be done on each compénent (or whether it is to be overhauled at
all) is totally at the discretion of the user and the planner has

merely to work out the consequences of each decision - e.g. ensuring

that access is gained,

It seemed natural to define the action hierarchy in terms of three
levels giving networks of about 70 nodes, 300 nodes and 750 nodes. when
using the task formalism to specify opschemas only those conditions and
effects were mentioned which were involved in interactions. These were
relatively few at each level of detail since in most cases the ordering
within expansions, which was passed down to lower level networks, took

care of most potential interactions. In this particular application there
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are no choices to be made between alternative expansions (such choices are
decisions.to.be made by the user of the system) and in all cases, inter-
actions can only be removed in one way. Consequently, the process of
generating the network is completely deterministic and there is no need
to consider search strategies or decision—graphs.

6.3 Satisfying conditions and removing interactions

The task formalism allows several types of condition to be specified .
but the two which were useful in this application were

. supervised conditions - these conditions which are achieved within

the expansion containing the node for which they are needed - i.e.
their contributor is specified by the opschema.

. unsupervised conditions - these conditions which are expected to be

achieved by an action in another part of the plan - i.e. their
contributors are not specified and must be determined by the planner.
Ensuring that unsupervised conditions are satisfied often involves add-
ing links to the network thus constraining later attempts to remove inter-
actions or satisfy conditions. Consequently, it is important that such
conditions be satisfied as soon as possible. In the latest planning system
unsupervised conditions are satisfied at every level before proceeding to
the next most detailed level.
For the same reason, constrained interactions are removed immediately
while those which can be resolved in two ways* are only removed when all
nodes at one level have been expanded.

6.4 Achieving Goals

The planning system now distinguished between goal nodes, action nodes
and query nodes. Query nodes represent those goals (e.g. <<high pressure
section overhauled>>) whose inclusion is at the discretion of the user.
Every time a query node is expanded the system interrogates the user as to whether
this particular goal should be achieved. If the answer is po, the system
behaves as though the goal had already been achieved by making the goal have
value true in the initial state. The node-~type is then changed to a goal
node and the planning system tries to achieve the goal. If the goal is
true in the initial state (i.e. the user does not want this task to be done)

node will be made into a phantom node - otherwise an expansion will be {

' to include actions to achieve the goal.

* In this particular application those interactions which at first appear to
be unconstrained become constrained as links are added to remove other inter-

actions. In such cases, they axe removed as soon as they become constrained.
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In general, an expansion will include several goal nodes which are
used to avoid redundancy in cases where several actions share preconditions
For examble, two different compénents A and B may be located under.the same
cover,

If A is to be overhauled then it will not be necessary to remove the
cover again for B. However, if A is not included then an action must be .
introduced to remove the cover for B. Thus, the opschemas for B will have
the following expansion:

2 1l goal . <<Remove top cover>>

2 action - <<Overhaul éomponent B>>

3 goal <<Replace top cover>> } : RN

orderings 1 -~ - > 2 . 2 - -~ 3 3

The actions to remove and replace the cover should naturally be included
in the same network as the action to overhaul B. In the planning system
the two goal patterns are marked as having the same level as that of the
pattern currently being expanded. In this way they will both be expanded
(i.e. the goal replaced by actions) before the action to overhaul B is
expanded.

6.5 The planning cycle

The planner operates at distinct levels (in this case three) and tries
to tie up as many loose ends as possible- before going on to the next level
of detail. Each pattern is marked with a level and only those whose level
is equal to the current one will be expanded. For a particular level the
cycle is as follows:
step 1 Increment net level to current level.
step 2 Expand a node whose level is equal to current level. If there is
none go to step 8.

step 3 If there are any query nodes in the expansion interrogate user and
act accordingly. ;

step 4 Introduce new nodes into network.

step 5 Try to satisfy unsupervised conditions-- if any cannot be satisfied
keep 'a note. '

step 6 Look for interactions involving nodes in the current expansion.
All constrained interactions are reﬁoved immediately ~ unconstrained
interactions are stored to be removed when they become constrained

or at the end of the cycle.
step 7 go to step 2,
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step 8 Remove any outstanding unconstrained interactions*.

step 9 Go to step 1.

6.6 Conclusion

We have set up the action hierarchy for the overhaul of a turbine for
a power-station run by the South of Scotland Electricity Board (part of
this hierarchy is described in Appendix I) and the planning system operates
effectively to produce networks of the type in current use. h

As stated above, there is nd requirement, in this particular application
for the planning system to make any choices since: '

. choices betwgen alternative expansions are made by the user - i.e. in

specifying the exact type of overhaul that he wishes to have performed.

. all interactions become constrained at each level of detail - gither

by the time they are identified or by the introduction of links to
satisfy unsupervised conditions before they are resolved. (In the
current implementation,unconstrained interactions are not resolved
until the very end of each level of expansion.)

However, it is reasonabie to expeé% thaé in very similar applications,
(e.g. different types of overhaul or construction tasks) the problem of
choices will arise. Limited choices between alternative expansions might
arise because there is more than one way to perform a task (one being fast
and expensive, ‘the other being slow and cheap) the "best" choice being
dependent on the criticality of the task in question - i.e. its relationship
to other parts of the project.

Again it is easy to envisage occasions where choiées between aiternative
ways of resolving interactions need to be made by the planning system.

The considerations to be tagen into account when making such choices
can best be illustrated by an example for a house-building task. When the
network shown in Figure 6.1 is examined for interactions the following con-

ditions and effects are discovered.

* In general this step may involve alternatives but in this particular

application no interactions remain unconstrained at the end of the cycle.
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Figure 6.1

Supervised condition <brickwork laid> needed at 3
<walls plastered> " at 4
Unsupervised <brickwork bare> " at 3
Effects
add <brickwork laid» by 1
<brickwork bare> by 1
<walls plastered> by 7
T ' by 7
A sensible planner would satisfy the supervised conditions (which involve
no choices) before resolving the interaction between nodes 3 ana 7. VWinen the

supervised conditions are satisfied the network is as in Figure 6.2.
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Figure 4
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There is now an interaction because the unsupervised condition
. . . 4 .
<brickwork bare>’ needed by node 3 is deleted by ncde 7. The interaction

can be resolved in two ways:

either, add a link which means 7 can't start until node 3 has finished

and 7's predecessors will be delayed

of, link 7 before 3 and expect that the ccndition must now be established

by the addition of a new action into the netwcrk.

Thus, we see that the problem of choosing how to resolve the interaction in-
volves trading off possible delays in the project against the cost of intro—
ducing additional actions. However, if no radiators were being fitted, the

alternative resolution would be more satisfactory..

The planner in use (NONLIN) has the ability to cope with this and the

present turbine overall system needs only minor modification to cope with such

choices and in another report (Daniel 1978) we describe a search-strategy for

such applications.
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7. Suggestions for further work

7.1 Alternative applications

We have described in secfion 6.6 how the problem of choices might arise
in an application and it would be worthwhile to modify the present system to
handle a problem domain such as house construction where such situations
might be expected.

7.2 Specifying Action Hierarchies ®

In order that the planning program can generate plans at different
levels of detail the data base must contain hierarchical descriptions of
the actions involved in the task. Such descriptions must specify
1. the conditions which must hold before an action can be performed
2, the effects that an action has on the world, and A
3. the way in which actions:can be decomposed into more detailed

sub-actions.

The current program accepts domain descriptions in a formalism which
allows hierarchical descriptions of tasks which incorporate the items above.
However, the program wusually expects such task descriptions to be pre-defined
and has only crude facilities to guide the user through the process of de-
fining such a data base.

There are two aspects on which such a user would require guidance.

1. Which effects and conditions need be mentioned for actions described
at each level of detail.
2, How to aggregate and describe actions to form a useful hierarchical
representation of a domain.
For the small problem domains which traditional planning programs have
handled (e.g. block-stacking, pushing objects around a maze of rooms) the
specification of actions has been very straightforward. The world is so
small with so few objects and locations that the action schemata can describe
all the changes made to the world without being too large. Moreover, the
action schemata havq'usually been completed by the programmer - i.e. by an

expert in computer science who understood the requirements of the planning

’
.

Program.
Action schemata for a realistic domain with a large number of actions,
objects and possible changes must be provided by a number of users rather
than a programmer. In general such people will have expertise in the
particular task in hand ‘(e.g. overhauling plarnt, building roads) but no
knowledge of the wérk of the planning program. .Each user supplying in-
formation to the system must select, from all the possible things which

could be said about an action, which are the important conditions and
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effects - those which are likely to cause interactions with other parts
of a plan'usqg to perform somg task in the‘domain being described.

Such a process is combinatorially explosive inasmuch as it may in-
volve comparing one action with all ‘other poss#ble action? and krust be
controlled by the program in such a way that the user is guided through
the hierarchy of actions in a systematic fashion which makes apparent
the important conditions and effects.

If the hierarchy of actions is to enable the planner to plan
efficiently then the constituent actions must be organized to meet
certain conditions. The planner uses high-level plans,.with aggregated
actions, to make choices between alternative actions. If such choices
are to be sensible then the high-level plans give fairly accurate repre-
sentations of their more detailed descendants.

Also, each high-level aggregate can, in general, be decomposed into
sub-actions in several different ways. If it is to be usefully included
in a high-level plan, the aggregate's descriptions must be fairly repre-
sentative of each of its possible'ﬁecompositions.

A high-~level action is an approximate representation of a group of
actions not only because it represents several possible decompositions but
also because its description contains only part of the detail of the con-
‘ditions and effects which apply to its constituents. The point in the
hierarchy at which a condition or effect is introduced has serious im-
Plications for the efficiency of the planning program inasmuch as it de-
termines when interactions will be detected. If interactions are found
too soon the plan will be overconstrained while if they are found too late
the high-level plans wiil not accurately reflect the possible plans at a
lower level.

The program must help the user to define hierarchies of actions in
which the more detailed actions are grouped into represenfatiye aggregates
and the descriptions at each level are of appropriate detail. .

An important extension of the work reported here would be a program
enabling a user to describe actions in the task formalism by prompting him
in the following manner:

(i) An expansion of a high-level action into a network of sub-actions
should be called for.

(ii) Conditions on the sub-actions should be called for in terms of
possible interactions with other activities at the same level of detail.

We expect that the user will think in terms of interactions between actions

and will then be prompted by the system 0 explain such interactions in
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texrms of conditions and deletions.

(iii) The important effects of actions should become explicit in the same
way as conditions.

(iv) We expect that a user will be continually modifying his specifications
as the consequences become apparent (e.g. the definition of an unsupervised
condition reduces the number of possible plans and the user may wish to in-
crease the choice by making a condition achievable). The program should ©
be able to cope with such modifications and do the appropriate housekeeping.

