
-GENERATING PROJEG-r NETWORKS

Austin Tate
Department of Artificial Intelligence

University of Edinburgh
Edinburgh Scotland

Abstract manual construction of project networks.

t

Procedures for optimization and resource
allocation in Operations Research first require a
project network for the task to be specified.
The specification of a project network is at
present done in an intuitive way. AI work in
plan formation has developed formalisms for
specifying primitive activities, and recent work
by Sacerdoti (l975a) has developed a planner able
to generate a plan as a partially ordered network
of actions. The "planning: a joint AI/OR ap-
proach" project at Edinburgh has extended such
work and provided a hierarchic planner which can
aid in the generation of project networks. This
paper describes the planner (NONLIN) and the Task
Formalism (TF) used to hierarchically specify a
domain.

Steps towards automating the process of
specifying constituent jobs for some task and for
giving the precedence relationships between jobs,
have been developed for representing the data to
the planning process, i.e. a description of the
goals of the plan and the operations (jobs) of
which it might consist (notably the representation
of operator schemas to STRIPS -Fikes & Nilsson,1971).

The applicability of the AI work on plan
formation to the generation of project networks
has been restricted because most of the work has
concentrated on the production of plans with
totally ordered sequences of primitive jobs rather
than the networks needed for OR analysis. Avoid-
ing as much unnecessary sequencing of primitive
jobs as possible is important to permit effective
scheduling by OR techniques. Recently, Sacerdoti
(1975a) has explored the use of a planner able to

generate a plan as a partially ordered network of
actions. This work forms the basis of our ap-
proach to aiding a user to generate a project net-
work for some task. Sacerdoti's approach cannot
be described here, so a reader unfamiliar with the
work should see the reference cited above.

1. AI and OR approashes to planning

The general problem of planning a task is one
of very broad scope. Current work in Operations
Research (OR) and Artificial Intelligence (AI) has
concentrated on different aspects of the problem.
We have taken an interdisciplinary approach in the
hope that this will lead to a development of both
these aspects.

~

In the OR approach, the planning process falls
into two stages.1.

The constituent "jobs" of a plan are specified
together with their precedence relationships (i.e.
requirements of the form that one job precede an-

other).. This information defines a graph, termed
a project network.

2. Various operations ale ~erformed on the pro-
ject network to establish schedules and allocate
resources (e.g. using critical path analysis).

OR work has been concerned with the second
stage of computational operations on a given pro-
ject network. The preliminary stage is perform-
ed in an intuitive, not well understood, and

probably haphazard way.

2. An overview of the project

The "planning: a joint AI/OR approach" pro-
ject has been concerned with aiding a user in the
process of constructing a project network. To do
this, as in the Work of Sacerdoti, we have been
investigating the use of a partially ordered net-
Work of actions to represent a plan (or project)
at any stage of development. Any ordering in the
network results from the fact that either
i) an action achieves a condition for a subse-

quent action, or
ii) an action interferes with an important effect

of another action and must be removed outside
the effects' "range".

Range here is used to mean the time between when a
goal is achieved and the point at which it was re-
quired to satisfy a condition on a later node.

,2.1

Task Formal! SUI (TF)It can be argued that the generation of a
project network is important because of the struc-
ture it imposes on the task in hand. It forces
component jobs to be isolated and necessa~y order-
ings between them considered. The project net-
work can be used not only for predictions of how
the project will be done, but also as a tool to
aid in monitoring its progress and allowing
bottlenecks to be identified. However, a con-
siderable amount of effort is expended in the

The a~thor' s present address is: Edinburgh
Regional Computing Centre, Alison House, Nicolson
Square, Edinburgh, EHB 9BH, U.K.

A formalism (TF) has been specified to enable
actions in a domain to be described in a hierarch-
ic fashion. Sub-task descriptions can be written
independently of their use at higher levels. The
Task Formalism is intended to encourage the writirq
of modular job descriptions at various levels ofdetail.