7.3 Use of intermediate representations of a plan for resource allocatian

Hierarchical planning is a way of reducing the search space involved in
practical problems by planning at different levels of detail and, in this
section, we consider the ways in which the intermediate representatie;s of
the network can be used for associated optimization problems.

An important problem associated with network planniﬁg is that of
scheduling the activities in the plep to satisfy resocurce constraints.

In general, the resource constraints are not taken into account wheﬁ the
plan is generated and the precedence relationships represent technological
orderings between actiens - e.g. the walls of a house cannot be built until
its foundations are laid. In fact the management of most projects has to
take into account fixed manpower ceilings and the availability of a limited
number of machines or other pieees of equipment. Jobs occurring on
parallel paths through the network may compete for the same resources and
even though the precedence relationships allow them to be done in parallel
resource constraints might force them to be scheduled sequentially.

Scheduling activities to satisfy such resource constraints is such a
large combinatorial problem that, for practical applications, only heuristic
methods can be used. In general such algorithms correspond to depth first
search through the search tree where the heuristics are used to choose the
best branch at each stage. In such a program the critical path information
gives some measure_ofAhow a job fits into the whole plan and allows scheduling
for each individual job to take account of some global considerations. How- -
ever, no account can be taken of the "fact that some combinations of jobs can
be chosen which use up all resources while others waste resources on certain
days and consequently delay the project.

An alternative approach is to use a high-level representation of the
Plan and find a schedule which satisfies the resoerce constraints and mini-~
mises the overall duration of the project. ‘ The high-level plan has rel-
aleely few constltuent actions, so all schedules can be explored and the

"best" schedule can then be refined by scheduling the jobs at the next level
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of detail within the constraints imposed by the high-level schedule. if

the high-lével plan is very inaccurate the resu{}ant schgdule will be poor
and we ﬁight expect tha£'; hierarchical approach will only give good rééults
in cases where the aggregates are fairly homogeneous in terms of resource
requirements and critical path data, This hierarchical approach to resource
allocation would mesh well with our general planning philosophy.

An interesting use of hierarchical planning is included in the SPADOR-
program (Pease, 1977) for planning missions from aircraft carriers. The
task handled by the program is that of anéwering a request to plan’ an in-
dividual mission within a background of several previously planned and on-
going activities. The constituent actions of each mission are pre-determined
and stored in the data base. However, each mission requires several re-
sources such as aircraft, pilots, technicians and maintenance crews and the
problem is to make assignments from the pool of resources which meet the
deadline of the particular mission and are compatible with the availabilities
of each resource. In this case the requirement is not to optimise the resources
needed for the mission but to find a feasible set of assignments.

The program tackles the proﬁlem in a hierarchic manner by using several
representations of a mission at different levels of detail. At each level
of detail only those resources are considered which are required for the
whole of an action (or group of actions)corresponding to that level.
Planning proceeds by taking a high-level répresentation of a mission and
meking assignments for all resourees mentioned at that level. Such assign-
ments fix activities within certain time-limits and, conséqﬁently, éohstrain
the assignments which can be made when the mission is expanded into more
detailed activities

The SPADOR project is concerned with repeatedly planning relatively
simple tasks against a background of mény activities but such an approach
can be extended to large projects where efficiency considerations arxe more
important. )

The traditional formulation of the scheduling problem for large pro-
jects is of allocating resources from.pools (such as different types of
manpower) which are continuously available throughout the whole of the
duration of the project. A different situation occurs when an individual
project must be scheduled against a background of ongoing activities (all
making calls on the same pool of resocurces). In such a case a particular
resource is, in general, not available for the whole time period but only
for certain intervals. The assignment of a particular piece of equipment

to a job within the project corresponds to fixing that job within a time
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slot (with corresponding constraints for other jobs within the network).

In the first case a simple depth-first search strategy (without back-
tracking) is adequate because itkalways terminates in a feasible (though
not necessarily the most efficient) solution. In the second case, feas-
ibility cannot be guaranteed and backtracking cannot be avoided.

We suggest that, for such problems, a hierarchical search strategy is
appropriate and Pease's work might be usefully extended in the following *
ways:

(i) To design a searxrch algorithm which will glve efficient assignments
of resources (because Pease's tasks are small he has not worried about
efficiency).

(ii) To investigate the structure of the hierarchical search spgce'ﬁith a
view to making intelligent recovery from failure when a set of assignments
prove to be infeasible. The hierarchy should facilitate récovering in a
more sophisticated way than by simply backtracking to the most recent
choice-point. This can be compared with dur use of the Decision Graph
(Daniel, 1977) to recover from planning failures,

7.4 Monitoring the execution of nlanc

The most ambitious planning, plan-execution and monitoring system to
date has been the STRIPS/MACROPS/PLANEX system developed at SRI (Fikes- and
Nilsson, 1971; Fikes, Hart and Nilsson, 1972; and Fikes, 1971). to enable
the robot SHAKEY to perform plans generated by STRIPS. The interface be-
tween the planner (STRIPS) and the execution monitor orvrun;time system
(PLANEX) was a triangular table representation of a plan (a MACROP). STRIPS
worked in a very simple domain and could generate only very short plans in a
reﬁatively long planning time (see Tate, 1974, for a comparison of several
problem solvers). Recent advances in planning techniques allow us to sug-
gest a planning and monitoring system of wider scope and greater flexibiiity.

In NONLIN, the necessary conditions on actions in a plan and the points
in the.plan where they are achieved are represented in a GOST (goal structure).
Goal structure contAins information which is more structured than the detail
of the plan itself. It has proved & valuable tool for deteéting and correct-
ing for interactions in a plan and'directing the search of a planner (Tate,
1975; Sace:doti, 197Sp; and Tate, 1976). ‘A GOST also gives the information
used from a MACROP by PLANEX and can thus replace it for execution monitoring
purposes. The information in a GOST is such that we need only check that an
action does not alter a GOST entry for any succeeding action to know that the

rest of the plan can be achieved. Only if any condition on a succeeding node
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is altered is the plan in jeopardy. Since conditions are attached to
actions in-a plan, it is possible to specifically ask if each monitorable
condition holds before the action is execuééa. -
The use of goal structure as the basis of the plan monitoring scheme
has several advantages from the point of view of the run-time system where
time and program space are at a premium. Specifically monitoring certain
conditions before an action is performed is more practicable in a working
environment than asking that an accurate world model be kept after the )
execution of each action {(as is needed for the MACROPS/PLANEX scheme).
For a run—timg system with no feed-back available from the domain, the
condition types available in the goal structure of the current version of
NONLIN may be sufficient to monitor the execution of the plan (the system
stopping if any condition was violated). For more advanced systems where
sensory information from a domain is available to the run-time system which
can be used to choose between several contingencies in a plan, further
TESfABLE condition types will be necessary together with the associated
plan-time facilities to allow conditional branches: and rejoins in the plan

being generated.

There have been very few attempts to produce plans which can have
conditionals in them. One typical approach is that aescribed in Warren
‘(1976) where case analysis on the branches of a conditional is performed
and conditional plans branch but do not then rejoin. The structured way
in which a conditional would be added to a plan when using a hierarchical
representation of a domain should allow the generation of conditional plans
which branch and rejoin. We believe our algorithm for question-answering
in a'partially—ordered network (Tate, 1976) can be modified to cope with

networks containing conditionals.

Useful further work would be the provision of a re-planning ability
based on the GOST conqitions detected as not holding before some action
and on the remaining unexecuted part pf the plan at that point.

The current plan modification system is designed to cope with un-
expected failures during the generation of the plan. If, at some stage
during planning, failure occurs the responsible decision can usually be
identified. Using information in the Decision Graph, the plan can then
be modified by undoing the decision in qdestion'and revising the actions
affected without changing the remainder of the plan. Some modifications

usually take the form of removing a block of actions coxresponding to a
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particular expansion of a high-level action, undoing any dependant ordering
links and replacing the high-level actioen.

In the case of monitoring tﬁe execution of plans the situation is
rather different. A failure may occur at some stage during the execution
of the detailed plan when some actions have terminated, scme are in pro-
gress and some are not yet started. The failure is identified as the in-
ability to start some particular job as expected and it then becomes nec-
essary to re-enter the planner in order to correct the plan.

Such a recovery procedure will differ from the existing plan-time
modification procedure in the following ways.

(1) In general, the situation can be retrieved either by satisfying

scme unexpectedly unsatisfied condition and then continuing as befofe\or,
in more serious cases, a part of the plan must be removed and replaced by
different sub—actions. The recovery program must be able to identify
standard types of failure and point to the appropriate remedy.

(ii) The replacement of some of the acﬁions in the current plan is a iore
complicated procedure than the modifications required during the plan
generation phase. The plan cannot be modified by simply replécing a group
of actions corresponding to a high-level aggregate because, in general, the
failure will have occurred part-way through such an aggregate. The re-
covery process must be able to use the goal structure of the plan to
generate new patches which do not correspond to any-decomposition in the
action hierarchy.

Since a failure in execution ;s often the result of inadequacy in the
definition of the actions in the plan, the appropriate action schema should

be offered by the system for review, so that such a situation should not

arise again



APPENDIX

In this section we 1illustrate the representation in the Task Formalism

of part of the action hierarchy for turbine overhaul - the overhaul of the

high pressure section.

Thechighest level network for turbine overhaul is shown below.

preparation
work

J overhaul
| low pressure 1

overhaul final

'

A4

low pressure 2 reassembly

overhaul ///////

Intermediate
pressure

overhaul
high
pressure

Such a network can be represented in the Task Formalism as an opschema:

opschema turbi

ne

pattern <<turbine overhaul>>

expansion 1. action

2.
3.
4.
5.

6. action

query
query

query -

query

<<preparation work>>

<<low pressure 1 overhauled>>

<<low pressure 2 overhauled>>
<<intermediate pressure overhauled>>
<<high pressure overhauled>>

<<final reassembly>>

orderings 1 -= + 2 1 -=+3 1 -—+4 1 --+5

2--+6 3--+6 4 --+6 5 -——+6

eng;



A call to the system
PLAN GOAL <<turbine overhaul>>

will cause the planning program to use the opschema described above to
set up the initial high level network. The presence of query nodes causes
the system to'interrogate the user as to whether he wishes'the corresponding
actions fo be performed i.e. does he wish to overhaul the intermediate pressure
section in this particular overhaul (note that the query nodes can occur at
every level in the hierarchy, thus, allowing refinement of the particular
type of overhaul required). If the user answers no, the node type will be
changed to phantom and the goal will be set to true in the initial state -
thus, no expansion of this high level node will be made at any‘stage. 1f
the user answers yes, the node type will be set to goal and, at some stage,
the planqer will seek to achieve the goal either as a result of some other
action already in the plan or by introducing new actions.

Below are some opschemas for the expansibn of the goal node

<<high pressure section overhauled>>

OPSCHEMA OVERMHAULHIGHPRESSURESECTION
PATTERN <<HIGH PRESSURE OVERHAULED>>
EXPANSION 1 QUERY <<TOP AND BOTTOM LEADS FITTED>>
QUERY <<TOP GLANDS AND DIAPHRAMS OVERHAULED>>
QUERY <<JOINT FREE GAP CHECKED>>
QUERY <<ROTOR OVERHAULED>>
QUERY <<30TTOM CASINGS AND BOTTOM BEARINGS 0VERHAU1ED>>
QUERY <<BRIDGE GAUGE READINGS TAKEND>>
ACTION <<FINISHED>> ‘
ORDERINGS 1--->2 1-=->3 1--->4 1-=-->5 2===>7 3===>7 4-==>7 §5-==>7
CONDITIONS UNSUPERVISED <<TOP CASING REPLACED>> AT 7

UNSUPERVISED <<ROTOR REPLACED>> AT 7

N oS LN

END;
OPSCHEMA FITTOPANDROTTOMLEADS
PATTERN <<TOP AND BOTTOM LEADS FITTED>>
EXPANSION 1 GOAL <<TOP CASING REMOVED>>
2 ACTINNCLSFIT TOP AND ‘BOTTIONM LEADS>>
3 GOAL <<TOP CASING REPLACED))
ORDERINGS 1--=->2 2--->3
CONDITIONS SUPERVISED <<TOP CASINGS REWOVED>> AT 2 FROM 1
E'\D'

— e m— e B WSROI —————— e —— e ——

OPSCHEMA OVERHAULTOPGLANDSANDDIAPHRAMS
PATTERN <<T0P GLANDS AND DIAPHRAMS OVERHAULED>>
EXPANSION 1 GOAL <<TOP CASING REMOVED>>
2 ACTION <<OVERHAUL TOP GLANDS AND DIAPHRAMS>>
3 GOAL <<TOP CASING REPLACED>>
ORDERINGS 1--->2 2--->3

CONDITIONS SUPERVISED <<TOP CASINGS REMOVED>> AT 2 FROM 1
END;



UPSCHEMA CHECKJOINTFREEGAPS
PATTERN <<JOINT FREE GAPS CHECKED>>
EXPANSION 1 GOAL <<TOP CASING REMOVED>>
. . 2 ACTION <<CHECK JOINT FREE GAPS>>
3 GOAL <<TOP CASING REPLACED>>
ORDERINGS 1~=-=>2 2-=-->3
CONDITIONS SUPERVISED <<TQP CARING REMOVED >> AT 2 FROM 1
END;

OPSCHEMA OVERHAULROTOR
PATTERN <<ROTOR OVERHAULED>>
EXPANSION 1 GOAL <<SHAFT REMOVED>>
2 ACTION <<OVERHAUL ROTOR>>
3 GOAL <<SHAFT REPLACED>> .
ORDERINGS 1--->2 2~-->3
CONDITIONS_ SUPERVISED <<SHAFT REMOVED>> AT_2_ FROM_1

UNSUPERVISED<<TOP CASING REMOVED>> AT 1
: " 11 ”" . [1] AT 2

" " L{] ” AT 3
END;

OPSCHEMA OVERHAULROTTOMCASINGSANDBbTTOMBEARINGS

PATTERN <<BOTTOM CASINGS AND BOGTTO4 BEARINGS OVERHAULED>>
EXPANSION 1 GOAL <<SHAFT REMOVED>>
2 ACTION <<OVERHAUL BOTTOM CASINGS AND BOTTOM BEARINGS>>
3 GOAL <<SHAFT REPLACED>>
ORDERINGS 1--=>2 2--->3 .
CONDITIONS SUPERVISED <<SHAFT REMOVEbk> AT 2 FROM 1 . -
UNSUPERVISED<<TOP CASING REMOVED>> AT 1 ' T

. " AT 2
” " " " AT 3

END;

. o —— ettt et e

OPSCHEMA TAKEBRIDGEGAUGEREADINGS

PATTERN . <<RRIDGE GAUGE READINGS TAKEN>>
EXPANSION 1 ACTION <<TAKE BRIDGE GAUGE READINGS>>

CONDITIONS UNSUPERVISED <<SHAFT REPLACED>> AT 1
END;

OPSCHEMA RFEMOVETOPCASINGS

PATTERN <<TOP CASING REMOVED>>

EXPANSION 1 ACTION <<REMOVE TOP CASINGS>>
£Enbp; : '

OPSCHEMA REMOVESHAFT
PATTERN <<SHAFT REMOVED>>
EXPANSION 1 GOAL <<TOP CASING REMOVED>>

2 ACTION <<REMOVE SHAFT AND CHECK LEADS>>
ORDERINGS 1--->2
CONDITIONS SUPERVISED <<TOP CASING REMOVED>> AT 2 FROM 1
[ND;

OPSCHEMA RFIPLACESHAFTANDCHECKALIGNMENTYANDCLEARANCES
PRATTERN <<SHAFT REPLACED>>
EXPANSION 1 ACTION << REPLACE SHAFT AND F1T LEADS>



2 ACTION <<ALIGNMENT CHECK>>
3 ACTION <<CLEARANCE CHECK>>
ORDERINGS 1-==>2 2--->3
CONDITIONS UNSUPERVISED <<JOINT FREE GAPS CHECKED>> AT 1
END; .

OPSCHEMA REPLACETOPCASING

PATTERN <<TOP CASING REPLACED>>

EXPANSION 1 ACTION <<REPLACE TOP CASING>>
END; :

OPSCHEMA OVERKAULTOPCOVER

PATTERN <<OVERHAUL TOP GLANDS AND DIAPHRAMS>>

EXPANSION 1 QUERY <<QUTER CASING CLEANED AND CHECKED FOR DISTORTION>>
QUERY <<OUTER DIAPHRAMS OVERHAULED>>

QUERY <<OUTER GLANDS OVERHAULED>>

GUERY <<INNER GLANDS OVERHAULED>>

QUERY <<INNER DIAPHRANMS OVERHAULED>>

QUERY <<INNER CASING CLEANED AND CHECKED FOR DISTORTION>>

2V WN

END;

OPSCHEMA FITTINGBOTHLEADS

PATTERN <<FIT TOP AND BOTTIOM LEADS>>

EXPANSIOMN 1 ACTION <<FIT BOTTOM LEADS>>
2 ACTION <<FIT TOP LEADS>>

ORDERINGS 1--->2

END; '

OPSCHEMA CLEANOUTERCOVER
PATTERN <<QUTER CASING CLCANED AND CHECKED FOR DISTORTION>>
EXPANSION 1 GOAL <<OUTER CASING TURNED OVER>>

2 ACTION <<CLEAN AND CHECK OUTER COVER>>

3 GOAL <<QUTER CASING TURNED BACK>>
ORDERING 1-~->2 2--->3
CONDITIONS SUPERVISED <<OUTER CASING TURNED OVER>> AT 2 FROM 1
END;

OPSCHEMA OVERHAULOUTERDIAPHRAMS
PATTYERN <<QUTER DIAPHRAMS OVERHAULED>>
EXPANSION 1 GOAL <<QUTER CASING TURNED OVER>>
2 ACTION <<OVERHAUL OUTER DIAPHRAMSD>>
3 GOAL <<OUTER CASING TURNED BACK>>
ORDERINGS-1--->2
2--=->3 :
CONDITIONS SUPERVISED <<OUTER CASING TURNED OVER>> AT 2 FROM 1
END;

OPSCHEMA OVERHAULOUTERGLANDS
PATTERN <<OUTER GLANDS OVERHAULED>> -
FXPANSION 1 GOAL <<QUTER CASING TURNED 0VER>>
2 ACTION <<OVERHAUL OUTER GLANDS>>

3 GOAL <<OUTER CASING TURNED BACK>>
ORDERINGS 1-=-=>2 2--->3
CONDITIONS SUPERVISED <<OUTER CASING TURNED OVER>> AT 2 FROM 1 ~
END;

OFPSCHEMA CLEANINNERCOVER



ATTERN <<INNER CASING CLEANED AND CHECKED ror DISTORTION>>
EXPANSION 1 GOAL <<INNER CASING TURNED OVER>>
. 2 ACTION <<CLEAN AND CHECK INNER COVER>>
B 3 GOAL <<INNER CASING TURNED BACK>>
ORDERINGS 1--->2 2--->3
CONDITIONS SUPERVISED CCINNER CASING TURNED OVER>> AT 2 FROM 1
END;

OPSCHELMA OVERHAULINNERDIAPHRAMS
PATTERN <<INNER DIAPHRAMS OVERHAULED>>
EXPANSION 1 GOAL <<INNER CASING TURNED OVERD>>
2 ACTION <<OVERHAUL INNER DIAPHRAMSD>
3 GOAL <<INNER CASING TURNED BACK>>
ORDERINGS 1--->2 2--->3
CONDITIONS SUPERVISED <<INNEPR CASING TURNED OVER>>
AT 2 FROM 1
END;

OPSCHEMA OVERHAULINNERGLANDS
PETITERN <<INNER GLANDS OVERHAULED>>
EXPANSION 1 GOAL <<INNER CASING TURNED OVER>>
2 ACTION <<OVLRHAUL GLANDS>>
3 GOAL <<INNER CASING TURNED BACK>>
ORDERINGS 1--->2 2~-->3
CORDITIONS SUPERVISED <<INNER CASING TURNED OVER>> AT 2 FROM 1
END;

OPSCHEMA TURNOUTER

PATTERN <<QUTER CASING TURNED OVER>>
EXPANSION 1 ACTION <<TURN OVER OUTER CASING>>
END;

OPSCHEMA TURNOUTERBACK

PATTFRN <<OUTER CASING TURNED BACK>>
EXPANSION 1 ACTION <<TURN BACK OUTER CASING>>
END;

OPSCHEMA TURNINNER

PATTERN <<INNER CASING TURNED 0VER>> .
EXPANSION 1 ACTION <<TURN OVER INNER CASING>>
END; '

OPSCHEFRA TURNINNERBACK
PATTERN <<INNER CASING TURNED BACK>> :
EXPANSION 1 ACTION <<TURN BACK INNER CASING>>
END; ‘
OPSCHEMA CHECKLEADSANDREMOVESHAFT
PATTERN
<<REMOVE SHAFT AND CHECK LEADS>>

EXPANSION 1 ACTION <<CHECK LFADS AND REMOVE SHAFT>>

2 ACTION <<TAKE AXIAL CLEARANCES>>
ORDERINGS 1--->2
END;

OPSCHEMA OVERHAULBOTTOMBEARINGSANDCASINGS
PATTFRN <<OVERKHAUL BOTTOM SEARINGS AND GOTTOM CASINGS>>
EXPANSION 1 QUERY <<30TTOM CASING GLANDS OVERHAULED>>