Within the specification of each task
will be information about
a) When to introduce an action in the planb)

The effects of an action
c) What conditions must hold before an action

can be performedd)
How to expand an action to lower level actims.

house building task might be

«SUPERVISED «SCAFFOLDING ERECTED» TRUE 6»
with value [4].

This would mean that «SCAFFOLDING ERECTED» had
to be true at node 6 and was made true at node 4
(nodes in a network are numbered). Node 4 herewill

be referred to as a "contributor" to satis-
fying the condition. It is possible to have
several potential contributors. The GOST thus
specifies a set of "ranges" for which patterns
have a certain value. Goal structure provides
information about a plan which would be difficult
to extract from the detail of the plan itself.
The use of goal structure to direct search in a
problem solver was first investigated in Tate
(1975) .The goal structure of a plan not only

provides information to aid the search of the
planner, it contains valuable information for mon-
itoring the execution of a plan.

We illustrate the form of TF by an "A~SCHEMA"
from a simple house building task (the complete
listing is given in Tate, 1976) .

ACTSCHEMA DECOR
PATl'ERN < <DECORATE> >
EXPANSION
J. ACTION «FASTEN PLASTER AND PLASTER BOARD»
2 A~ION «POUR BASEMENT FLOOR»
3 ACTIOO «LAY FINISHED FLOORING»
-4 ACTION «FINISH CARPENTRY»
5 ACTIOO «SAND AND VARNISH FLOORS»
6 ACTION «PAINT»
ORDERINGS 1 --->3 6 --->5 SEQUENCE 2 TO 5
COODITIONS
-UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1
UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED «AIR CONDITIONING INSTALLED» AT J.
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING FINISHED» AT 6
SUPERVISED «PLASTERING FINISHED» AT 3 FROM 1
SUPERVISED «BASEMENT FLOOR LAYED» AT 3 FROM 2
SUPERVISED «FLOORING FINISHED» AT 4 FROM 3
SUPERVISED «CARPENTRY FINISHED» AT 5 FROM 4
SUPERVISED «PAINTED» NX 5 FROM 6.

END;
This schema says that an ACTION node with pattern
~<DECORATE» can be expanded into 6 lower level
actions with the following partial ordering:

Conditions on nodescin.the-expans1.on are given~es.
SUPERVISED conditions are made true with-

in the expansion of the task (e.g. the ACTION
«PAINT» (6), achieves the SUPERVISED condition
«PAINTED» on ACTION 5). UNSUPERVISED conditions
are made true by other experts (mainly here by an
"INSTALL SERVICES" expert). Another condition
type, "USEWHEN", would say that an ACTSCHEMA con-
taining it should not be used unless the condition
was already true. It is also possible to specify
the EFFECTS on a node of the expansion. In the
case of the DECOR schema these would be defined by
lower level actions.

2.3 Comparison with NOAH
NONLIN, as mentioned previously, is based up-

on the work of Sacerdoti (1975a) on the NOAH plan-ner.
We accept the concept of Sacerdoti's work:

that ordering constraints should only be imposed
between the actions comprising a plan if these are

"necessary for the achievement of the overal1 pur-
pcse of the plan. However, the NOAH program stj1l
had to uake choices as to the order that actions
were to be placed-in a plantQ~orrectfor inter-
action&.~ NOAH made this choice in one particular
way. It did not keep any backtrack choice pcint~
so this decision, once made, was irreversible.
This leads to an incompleteness of the search
space which can render some simple block pushing
tasks unachieveable by NOAH (see section 10 of
Tate, 1975 for a full account). NONLINis cap-
able of correcting for an interaction by suggest-
ing two orderings (which are sufficient to ensure
the incompleteness of NOAH mentioned above is
avoided --see section 4.4). Other operations
performed by NOAH deterministically (i.e. without
generating alternative courses of action) should
also be considered as choice pcints. Two examPles
of this are
a) the choice of which method to use to expand a
node where alternatives exist, and
b) the decision to merge two nodes in a network.
If such decisions cannot be undone some problems
are unsolvable. NONLIN keeps such choice pcints.
We found it impractical to store all alternatives
in a single AND/OR network. Instead, we make
choices as they become necessary but keep altern-
atives for later re-us~. As in NOAH, we expect
that the first choice taken should lead to a solu-
tion since many of the choices made by linear
planners have been avoided. Indeed, if failure
occurs with the first plan being considered, our
experience is that backtracking can lead to long
searches since many consequent ordering choices
may have been made because of an inappropriate
choice early in the generation of the plan. We
are tackling this problem by the use of a "De-
cision Graph" (see Daniel, 1977).