2 QUERY <<ROTTOM CASING DIAPHRAMS OVERHAULED>>



3 QUERY <<CASING JOINTS AND NOZZILE RINGS OVERHAULED>>
4 ALTION <<NDT 182 BEARINGS BOTTOM>>
END;

OPSCHEMA BOTTOMCASINGGLANDS
PATTERN
<<BOTTOM CASING GLANDS OVERHAULED>>
EXPANSION 1 ACTION <<OVERHAUL BOTTOM CASING GLANDS>>
END;

OPSCHEMA BOTTOMDIAPHRAMS

PATTERN <<BOTTOM CASING DIAPHRAMS OVERHAULED>>
EXPANSION 1 ACTION <<QOVERHAUL BOTTOM CASING DIAPHRAMS>>
END;

OPSCHEMA NOZZLERINGS

PATTERN <<CASING JOINTS AND NOZZLE-RINGS OVERHAULED>>

EXPANSION 1 ACTION <<OVERHAUL CASING JOINTS AND NOZZLE RINGS>>™
END;

OPSCHEMA ROTOROVERHAUL

PATTERN <<OVERHAUL ROTOR>>

EXPANSION 1 ACTION <<CHECK ROTOR>>
2 WUERY <<JOURNALS AND GLAND LABRYNTHS EXAMINED>>
3 QUFRY <<ROTOR REBLADED>>
4 QUERY <<WORKS PROGRAMME COMPLET[D>>

ORDERINGS 1=-->2 1-=-->3 3--=>4 R

END;

OPSCHEMA JOURNALS .

PATTERN <<JOURNALS AND GLAND LABRYNTHS EXAMINED>>

EXPANSION 1 ACTION <<EXAMINE JOURNALS AND GLAND LABRYNTHS>>
END; ‘ ' S

OPSCHEMA RESLADE

PATTERN <<ROTOR REBLADED>>

EXPANSION 1 ACTION <<REBLADE ROTOR>>

END;

OPSCHEMA WORKS

PATTERN <<WORKS PROGRAMME COMPLETED>>

EXPANSION 1 ACTION <<SEND FOR WORKS PROGRAMME>>
END;

OPSCHEMA REMOVALOFTORCASING

PATTERN <<REMOVE TOP CASINGS>>

EXPANSION 1 ACTION <<REMOVE TOP OUTER CASING))
2 ACTION <<REMNOVE TOP INHER CASING>>
3 ACTION <<BGR 1&2 BEARINGS TOP>>

ORDERINGS 1--->2 2~--->3

END;

OFSCHEMA JOINTFREEGAPS

PATTERN <<CHECK JOINT FREE GAPS>>

EXPANSION 1 ACTION <<CHECK JOINT FREE GAPS INNER CASING>>
2 ACTION <<CHECK JOINT FREE GAPS OUTER CASING>>

ORDERINGS 1--->2



CONDITIONS UNSUPERVISED <<INNER CASING WORK FINISHED>> AT 1
UNSUPERVLSED <<OUTER CASING WORK FINISHED >>AT 2

END;

OPSCHEMA CLEARANCES

PATTERN <<CLEARANCE CHECK>>

EXPANSION 2 ACTION <<CHECK AXIAL CLEARANCES AND BOTTOM LEADS>>
2 ACTION <<CHECK INNER OUTER CLEARANCES AND TOP LEADS>>

END;

OPSCHEMA REFITTOP

PATTERN <<REPLACE TOP CASING>>

EXPANSION 1 ACTION <<REPLACE TOP INNER CASING>>
2 ACTION <<REPLACE TOP OUTER CASING>>

“ND;

MAINEFFECTS
<<REMOVE TOP CASING>> + <<TOP CASING REMOVED>>
. = <<TOP CASING REPLACED>>
ILND
MAINEFFECTS
C<REMOVE SHAFT AND CHECK LEADS>> + <C<SHAFT REMOVED>>
- <<SHAFT REPLACED>>
END
MAINEFFECTS
S<KREPLACC SHAFT AND FIT LEADS>> + <<SHAFT REPLACED>>
- <<SHAFT REMOVED>>
END
MAINEFFECTS
<<REPLACE TOP CASING>> + <<TOP CASING REPLACED>>
- <<TOP CATASING REMOVED>>
END
MAINEFFECTS
<<TURN OVER OUTER CASING>> + <COUTER CASING TURMED OVERD>>
<<OUTER CASING TURNED BACK>>
END
MAINCFFECTS
<<TURN BACK OUTER CASING>> + <<QUTER CASING TURNED BACK>>
+ <CQUTER CASING WORK FINISHED>> :
- <<OUTER CASING TURNED OVERD>>
END
MAINEFFECTS
<<TURN BACK INNER CASING>> .+ <<CINNER CASING TURNED BACK>>
+ <<INNER CASING WORK FINISHED>>
<<INNER CASING TURNED OVER>>

TND
MAINEFFECTS _
<<TURN OVER INNER CASING>> + CCINNER CASING TURNED OVER>>
- <CINNER CASING TURNED BACK>>
END
MAINEFFECTSDONER.PRSTRING;
PRIMITIVE
<KFINISHED>> ;



Attaching a level to every pattern in the action hierarchy helps the
planning’érogram control the order in which nodes are expanded. The
opschemas contain expansions, orderings and conditions on constituent nodes
The effects of actions are specified using MAINEFFECTS which déclares the .
effects always associated with the occurrence of the <pattern> in the plan
irrespective of any choice between expansions.

We can now consider how the planning system would use this action -
hierarchy to expand the goal node <<high pfessure section overhauled>>
(it is reasonable to ignore the expansion corresponding to low and inter-
mediate pressures since the interactions between them are ;ery limited.

The system will match the pattern of thé goal node against that of the
opschema overhaul high pressure section. The goal node in the zeroth level
network will be replaced by six query nodes and an action node in the first
level network and the user will be interrogated to determine whether the
query nodes should become phantoms or goal nodes (i.e. whether the corres-
ponding actions should be performed or not).

No effects are associated with any of the new nodes but two new un-
supervised conditions are introduced by the expansion. Before moving to
the second level network fhe planning pbrogram will seek to satisfy the un-
supervised conditions - in this case they cannot be satisfied until the
second level network.

In moving from first to second level networks the system replaces the
goal node <<top and bottom leads fitted>> by three nodes

goal <<top casing removed>>

action <<fit top and bottom leads>>

goal <<top casing replaced>>*

Suitable values for the levels of each pattern would ensure that the two goal
nodes would be expanded within the second level network.

Thus, if the user wished to overhaul the rotor, fit top and bottom leads
and overhaul top glands andiﬁiabhrams, the corresponding first and second

level networks would be as shown below (ignoring phantom nodes).
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top and
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_\

top glands &
diaphrams
overhauled
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Rotor
overhauled

second level

overhaul top glands
and diaphrams

Remove top
casing

Replace
top
casing

fit top
and bottom
leads

Shaft
replaced

overhaul
Rotor

Shaft
removed

At the second level the .unsupervised condition. ' .
<<top casing replaced>> can be satisfied
The new unsupervised conditions <<top casing removed>> required by

nodes 4, 5, and 6 are made true by node 1 and untrue by node 7. The



planner will remove the interactions and satisfy the condition by linking
1 before 4 and 6 before 7. The interactions will not be removed until

they have become constrained by the satisfaction of the unsupervised conditions.
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An Integrated Approach to Planning, Plan Execution and Plan Monitoring

Rustin Tate

Scientific Proposal to Science Research Council 26th July, 1976

-

Ve propose to develop & system capable of asutomatically forming
plans ahd nonitoring their execution in the domain of computer-controlled
assenbly, We will specify a formalism to enable a domain to Be
described in a straightforward fashion. To ensure generality and to mske
this research tractable, we will evaluate the system in two distinct domains
both of which are the subject of current research in this Department., The
research will involve the provision of a conditional planning facility and a
run-time plan monitor which in its later stages should cope with sensory
information from a domain, '
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1. Doescription of work proposed

¥e wish to allow a task to be given to a programmable robot assenbly
system in a straightforward way, preferably by giving a description of the
finished object. Current langueges under development for the generation
of control programs for such robots rely on being explicitly given a fairly
detailed sequence of the operations to beiperformed. We believe that
recent work on the representation of problem domains and the generation of
plans could usefully be employed to ease the burden on the programmer of a
robot,

Most early research on planning was divorced from the actual use of
the plans generated. However, recent work has concentrated on the benefits
that a planning ability can give within specialized systems. For example,
planning is used in the Computer Based Consultant for instructing & novice
mechanical engineer on some task (Hart, 1975); in an automatic programming
system (¥anna and Waldinger, 1974); in a mission scheduler for an aircraft
carrier (Fikes, 1975): to aid in understanding natural language (Schank and
Abelson, 1975); and on an electronics trouble shooting system at HIT, A
planning ability frees a user of the system from specifying sequences of the
primitive operations available and allows the automatic choice of actions
most suited to an overall task. Some recent plannérs, used a&s components of
larger systems, have focussed on the need to represent a copplexvproblem
domain hierarchically, i.e. at many different levels of detail (Sacerdoti,
1975a; -Tate, 1976, paper attached). Such planners work at a symbolic rather
than & geometric level and thus cannot be used to generate plans containing

the detsiled actions necessary to perform assembly operations,

In this work we propose the development of a hierarchic task specif-
ication language and the extension of a planner sble to generate plens in a
domain represented in this langusge. This will enable control programs to
be generated for a robot manipulator from quite high level descriptions of a
task, VWe will consider the execution and monitoring of the plans generated
on a particular device, The use of execution—tiﬁe sensory information will
be studied. ‘

Ve want the task formalism and planner to be uniformly applicable to a
wide range of domains, To achieve this we propose a common approach to two

problems currently being tackled in distinct ways.
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a) The development of an interactive program to enable a project network
(as used for critical path analysis) to be gencrated in a straight-
forvard and correct fashion, e.g. for a house building tesk.

b) The generation of instructions to assemble some object on a computer
controlled robot manipulator.

Recent work on problem a) by us has led to a planning system NONLIN
which is fully described in the paper attached (Tate, 1976). . The planner
can be given a hierarchic description of a domain (i.e. the problem demain
can be specifisd at several levels of detail), Such domains are at prasent
restricted to those which can bs represented symbolically. Computational
proceases (such as a geometric modelling package) cannot be interfaced to
allow the level of detail to be low enough for that required to perform
assenbly planning. NONLIN can generate a plaﬁ to perform a task in such a
domain where the plen is represented as a partiaslly-ordered network of
actiona, During planning a record is kept of the conditions necessary for
any action and the points in the plan where the conditions are achieved (this

racord is called the gosl structure of the plan). Problem b) has ususlly

been tackled by specifying trajectories for manipulators and besic manip-
ulator activities. No planning capability hes been provided.

Yo aim to establish that

a) the planner NONLIN can be extended to cope with task descriptions which

can include low level manipulator movements,

b) the use of sensory information from a domain can be planned for by the
use of specisl TESTABLE conditions on actions in the plan. This will

involve the provision of conditional planning facilities.

c) The goal structure of a plan, extended to incorporate b) above, can be
used to monitor the execution of the plan and aid in ra-planning when

necessary.

We thus hope to show that an integrated approach to planning at several
different levels and execution monitoring of a plan is possible. The
program of work could not be undertaken with the resources asked for if not
for the fact that simultansous work is being underiaksen by two projescts at
Edinburgh on the two problems mentioned. - | '
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a) the project "Planning: a Joint AI/OR approach" under the direction of-

£ Professor B. Moltzer is nearing the end of its first year (Paniel and
Tate, 1976). The work on NONLIN is a result of this first year effort
(Tate, 1976, paper attached). c

b) the project "a computer aided assembly system" is about to begin under
the direction of Mr, R.J. Popplestone (Popplestone, 1976).

The close co-operation we have with the planning group will continue
and this will enable the evaluation of the use of the planner on, for

example, the house building tesk they are considering,

The work on computer alded assembly will make available a run-time
mini-computer system and software to enable the evaluation of the integrated

: approach on problem b),

The cross-fertilization of ideas between the two different approaches
being tackled by the attempt on this project to deovelop an integrated
planning approach to both tasks could be very fruitful, We have chosen the
two tasks for the evaluation of our approach because of the availability of
local expertise and continuing work on these. A specific commitment to an
integrated approach to the two different tasks will avoid the common-pitfall

encountered on nany projects of & lack of generality in & final system,



2. Relation to previous and current work

2.1 Planning and Task Specification

Recent work on the generation of plans has been concerned with
producing plans which could be used to transfer the knowledge of an expert
or experts in a domain to a novice, Work of this type has been performed
on the Computer Based Consultant Project (Hart, 1975) at Stanford Research
Institute and on an Electronics Troubleshooting System at MIT. Experts
in some field provide a collectinn of job descriptions each of vhich may
require the knowledge of other experts to break down sub-tasks., The system
builds up a hierarchy of Jobs which can be used to generaté plans at various
levels of detail., An apprentice or novice using the system is interactively
directed through a tusk at a level appropriate to his skill by the system
asking hiﬁ to perform tasks at a higher level first, If the higher level
tasks are beyond the apprentice, the expeft knowledge encoded in the system
is used to choose some way to break down a taske. The planner ensures that
all the plan can still be performed successfully when these more detailed
steps are added, Accommodation of further detail into the plan may cause
re~ordering of part of the plan. The lower level tasks are then given to
the apprentice who again can signify his ability to perform them or not,

The Computer Based Consultant is a system intended to guide an appren-~
tice mechanical engineer through various tasks a a workbench. Typical of
the tasks is the assembly of an air compressor, The planning system used
in this project, NOAH (Epts_gf Action gﬁerarchies), was developed by
Sacerdoti (1975&, 1975b). It incorporates novel idees for the represent-
ation of a plan as a partially-ordered network of actions ( procedural net).
This is in contrast to most previous work on planning which concentrates on
the generation of linear sequences of actions, e.g. STRIPS (Fikes and
Nilsson, 1971), LAWALY (Siklossy end Dreussi, 1973), INTERPLAN (Tate, 1974),
etc. FKnowledge sbout a domain is given to NOAH by writing code in a
language SOUP (Semantics of User Programs) to explain how to decompose any
task to lower level tasks, T

Work at Edinburgh, on a project "Planning: a joint AT/OR approach"
(Daniel and Tate, 1976), is concerned with the problem of large scale
project planning and the development of an interactive program which guides
a user through the entire planning process. For project planning, a net-

work nmust be set up so that critical path enalysis and other optimization

\
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procedures can be used to decide where resources should be dirocted to
most efficiently achieve a task, waever, the network typically is
difficult and timc—conauming to set up, It is also difficult to ensure
that the ordering constraints on tasks are in their least constrained form.
This i3 essential to allow the optimization to achieve the best results,

As in the work of Sacerdoti, we have been investigating the use of a
partially-ordered network of actions to represent a plan at any stage.
Such networks are in a suitable form for the use of critical path analysis
techniques; Any ordering in the network results from the fact that either

1) an action achieves a condition for a subsequeni action
11) an action interferes with an important effect of another

action and must be removed outside its range,

A formalism (TF) has been specified to ensble a task to be described
in a hierarchic fashion, Task descriptions can be written independently
of their use at higher levels, Thus experts at a higher level, middle-
mansgement and tradesmen, can each describe their tasks indebcndently end

in their own terminologye.

A sinmplified "ACTSCHEMA" from a house building specification in the

Task Formalism is given below,

ACTSCHEMA DECOR
PATTERN DECORATE
EXPANSION [AND CONDITION UNSUPERVISED <<ROUGH PLUMBING INSTALLED>>
CONDITION UNSUPERVISED <<ROUGH WIRING INSTAILLED>>

1 ACTION <<FASTEN PLASTER EBOARD AND PLASTER>)>
v [AND [ CONDITION UNSUPERVISED <<TRAINS INSTALLED>>
2 ACTION <<POUR BASEMENT FLOOR>)>
3 - ACTION <<LAY FINISHED FLOOR>>
CONDITION SUPERVISED <<FLOOR FINISHED>>
4 ACTION <<FINISHED CARPENTRY>> |
CONDITION UNSUPERVISED <<PLUMBING FINISHEDY>

5 ACTION PAINT)

CONDITION SUPERVISED <<CARPENTRY FINISHED>>

CONDITION SUPERVISED PAINTED
6 ACTION <<SAND AND VARNISH FLOOR>> ]]

EFFECTS + DECORATED . .

END; : - ! -t

The partial ordering on the actions is

/N
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The DECOR schema specifies a partial ordering on 6 actions which together
will achieve the "DZCORATE"™ task, SUPERVISED conditions are made true
within the expansion of the task (e.g. the ACTION PAINT (5), achioves the
SUPERVISED condition PAINTED on ACTION 6). - UNSUPERVISED conditions are
made true by other experts (aainly here by an “INSTALL SERVICES" expert).
Another condition type, "USEWHERN", would say that an ACTSCHEMA containing
it should not be used unless the condition was true, There is only one
effect of fhis ACTSCHEMA (+ DECORATED) as the other effects are defined by

the lower level actions.

A planner; NONLIN, has been specified and is implemented in an
experimental version which can take task descriptions given in the formalism.
It gencrates a pi&n at progressively greater levels of detail and can handle
interactions between the components to produce a plan as a partially-
ordered network of actions. The algorithms employed in the planner have
been designed so that over-linearization is avoided where possible and all
choice points are kept for later analysis or re-planning, A simple. clear
representation of the goal structure (GOST) of a plan is kept (the
conditions on nodes of the network together with the points where the
conditions are achieved)., An example of a GOST'entny during a house
building task might be

<<SUPERVISED <<SCAFFOLDING ERECTED>> TRUE 6>> with value [4].

This would mean that {<KSCAFFOLDING ERECTED>> had to be true at node 6 and
was made true at node 4 (nodes in a network are numbered), The GOST
specifies a set of "ranges" for which pattérns have a certain value, Goal
structure provides information about a plan which is much simpler than the
defail of the plan itself., The use of goal structure tc direct search in
a problem solver was first investigated in Tate (1975). NONLIN and the
task formalism_(TF) are fully described in the.paper attached (Tate, 1976).

2.2 Automation Languages

Recently there has been effort to produce a suitable language
for instructing industrial robots (such as the UNIMATE, AMF VERSATRAN, etc.)
to perform some production process (especinlly assembly), This is
especially important for batch production which is characterised by short
runs. There is a need for versatile machines, which can be readily
prograrmed, if the process is to be performed automatically. It seems
likely that industrial robots will be controlled by mini-computers which
may make use of tactile and simple visual information (Industrial Robot
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Technology, 1976). Knowledge about the nature of the tasks being
perforned will be needed to produce programs for these controllers. Since
the ,life expectancy of some industrial robots can be as long as 40,000
vorking hours (Engelberger, 1976 for a UNIMATE) the reprogramming may have
to be done many times in the device's life,

AL, (A language for automation - Finkel et al, 1975) has been developed
at Stanford University as a language for the specification of assembly
instructions to two manipulators and for the use of sensory information in
the plan to be pefformed. In the system presently in use under AL, nanip-
ulations are mostly described in terms of trajéctories and priditive manip-
ulator motions, Advanced versions of AL and the work to be carried out at
Edinburgh on e computer-aided assembly system will allow a higher lavel of
description, A sequence of goal states will be given each of which will
be specifisd by relations between components (e.g. that 2 faces are "AGAINST!
each other). Expert knowledge encoded in the system will be used to
gencrate the necessary trajectories and manipulator motions to achieve each.
goal state mainly by an analysis of the geometric constraints on the
specified goal positions. The form of language used to describe this
knowledge and the method for describing how relations between bodies can be
translated to machine motions is still a matter for discussion. To aid in
this task a mathematical process can be used to generate the position of
individual bodies when body descriptions are available and a set of spatial
relations given (Ambler and Popplestone, 1975).

The work on the SRI Computer Based Consultant project is also in the
domain of assemblies of mechanical parts though the final output of the
system is to a human apprentice and planning is thus at a relatively high
level, During the for?ation of an assembly program AL needs to generate
a low level model of the state of the world at any point in the plan, A
representation for the plan such that both high level and low level
planning can be performed would be investigated as part of the proposed
project, A formalism adequate to meet the needs of representing high and
low level tasks in a uniform way would also be developed.

During sutomatic assembly under mini-computer control the run-time
overheads of computation and size of program must be minimized, The
program must incorporate most of the knowledge about how to deal with small

errors of positioning, correction of arn trajectories and so on, A good



run-time monitor must ensure that errors do not get out of the bounds which
can be handled by the program, The planning model generated during the
formation of run-time code by AL provides a set of expected values for
variebles etc. which are given to the run-time system and which allow the
nonitoring to take place,

Our suggestion is that the goal structure of a plan generated by the
planner NONLIN (Trate, 1976 - paper atteched) provides just the information
necessary to nonitor th; execution of the plan and thus is the information
which should be passed to the run-time system and used by it. For a
manipulator which assembles b& dead—rackoﬁing, the condition types avail-
able in the goal structure-wof the current version of NONLIN may be
sufficient to monitor the execution of a plan (the system stopping if any
condition was violated). For more advanced systems where sensory
information from a domain is available to the run-time system, further
TESTABLE condition types will be necessary together with the associatéd
plan-time facilities to allow conditional branches and rejoins in the plan
being generated.