2.2 The non-l_inear planner (NONLIN)
A planner, NONLIN, has been implemented which

can generate plans from task descriptions given in
the Task Formalism. It generates a plan at pro-
gressively greater levels of detail and can handle
interactions between sub-plans to produce a plan
as a partially-ordered network of actions. The
algorithms employed in the planner have been de-
signed so that ordering choices are avoided wherepossible.

However, where a choice does become
necessary all choice points are kept for later
analysis or re-planning. A simple clear repre-
sentation of the goal structure (GOST) of a plan
is kept (the conditions on nodes of the network
together with the points where the conditions are
achieved). An example of a GOST entry during a NOAH had no way to distinguish between im-

:PDrtant -efiects at nodes which achieved a conditiJn
~$ome ~ater node and ~rtant side-e££ects.
U a ~ was iDtroduced to achieve some goal for
Cl].;at£r =de. NOAH ensured that any effect at the
~roduced node was kept true up ~ the goal node.
~ ~ Jnean that no plan orderiDg may be found ror
;P:I:DhlS15 to which solutions exist.. NONLIN dLs-
1:.i:nguj;shes .between an e££ect at a node which sat-
isfies some condition at a ~ater node and other
~t e:f£ects. The goals structure inform-
ati= "Wbi~ 1l0NLIN keeps is used to enable NONLIN
1bD !SIJggest the minimum of two al ternati ve order-
;i:ng:s to correct £or iDteractions and to disting-
--ui.5h j;m,pa:rtant effects.

STRIPS (Fikes and Nilsson, 1971).

~

\We iIav~ gi~ car~:ful attention to:the design
of ?a guestion answering program which behaves cor-
:r~ct1y :for queries in a partially ordered network
of nodes. This algorithm is fully described
later in this paper. The algorithms used in NOAH
failed to take into account interference on the
truth of some statements by the effects of actions
in parallel with any path from a query node to the
initial situation in a plan network.

There is a third type of condition which an
expert may impose. Conditions may be stated
which must hold before this expert can be called
into use at all. For example, consider a block
stacking expert which knows how to clear blocks
by moving a block on top of the block to be clear-
ed to some other place. If a block cannot be
found to be on top of the one to be cleared it is
no use calling this expert at all. If the con-
ditions were merely stated as a goal to be achiev-
ed before the movement of the upper block to some-
where else was done, we could get into a situation
where we actually move some block onto the one to
be cleared and then move it off again. Such
static conditions on the use of a particular ex-
pert will be called USEWHEN CONDITIONS. Usewhen
conditions can be considered to be an extension to
the check of relevancy of some schema which im-
poses them.

3. Task Formalism for domain specifications

At tile outset of this work the problem of
straightforwardly specifying a domain to a problem
solver in a hierarchic fashion was recognized as
being of primary importance. We wish to allow
IUqh ~~ve1 de£initiuns o£ a task to be given, each
:part of which can be expanded into lower level
;rles1::riptiDnS and so on down to some arbitrary level
which the user of the program requires as output,
or for which "libraries" of lower level plans are
available. It should be possible for each com-
cponent at lower levels to be specified in a moduJar
~ -:not :requiring knowledge of the exact form
o:f Dther components. Given any particular task,
~ plmmer must choose appropriate lower level
actions ~o that each part of a plan can be per-
:f=med successfully and so that the overall pur-
pose o:f the plan is achieved.