~



R The use of goal structure for planning, plan execution and vlan monitoring

-

The most ambitious planning, plan exccution and monitoring system to
date has been the STRIPS/MACROPS/PLANEX system developed at SRI (Fikes and
Nilsson, 1971; Fikes, Hart and Nilsson, 1972; and Fikes, 1971) to enabdble
the robot SHAKEY to perfo;m plans generated by STRIPS. The interface
between the planner (STRIPS) and the execution monitor or run-tine system
(PLANEX) wes & triangular table representation of a plan (a MACROP), STRIPS
vorked in & very simple domain and could generate only very short plans in
a relatively long planniné time (see Tate, 1974, for a comparison of several
problem solvers). Recent advances.in planning techniques and robot devices
allow us to suggest a planning, execution and monitor system of wider scope

and greater flexibllity.

In RORLIN, the necessary conditions on actions in & plan and the points
in the plan where they are achieved are represented in a GOST (goal
structure). Goal structure conteins information which is more structured
than the detail of the plan itself, It has proved a valuable tool for
detecting and correcting for interactions in a plan and directing the search
of.a planner.(Tate, 1975b; Sacerdoti, 1975b; aond Tate, 1976). A GOST
&lso gives the information used ffom a MACROP by PLANEX and can thus
replace it for execution monitoring purposes. The information in a GOST
is such that we need only check that an action does not alter a GOST entry
for any succeeding action to know that the rest of the plan can be achieved,
Only if any condition on a succeeding node is altered is the plan in
Jeopardy. Since conditions are attached to actions in a plan, it is
possible to specifically ask if each monitorable condition holds before the

action is executed.

The use of goal structure as the basis of the plen monitoring scheme
has several advantages from the point of view of the run-time system where
time and program spece are at a premium, Specifically monitoring certain
conditions before an action is performed is more practiczble in a working
assembly system than asking that an accurate world model be kept after the
execution of each action (as is needed for the HACROPS/PLANEX scheme).
Such a process should allow for the use of information from sensors when a
conditional planning facility is available. The test and branch conditions
will be represented to the run-time monitor through the goal structure,

We hope to be &ble to provide a re-planning ability based on the GOST
conditions detected as not holding before some action and on the remeining
unexecuted part of the plan at that point.
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4, Relevant work at Edinburgh

As mentioned previously, we have chosen two tasks to explore our
integrated approach because of current work at the Department of Artificial
Intelligence (AI) at Edinburgh University on these tasks, In order that
ve can make clear the scope of the proposed project, we will first briefly

describe and mention the limitations of this other work.

4,1 Project Plenning

The work on the project "Planning: a joint AI/OR approach®
(Daniel’and Tate, 1976) has been described in section 2.1.

A formalism and planner have been specified to allow hierarchic
description of problem domains and the generation of plans in those domains,
The lowest job level described may be actions such as "lay foundations" or
"install kitchen equipment"” (see example in section 2.1). A11 planning is
at a symbolic level and c6nstraints on the ordering of actions in a plen
arise through the achicevement or destruction of symbolic statements sbout
eny time point in the plan (e.g. "floor boerds layed" may destroy some
required condition "under floor access clear"). It is not possible to form
plans vhose goals are specified firom some computation, e.g. "hand at (z,y,2)*
vhere (x,y,z)'is & transformation of the position of an object computed by
a geometric modelling packasge. Extension of the planner and task formalism
to cope ‘with lower level or non-symbolic domains will not be undertaken on .
the AI/OR project,

Work currently in progress on the planning project is aimed at
producing a system in which choices of opsrator, choices of instantiation
for variables or the insertion of action ordering links in the network are
represented in a "decision graph" which can be used to select alternative
approaches to be taken by the planner (Dpaniel, 1976). Such & scheme may
be based on the process used by Hayes (1975) for a travel planning systemn,
Later work will allow the actions in a network to be assigned “costs™. which

can be used for critical path analysis optimization,

Since the plamner and task formalism to be used as a basis of the
proposéd project is in fact used at present for the above work, we expect 3
that close contact with the planning group will ensure that the planner and
formalism in use remains compatible with the nced to extend both to cope
with the lower lovel tasks. When thoy become available, the incorporation
of the declision graph and cost analysis componenté will be desirabdle for
the ability to deal with complex low level tasks. In particular, an

assenbly program produced for some batch production process must be as .
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efficient as possible since it may be repeated many times, Plan-time
effort is worth expending to produce a good program, The assignment of

costs in terms of time or energy used (depending on the application) to
actions and the ability to generate low cost solutions will therefore be

important in the proposed woik,

Autonatic Assemdbly

The project "a computer aided assembly system" (Popplestone,
1976) aims to construct and evaluate a language for specifying assembly .
operations. The complete system will be given spatial relationships
which certain Sodies must have to one another and will be required to
generate a program for a run-time system which will perform the task on the
existing Edinburgh hand/éye device, The form of language to be used for
specifying assembly operations is still to be decided, and we would hope
that the "linking" nature of this proposed work would have some influence on
this,

Part of the work will involve the provision of a facility to locate
the fosition of any feature of a body from a specified set of symbolic
relations between the bodies in a world (e.g. AGAINST and FITS). This will
be an extension of the work described in Ambler and Popplestone (1975).
I will refer to this later as a "position finder", A run-time system will
be developed to control the primitive manipulations available and an inter-
face specified for its uas, Methods of interfacing sophisticated sensory
feedback into an assembly operation will be explored. Later in the project,
an investigation of the use of the space occupancy of bodies to modify

certain programs (e.g. to avoid hand/object collisions) will be conducted.

A previous assembly system for the Edinburgh hand/eye device (Ambler
et al, 1975) relied for the actual final assembly of an object upon a
sequence of pre-programmed primitive manipulator motions together with two
“fitting" operations which used force sensing., The system had a sophis-
ticated module to locate objects, recognize them gnd put them in specified
"storage" positions. After this phase the system merely ran“fhrough the
sequence of primitive operations to assemble the object presuming the
components were in these fixed positions, NO‘planning;was involved.
The new assembly systeﬁ will rely on a human instructor to specify a
seguence in which the assembly operations are to be performed. It is not
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within the scope of that work to consider how to determine the sequence

autornatically,

Since this is precisely the task for which NOAH (used in the Computer
Based Consultant) and NONLIN were designed, we have an opportunity here to
bridge the gap between current planning and automation language design
worke The facility for providing specifications of assembly operations
through the task formalism (say as & library of primitives) and ellowing
%he planner to find the appropriate ways to combine them to achieve some

goal should reduce the amount of specification necessary for any particular
task.
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Programme of work

5.1 Part i

The first part of the work will be mainly concerned with the

provision of facilities mown to be needed for the generation and use of

lover level plans, To some extent these will be developed with "dummy"

modules representing facilities to be experimented with in Part 2., There
will be 4 aims in the first part.

1.

Computations

Current planning systems do not meet the needs of low level (manip-
ulator) planning because they work symbolically and the interface of
conputational systems such as a "position finder" is not possible,

We will provide facilities to allow plan-time and run-time comput-
ations to bs performed to instantiate or modify & plan, In order to
develop the planning system independeﬁtly of progress on the assembly
project a simple "position finder" will be used at first (possibly
using a data base of explicitly asserted positions). Ve wish to
incorporate the use of computations in such & way that the task for-
ﬁalism can be used to describe them naturally and independently of the
level of the task given (e.g. it would also be possible to use com-
putations to provide calculations of quantities of materials for house
building tasks, etc.). ‘

Conditionnl Plenning

Condition types will be added to allow execution time testing of a
world and plan structures designed to allow conditional branching on
such tests, Conditional plans will be necessary in low level domains
to cope with, for example, the several stable positions a component
nay be presented in by a feeding device. There have been very few
attempts to produce plens which can have conditionals in them. One
typical approach is that describe& in Warren (1976) where case analysis
on the branches of a conditional is performed and conditional plans
branch but do not then rejoin., The structured way in which a
conditional would be added to a plan when using a hierarchical
representation of a domain should allow the generation of conditional
plans which branch and rejoin., Ve believe .our algorithm for
question-answering in a partially-ordered nétwork (Tate, 1976, paper

attached) can be modified to cope with networks containing conditionals.

N



3. Run-time Svstenm

We will begin work on a run-time system to take a plan from the planner
and execute it on the Edinburgh hand/eye device., Account should be
taken of the mechanical inaccuracies of the device. Initially, the
run-time system will be based on the code available in the present

manipulation package for the robot.

4, Project Planming

Co-operative efforts may ensure that a broadly similar planner is used
for the project planning as will be required for this proposed work

(the planner currently used for the project plenning is NONLIN). The
capability of adding the "decision graph" and cost analysis components

as they are developed in the planning project should be preserved.

At the end of the first phase of the work we will have hierarchically
specified a collection of assenbly operations such that the plenner can be
given commands at a high level and used to generate codefor a run-tinme
system on the Edinburgh hand/eye device, We would hope at this point to
be able to generate and use some plans which did not require the use of -

sensory information (i.e. assembled by dead—reckoning).
5-2 Part 2

. ~ Planning systens have not in general concerned themselves with
the requirements of executing and monitoring a plan after its generation
(with the notable exception of the STRIPS/HACROPS/PLANEX systenm). Ve
thus anticipate that part two of the work, together with the provision in
part one of conditional plemning facilities, will provide the greatest
challenge and require the most effort, This will be to evaluate the use
of the integrated approach in the domain of automatic essembly, At first
we wWill choose a task such as the assenbly of a model car from a kit of
parts since such assemblies can be done at present in a "blind" fashion
(Ambler et 21, 1975). Within the framework of exploring this problem there
will be 3 ains in part two. ' :

1. Use of goal structure for monitorine the execution of a plan

We aim to show that the goal structure of a plan (a GOST generated by
NONLIN) can be used as the basis of an execution monitor, The run-
time system will therefore be extended to perform monitoring using

goal structure. Any monitoring error would probably be treated as a
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stop condition at first though we expect to be able to add a re-
planning capability in due course.

Executing Conditional Plans

We will experiment with TESTABLE conditions and conditional plan
parts in order to use gimnrle sensory information (e.g. force on the
hand) to guide sasgendbly, As more sophisticated sensory facilities
are developed on the assembly project, we hope to interface to these.
Ve anticipate that the goal structure of a plan can represent the
use of run-time conditionals and can thus be used to monitor the

execution of plans containing them,

Uaing Computations

An interface to computetional processes such as the "position finder"
desceribed earlier and to numeric data bases will be made through the
facilities provided in part one. Some standardization of the data

bases used between the projects would help in this task and efforts
should be mede to achieve this (it is not the case at present). Since
goonetric modelling is one of the most complex computational tasks to
which we will interface, we must be prepared to make such simplifications

as are necessary to enable 1 and 2 above to be achieved,

* The prbject ¥ill thus inéestigate the u#e of a planner and run-time

system in two differing domains and find a task formalism adequate to cope

with the needs of representing tacks in those domains. In particular we

hope to demonstrate that the system can generate plans with the detail

required for their execution on & computer controlled assembly device.

We will investigate the generation and use of conditional plans.
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6e An example of the task formalism in use

We give here an example of & piece of code which is in a crudely
extended version of the Task Formalisnm (TF) currently accepted by NONLIN.
This is part of a problem description given to a modified form of NONLIN
to clarify scme of the ideas in this proposale The Formalism has been
extended to provide a wesk "CQI-iPU‘l‘E" facility. The syntax here would not
be preserved in the system proposed and work is already in progress to '
separate the action parts of an expansion from the specification of

conditions and their ranges. The code describes a way to pick up a block.

1. It ensures the hand is emptly.

2., It approaches the block through an approach position
¢<X Y HIGHZ>> (where HICGHZ = Z + 20 cm).

3 it sets the fiﬁgers 5 em wider than the width of the block (the
block width is found through the value of BLOCKWIDTH in a numeric
data base). '

4, It lowers the hand to a position computed by the function POSITION
(<block to be picked up>) which returns a vector <KX Y 2>>. Real
position finders are more complex,

5., It closes the fingers to grip the blocke.

6. It moves the hand (now holding the block) up to the approach
position <<X Y HIGHZ>>.

$*X is a variable X, ° The veriable may be given a restriction in t1
uVARS" gtatement., Facilities exist for giving a partial-ordering on
actions in an EXPANSION as well as the fully ordered sequence given here

(an example of this is given in section 2.1).

OPSCHEMA PICKUP
PATTERN <<HELD S¥B1>>
1 EXPANSION GOAL EPTYHAND |
CONDITION USEWHEN <<CLEARTOP $*B1>>
CONDITION USEWHEN <<ON $*B1 $*B2>>
CONDITION USEWHEN <KOVER $*B3>>

CONDITION COXPUTE {«.( $*X $*Y S*Z>> = POSITION $*B1] use of a simple

CONDITION COMPUIE [S*HIGHZ = $*Z 20] computational facilit
2 ACTION <CIOVEHAND << S$*X S$*Y $*B:I'1HZ>> > .
COIIDITION CO:PUTE ‘**WIDTH = BLOCK\:'ID’I’H] use of a numeric data base.
CONDITION COMPUTE S‘PING"‘NID"‘H + S*¥WIDTH 5]
3 ACTION <<SETFINGERS $*FINGERVIDTH>> {
4 ACTION <CHMOVEHAND << S*X §¥Y $*Z>> >
5 ACTION <<SETFINGERS “‘*IIIDTH»
6

ACTION <<INOVEHAND <« ?*X $*Y S*¥HIGHZ>> >>
EFFECTS -~ ENPTYHAND
+ <CHELD $*B1>>
-~ <<OVER S*B3>>
+ <<OVER *B2>>
VARS B! UNDEF B2 UHDEF B3 UNDEF X UNDEF Y UNDEF 2 UNDEF HIGHZ UNDEF

WIDTH UNDEF FINGERWIDTH UNDEF:
END;

L]
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PICKUP is a relatively low lovel job specification in the hier-
archical description of the domain, The rest of the package gives ways
ﬁo achieve EFMPTYHAND etc. and gives higher level actions (e.g. ,
<CPUT X ON TOP OF Y>> which uses PICKUP as a component), Lower level
descriptions of NOVEHAND and SETFINGERS would be needed for a practical

system as would a more general approach position mechanism, etc,
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Te Wider Justification

1. Hiersrchic Task Specification

Robot devices for performing mass assembly and finishing processes
are bocoming widely used in industry (Industrial Robot Technology, 1976).
The developnent of programmable robots (controlled by a mini—computer) has
extended the epplicability of these devices to the economically importanf
field of batch production and special purpose "one~off" processes., Since
such devices may need to be re-programmed many times during their working
life, the generatiog of control progrszs should be straightforward. The
specification éhould preferably be done at the level of someone describing
a finished article or job, The planning of an assémbly using a hierarchic
planner and taék formalism will enable complex tasks to be dealt with et
high levels first and expanded to detail in a structured way. It will allow
a natural interface to libraries of detailed pre-programmed sub-tasks (é.g.

provided by the nanufacturer of a versatile industrial robot).

2. Using Alternatives

In the domain of automatic assembly, a large computer may be used.
to compile & control programrto be repeatedly executed on some device. It
is worth expending compile-time effort to produce a good progran. A sys-
tem such &s we will develop can be given alternative ways to perform
asgembly operations and then the planner allowed to select those appropriate
for some overall task. This is a capability not being considered in cur-
rent research on automatic assembly languages. The capability of
attaching costs to actions in a plan will allow us to generate cost-

effective control programs,

3. _.Executineg and Monitoring Plans

We consider it important that we will be using a run-time system
to execute plans since-much recent work on planning has been divorced from
the actual use of plans on & real device. The systems have, therefore,
tended to become rather stereotyped and deal with problems which have
difficult features dbut which are intrinsically simple (a.g. block stacking
problems), The only comparable work on a planner and run-time plan
monitor was the STRIPS/MACROPS/PLANEX system developed at SRI in 1971-2,
Recent advances in planning and in the capabilities of computer-controlled

devices make it desirable to construct an up-to~date system.
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4, Conditional Planning

Our research is scientifically interecsiing as we will be invest-
igating the generation of conditional plans (which has much in common with
automatic programming) and the use of such plans to allow sensory information
from a domain to be coped with, The use of sensors will be vital for

versatile assembly robots,

oy
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Using TF to describe parallel processes and NONLIN as a compiler to establish a

partial order on their execution to achieve some goal.

Work in Artificial Intelligence on generating project networks by the use

of hierarchic non-linear planning has led to a formalism . for describing task
domains (Task Formalism - TF) and a hierarchic non-linear planner (NONLIN) which
can use TF descriptions to plan to achieve a given goal. In discussion with

Owen Evans and others at the ICL Stevenage Research Centxe during the Summer of
1976 it became clear that TF could provide the basis of a language for specifying
parallel processes and the communication channels between them, and that the plannex
NONLIN could then.act as a scheduler and compiler to ensure that the processes
achieved a required goal. This note briefly describes the tie up between TF

forms and their interpretation as a process description language.

The main component of a TF description is a schema which describes the
sub-processes necessary to achieve the purpose of the overall process. The
sub-processes are mentioned explicitly by name (as ACTION nodes of the expansion)
or by pattern (leading to non-determinism - as GOAL nodes of the expansion - or
in the next NONLIN as ACHIEVE conditions}. A partial order may be imposed
on these sub-processes.

Inter process communication is facilitated by way of messages broadcast by
a terminating process (at a particular time point changes are made on a world
mode]l via the effects of the schema - the machine state is altered) and by the
conditions on processes. Effects are defined as a pattern (an extension of the
notion of a variable) being given a value by the process. Complex messages can be
sent by this schemne. Conditions on processes are present for a variety of
reasons but all conditions must be satisfied before a process can run. They thus
act as triggering monitors on the world model (machine-state) for this process to
Start. The condition types available describe to the scheduler (the planner .
NONLIN) how it should go about satisfying the activating conditions for each
schema (or process). Supervised conditions describe conditions to be made true
by a particular sub-process of the process stating it, defining a protected range
for the statement. Unsupervised conditions describe conditions to be made true
by an outside concurrent or earlier process, i.e. a monitor on the messages
broadcast by other processes. Usewhen conditions describe environmental
information about when it is useful or meaningful to invoke the process. These
may check the global machine's state (global world model).

Sub-processes and a partial order on them are provided by the expansion of
the schema. These describe how the purpose of the high-level process may be
achieved in texrms of lower-level processes.

Time slices for processescan be allocated using-the time estimates which may
be provided in TF schemas on sub-processes. The critical path information
available allows estimates of processor usage and job length etc to be made by
the schedulerwhen it is dealing with several separate jobs.

Austin Tate
22nd June 1977



A net marking algorithm for Question Answering in a partially
ordered network of nodes

Austin Tate 21 June '77

Tate (1976) describes a question answering process for partially
ordered networks of nodes. The process relies on having the nodes in
the network marked with respect to the node at which a query is made
(say node N) and using these marks to find a set of "critical" B-nodes
for node N. Critical P-nodes are those which, in a possible
linearization of the network, could establish P with some value which
could be maintained up to node N. Given such a marked net, a very simple
process can be used to.determine the answer for any query, or, if the
answer is indeterminate, to suggest links in the net which would make

the query be satisfied (if this is required).

Presented below is a net marking algorithm which does not require
the marks at a node to be cleared each time the net is to be marked, and
which, for each marking,

a) traverses each link before node N at least once and at most twice
b) traverses each link after node N exactly once
c) does not traverse any link in parallel with node N.

This is an improvement over previous schemes in use.

Mark Variables and the values they take

3 integer variables are kept BEFORE initialized to -2
NODE initialized to -1
AFTER initialized to . 0

Each new node added to the network has 3 mark variables

A mark to say node is before node N . )

B mark to say node is before a critical node for P at node N

and possibly a 3rd mark variable

C mark to say node is a P-node.

All mark variables are initialized to 0O when a node is:first put
inAﬁhe network. Before marking a network, the mark variables BEFORE,
NODE,; and AFTER are each incremented;by:3 giving unique integers which
will be recognized-as the position of a node in the net with respect to

node N whatever the present marks are at each node (avoiding mark clearing)

Due to the initial values, on first use the marks will be 1, 2 and 3.
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The marking algorithm

1. An optional first phase is to mark the C mark variables of each P-node.

Whether it is necessary depends upon the efficiency of determining if a node
is a P-node.

Get TOME (Table of Multiple Effecty entries for the statement the query

is to be made for (say P). This is a single lookup in NOAH and NONLIN.

Mark the C mark variable of each node on the list of entries. The mark

could be the integer in variable NODE to save mark clearing again.
Initialize the critical nodes list to NIL.

"Before" marking:
traverse the links before node N (along PRENODES links) depth-first.
At each node:

Is variable A marked with integer in BEFORE?

YES - terminéte this branch of depth-first seaxrch.
[lark variable A with the integer in variable BEFORE.
:s-node a P-node? - using mark variable C to find out

or some other means.