So, we can distinguish three different types
of conditions:

(a) Unsupervised conditions
(b) Supervised conditions
(c) Usewhen conditions

Making a distinction between them can be of great
benefit in controlling the number of choice points
generated during a search and in choosing an alter-
native after a failure. Only conditions of type
(b) are allowed to cause further expansions to be

made to the plan being generated, i.e., allow fur-
ther experts to be called in to plan to achieve
the conditions. This is why they correspond to
normal preconditions as specified in STRIPS. If
expansions were allowed to achieve the ,'nsuper-
vised and usewhen conditions, we could find that
the net contained much redundancy which could be
difficult to resolve. It seems better to allo-
cate jobs to appropriate experts.

Example of TF
TF is completely declarative and is based up-

on the operaco~ schemas provided in STRIPS (Fikes
and Nilsson, 1971). A full BNF description of
the Task Formalism and further examples of its use
are given in Tate (1976). However, some idea of
its form can be got from the listing of one "ACT-
SCHEMA" from a small house building domain in
section 2. Below we give a complete listing of
the block stacking domain translated from Sacer-
doti's (1975a) SOUP code for comparison ($* is a
variable prefix).

AcrSCHEMA PlrroN

PATTERN «PUT ~*X ON TOP OF ~*Y»

CONDITIONS USEWHEN «CLEARTOP ~*X» AT SELF

USEWHEN «CLEARTOP $*Y» AT SELF

USEWHEN «ON $*.x $*Z» AT SELF
EFFEcrs + «ON ~*X ~*Y»

-«CLEARTOP ~*Y»

-«ON ~*X ~*Z»
+ «CLEARTOP ~*Z»

VARS X UNDEF Y UNDEF Z UNDEF;

END,

Sub-~~kaesE!:i~on -the use of condition types
~ sub-tasks are being provided, the ex-

Ferts who produce them may know that the constit-
~ jobs ought to be done in a particular order,
or !know that several jobs can be done together (in
parallsl) .They know that certain conditions
::;ught to hold before some jobs can proceed. For
example, a carpet layer knows that before he does
his job the rloor boards ought to be layed, even
though that isn't part or his job. These con-
ditions are not under the supervision or this ex-
pert and are the responsilJili ty or others. They
will be termed UNSUPERVISED CONDITIONS.

~rts also know that certain conditions
EUSt be made to hold under their supervision be-
xore their task can be completed. Again, the
carpet fitter knows it is his responsibility to
~et the carpet to the site, but the details of
that task may be sub-contracted. Such conditions
will be termed SUPERVISED CONDITION. N.B. as we
will see these co:irespond to normal pre-c-ond"itions
in Eeans-end analysis driven systems such as

jWOdectxts and the prenodes and .
snccnodes links.

parentnoae the node was inserted as a result of
the expansion of its parentnode

nodemark a t$lporary marker used to, record the
relation of this node to some other
node in the network ("BEFORE", "NODE",
"»"rER" or "IN PARALLEL") .This is
used during question answering.

Other components can be ignored for the purposes
of this paper. The network thus described gives
the ordering constraints between the nodes in theDetwork.

2 o~~er structures are used to repre-
sent a plan, a TOME and a GOST.

-OPSCHEMA MAKEON

PATl'ERN «ON $*X $*Y»

EXPANSION 1 GOAL «CLEARTOP $*x»

2 GOAL «CLEARTOP $*Y»

3 ACTION «PUT $*X ON TOP OF $*Y»

ORDERINGS 1 --->3 2 --->3
VARS X UNDEF Y UNDEF;

END;

Table of Multiple Effects (TOME)
As in Sacerdoti (1975a) we keep a record of

what values are given to patterns at each node.
The TOME is used during question answering and to
detect interactions.