'ES [>ritical P-node possibly found. Add to critical nodes list.
fark the A and B mark variables of all nodes before this
wde. Use depth-first marking, terminating any branch on
< thich there is a node with mark variable B already equal
:0 the value in variable BEFORE. Do not look for P-nodes
thile marking the A and B marks of these nodes.
:7hen this is done, continue normal depth-first marking

.ooking for P-nodes at the point where the possible critical

thnode was found.

0

.
"After" marking:

I3

Simple depth first marking of each node's A mark variable for nodes after
node N (along SUCCNODES links) with mark in variable AFTER.

"Node" marking:

Mark A mark variable of Node N with integer in variable NODE
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6. Scan down the list of possible critical nodes found. Remove any node
whose B mark variable is set to the integer in BEFORE. These nodes
have been found to be before some other critical P-node and thus are
not genuine critical P-nodes themselves. The remaining list contains

the critical P-nodes before node N.

7. Get the TOME (Table of Multiple Effects) entries for P and extract any
node which has an A mark which is not the same as any value in BEFORE,
NODE or AFTER (in fact can say any node whose A mark is less than the
value in variable BEFORE since all 3 variables are always larger than
any old mark in the network). This phase gives the critical P-nodes in

parallel with node N.
After the process,we have a marked network and the 2 sets of critical
P-nodes necessary for question-answering by the scheme presented in

Tate (1976).

Further queries at the same node (N)

If links have not been altered in a network,
advantage may be taken of the fact that the A mark variables of a net

marked with respect to a node N will not alter if a query for a different
statement P is made at the same node. This will commonly be necessary in
order to establish the truth of several conditions at a node etec, It is

then only necessary to mark the B marks of all nodes before any P-node which
is itself before node N (found by looking at the P-nodes' A marks) . Again a
unique number can be used for the mark (by incrementing the value of variable
BEFORE by 3 and using this wvalue). The critical nodes for the new statement P
at node N can then easily be found by checking the B marks of the P-nodes
which were before node N to see if any has had its B mark marked (then it is
not a critical P-node). The parallel critical nodes axe found in 2 similar

way ,tb' step 7 above.

Reference

Tate, A. (1976) Project Planning using a hierarchic non-linear planner.

DAI Research Memo No. 25



HOW TO USE THE NONLIN FLANNING SYSTEM

AUSTIN TATE 19 NOV 1976

1..Introduct ion

This note describes how Lo use the NONLIN planning csustem on bhe
Edinburah DEC 10 FOF-2 custem. NONLIN i a hierarchic non-linear elanner
based on the NOAH elanner developed at SRI by Sacerdobi (1975). NONLIN was
develored as a vehicle for research on the “Flannina: a Joint AI/OR
aperoach” SRC prodect (laniel and Tates 1978). Ib forms the first
attempt at an interoctive proaram which can aid a user in Lhe construct ion
of prodect networks suitable for the applicat ion of Oearat ional .
Research ot imizat ion stratesies. Howevers it is not specialized to anu particular
taock domain and can be used as a aeneral planning sustem. The user communicabee to
the sustem throush a declarative Task Formalism (TF) and throush other interactive
facilities. NONLIN and a full BNF description of TF are documented in
Al Research Mezmo 25 (Tates 1976). This report chould be consulted
along with comments 'in the source lictings as documentot ion of Lhe program.
Thice present note also zerves Lo indicate additions to the facilitics
provided in the current implementab ion. New facilitiee not documented in
memo 29 will be indicated as such here.

The FOFP-2 source code ie available in bthe file
FOFSNONLIN.FOF. A cackaae of critical path routines iz in :
FOFNONLIN.CFPM. Thie Lext is used in the hele facilities and ic in
FOFINONLIN.TXT. Theee 3 filec toscther with samele data in TF
(cee later) are backed up on [ECTAPE Q092G with the zame file naomes.

N.E. POF:d{filename) is a FOP-2 library file {(filename) in FFN 140,141.

2. To run NONLIN

R FOF2
{messnge print.ed by FOF-2 custem)
COMPILE (LIBRARY (CLIR NONLIND) )}

The planner will print out messases as it compiles the HEASE data bacse
sustem (Barrows1979). HBASE primit ives are available for use
independently if needed by a user. The NONLIN cwstem asks if wou reavire
HELF informat ion. If wou btupe H followed bw a {carriage return) it will
print out this document. Otherwise Just tupe <{carriase return).

The custem then asks if wou wich to compile the critical epath rout ines
(tupe Y or N followed be a (carriase return)). The planner is then
available.

HBASE occuries abouwt 4k words and NONLIN a further $k words of
cstore on the DEC 10. NONLIN has been vsed to generate prodect networks
up to about 150 activities (this taking about 180 seconds CFU) for zimele
house buildina domains.

Rt atae cnad T ———
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3. Modes of ucse of NONLIN

The suystem can be used in 2 different wagsy Stand-alone or
interact ively. - .

3.1 Stand-alone use

TF code can be twped directly to the sustem or can be compiled
from a file. If all relevant informat ion for a task is given beforehand
and then planning reauests tuped at bhe eystems no extra informat ion will
be couaht by NONLIN and it will produce the answers (if poscsible)
without user interaction.

E.ga.y if a file for a house building domain ice in file HOUSEL.FOF and

it gsives all relevant information to plan Lo do the
ACTION <((BUILD HOUSE?} we could

COMFILE (CHOUSEL.FOFD) $
FLAN ACTION ((BUILD HOUSE>>§

The cwebem will then expand Lhe ACTION using the TF forme aiven and will
correct for any interactione found.  The prodect nebtwork will bthen be
erinted os a table of the nodes in Lhe nebwork with format

{node no.} {(node Lupe) {previowus node nos} {(succescor node nos’? {(node pattern?

Some TF domain descriptions which can be vsed in stand alone foshion are
aiven on DECTAFPE 009206.

HOUSE1L .FOF a houce buildina domain which can be used Lo
FLAN ACTION {(<{(BUILD HOUSE>>*
It senerates a network with 29 nodes.

HOUSE2 .FOF fAs nbove Yor a prodect network of 48 nodes.

HOUSEC.FOF HOUSEYl domain with durations on activities - must have
the critical path packase available.

NLERLOCK.FOF Sacerdot i (1975) block stockins domain. Can sive soale of
{{(ON % 9> and {CLEARTOF x}>.
E.g.y FLAN GOAL {(<(ON & B> GOAL ({ON B C)>%

NLROBOT.FOF A block stacking domain with a lower level of detail te senerate
act ions such as (KMOVEHAND {({x v z>) »?. Useful as an :
example of how to vse COMFUTE condit ions. Howevers I have
not had time to debua this packase so it only works for
certain patterns.

See Tate (19768) for how to sive gour own problem in TF and the eeneral
form of FLAN statements. You maw find Lthe above exameples of use in this
alseo. Since memo 25 was written the FLAN statement has been extended to
allow FROTECT {(pattern? ... 7 to be written after the GOAL or ACTION
ct at.ement s. '

E.s.r FLAN GOAL (<ON A R)>)> FROTECT <(<ON A E)} ((CLEARTOF E)>)>}

If a user wishes to delete the TF descrirtion to describe a new
domain he should first tupe
NEWDOMAIN - A ’



3.2 Interactive Use

Facilit ies have been added since memo 25 to allow a Lop—-down
arproach Lo the senerat ion of the TF descriprtions. If the full detaile
of a domain are not available when come task is gaiven to the elannery
the sustem will prompt a user to provide extra informat ion as it is found
to be needed. The facilities in the present planner are only a weak form
of the interactive facilities it is hoped will be provided in a more
complete sustem after the "planning: a Joint AI/0R approach” work is
completed.

The facilities provided allows a task to be planned comeletely
top—downs the csustem promet ins when lower level detail ie necsdeds down
to <ome level which a user indicates can be considered primit ive.

More usuallyy lower level detail will be provided as a library of
preplanned tasks or erimitives and onlw the Loe level Lask must be
broken down.

When a schema cannol be found to expand some patterns the
eystem will ask if @wou wish to

1. ABORT tupe O

2. CARRY ON tupe 1
Fail to exrand bhe pattern and hence choose an alternat ive
in the search srace of the planner.

3. GIVE EXTRA TF FORMS Ltuwpe 2
Give &4CTSCHEMA=y OFSCHEMAss FRIMITIVE or
FRIMITIVE .. WITH EFFECTS .. declarat ions onlu.
The cuwstem will 3o into FOF-2 readw mode to enable this
to be done. When wou have given the information the
csustem can user tupe GOON.

To aid in such interactive usey the csustem aives diagnost ic informat ion

if it fails on any sub—-task and considers alternat ives. One error
not described in memo 25 is

UNSUFPERVISED CONDITION NOT SATISFIED AT NODE n {(pattern?

This error could indicate an error in describing a condition {(check
espelling) or indicate that the task which should have establiched this
condit ion failed to advertise that fact. It maw also be that the
csucbem has linearized the network in such o waw that the condition
could not be satisfied. For that reason ofter giving bthe error rerort
the rlanner thus goes on to consider alternat ives.

After a torp—down aperoach to senerating a netwarks it maw be useful
to read bock the TF descrirkion o that it mow be reused. This con be done
for each (echema) in the list ALLFNS bw: X

OFPEXFANSION ({schemal}) - ALLNUOLES: LENGTH(ALLNODES) -3 NUMNODESS

FRINTNET Q)3 to erint Lhe expansion.

GENPR (OFFATTERN{{schemad{)}? to sct its FATTERN

AFFLIST(OFCONDITIONS ((echema?) «GENFR)? Lo erint the condit ions.
The list of FPRIMITIVES can be erinted from the list FRIMLIST.

4. Gett ing further solutiqns




If a task ic succecssfully solvedsy it may be pocssible to get other colut ions
from the choice points aenerated by the search

REFLAN reenters the planner to aet further colutions. It can be done

unt il no further solut ions are given.

5. Diagneostics and cther interactive facilities.

Detected errore ab TF definition time and abt FLAN L ime are
decscribed in Tate (1976). Al=o in that paper ie a lict of functione
which can be used to examine a prodect network after an error or durins
veer interaction.
€.3.y PRINTNET() printe the prodect network.

and troce

Various switches can be st Lo give extra diasnost ice
eswitchee and

informat iony e.9.s BUGEXFAND. See Tate (1978) for these <w
their effectes.

Since memo 25 arpeared a function to erint the critical sath
data at any stagse of nebwork consbruct ion has been provided.

FRCFDATACALLNODES) aives informab ion for eoach node in the network in bthe form
{node no.? {(node epattern? {(duration} {(zarlu finish? late finich}

Note that <{clack) = (late finish? - {earlu finich) = 0 for critical nodes.
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