OPSCHEMA MAKECLEAR

PA'l"rERN «CLEARTOP $*X»
EXPANSION 1 GOAL «CLEARTOP $*Y»

2 «PUT $*Y ON TOP OF $*Z»
ORDERINGS 1 --->2
CONDITIONS USEWHEN «ON ~*Y ~*X» AT 2

USEWHEN <c<CLEARTOP $*Z» AT 2
VARS X <:NOT TABLE:> Y UNDEF

Z ,cjJ\NDC:NOT j*X:>:-<:NOT-$*Y:>: ;>;

END;

ALWAYS «CLEARTOP TABLE>:

Goal Structure (~T)
A condition of any type on any node in a plan

is stored in ~ST together with a list of "con-tributors".
Contributors are nodes, anyone of

which could make this condition hold. See section
4.3 for the method used to find the contributors
for any pattern.

The Goal Structure allows the purposes of any
particular effect at any node to be determined (if
it has any). This allows interactions to be de-
tected and allows corrections (suggested lineariz-
ations) to be sensitive to the important effects
of nodes (those which satisfy some condition).
Unimportant effects are therefore ignored. Once
the interacting ef£ects of nodes are de'. armined
and the goal structure is available, simple linear-
izations can be suggested to remove the interact-
ions (as in INTERPLAN -Tate 1975).

In the block stacking description, SUPERVISED
conditions are omitted. TF fills these in auto-
matically for any GOAL nodes to the following node
in an expansion. The PUTON schema does not spec-
ifyan expansion and only gives further effects
and conditions on the action. The ALWAYS state-
ment asserts that «CLEARTOP TABLE» is true in
any situation. Several schemas can be given
which have the same PATTERN. These then being
alternative methods of expanding a node with thepattern.

Choices between alternatives are
handled explicitly by the planner.

4. NONLIN: The Planner
~--

NONLIN starts with a single node representing
the task to be planned. The simplified control
cycle is similar to that used in NOAH.1.

Expand a node in the network using the ex-
pansion from an appropriate schema.2.
Correct for any interactions introduced.

3. Repeat from 1 until there are no further nodes
to expand.
The system is run IIX>st1y "stand-alone" atpresent.

However, it does support a simple inter-
active 'top-down' planning process, asking a user
for information as it is found to be lacking.

4.1 Representation of the Network
The network is represented as a collection of

nodes which are referred to via a subscript, e.g.
NODE(4). ~ach node has associated with itvar~
ious components:
nodenum its NODE subscript
nodetype GOAL, ACTION or PHANTOM*
pattern used to seek an expansion schema
prenodes a list of nodes linked immediately be-

fore this one
succnodes a list of nodes linked immediately

after this one
nodectxt a context containing the effects of

this node. The partially ordered
network of contexts is defined by the

*"'PHANTOM node is a GOAL node whose pattern was
already true in the network at the point where it::
is placed~

4.2 Expanding a Node
A node is expanded to get more detail of how

a task can ~ r~rformed or a goal achieved..
1) GOAL nodes A goal node is present to state

that the pattern of the node should be true at
the node. There are three ways this could be

achieved.
a) If the pattern was already true at that

point.
b) If we could introduce links into the net-

work to make the pattern true at that pdnt.
c) If we could make an expansion of the node

which would make the pattern be true.
In cases (a) and (b), the goal node is returned
with a new type "PHANTOM". A GOST entry with
a special condition type "PHANTOM" is made to
show the contributors which make the pattern
true at the node. Links will have been put in
tbenetwork as a result of (b).

In case (c), it is necessary to find an ex-
pansion for the pattern and replace the goal
node in the network by the expansion. One
member of the list of schemas which can be used
to expand any pattern is chosen and alternative
ways to expand the pattern are kept as choice

points.

::2} AC"rION nodes An action node is present as a
command to do something. No attempt is there-
fore made to see if its pattern is true or can
be made true (by linking) as cases {a} and (b)
:for goal nodes. However, case (c). is perform-
ed ~xactly as for goal nodes. An expansion of
the pattern is sought and used to replace the
action node in the network. An action node ~s
allowed to have a null expansion. This indi-
cates to the system that the action can be con-
sidered primitive and it should not be replaced
in the network or expanded further. A short-
hand TF form PRIMITIVE ...; can be used to
declare primitives.

Li) a~ P-nodes which are in parallel with
N.

QA (P,V,N) finds the lists of critical P-nodes by
marking the other nodes of the network with their
posi tion wi th re~ct to N and looking for TOME
entries for the statement p.
P definitely has value Vat node N if there is at
least one critical PV-node before node N, and there
are no critical PV-nodes.* P definitely does not
have value V at node N if there is at least one
critical PV-node and there are no critical PV-nodes.

If neithez ox these 2 definite cases arises
then it may be possible to ~ P have value V at
node N by making suitable links in the network if
this is required. We must have at least onecritical

PV-node linked in before node N and link
out all critical pV-nodes (both parallel to an~-fore

N), so that at least one path from a critical
PV-node to N has no pV-node i~ parallel with it.
Since both the PV-nodes and PV-nodes involved may
be contributors to conditions on later nodes, the
suggestion of links must be sensi ti ve to the goalstructure.

The process used to suggest compat-
ible links for this scheme is very similar to the
process which corrects for interactions in a net-work.

The common procedure used is describednext.
It is provided with the lists of critical

nodes found during question answering.

~.3 estion answerin artiallyordered
network of contexts

Current data base systems which provide a con:"
text mechanism, e.g. CONNIVER (McDermott and Suss-
man, 1972), provide efficient facilities for stor-
ing a changing data base by remembering the alter-
ations made to an initial situation. However;--
they only provide facilities for the determination
of the value of a pattern with respect to a given
context in a fully ordered tree of contexts. In
a tree of contexts there is a strict time sequence
along a sin91e context path so answers are fully
determinate. In the partially-ordered network,
answers will depend on the nodes in parallel with
a particular node as well as the answer got by re-
tracing back through a network. This answer, got
by retracing through the network, will itself vary
as nodes are linked earlier in the network. A
:full world model kept at each context would have
to be continuously updated. So, as for a tree of
contexts, it is best to store only the changes to
an initial world model at each node.

We have provided a QA system for such a world
nodel which can respond to two kinds of query:
(a) Does statement P have value V at node N in

the current network? It could have value defin-
~tely V, definitely not V, or be undecidable.
(b) What links would have to be added to the net-

work to make P have a certain value at N if it did
not have this value in the given network?
The system finds lists of "critical" nodes in the
network and uses these to give a truth result for
requests of type (a). The lists contain the in-
£ormation needed to suggest links if a request of
type (b) is given.~

-~ is a node which gives statement P
a value.
PV-node is a node which gives statement P
a value V.
PV-node is a node which gives statement P
a value other than V.

a critical node for (P,N) is a node which,
in a possible linearization, gives a value
to statement P which could be maintained
up to node N.N.B.

The critical nodes for (P,N) are
~the last P-node on each incoming brandl

to N (ignore P-nodes which are also
predecessors of any other critical
nodes since there may be redundant
links in the network).

4.4 Linking process for the network
There are 2 occasions on which it is neces-

sary to suggest links in the network.
a) to detect and remove interactions
b) to make a statement have a particular value

at some node.
We use a common procedure for both thest" tasks.
The overall idea is very simple. It relies on
having the goal structure of a network available.
Goal structure gives a set of "ranges" for which a
statement must have a particular value. A state-
ment is given a value at a particular node and
must retain this value up to a node which requires
the statement ,s a condition. Our process simply
ensures that there is no overlap between any
ranges for which a statement P must have value V
and any ranges for which a ~tatement P must have
a value other than V (i.e. V in our previous nota-
tion) .We take into account 2 facts
i) where there are multiple contributors to a

condition on any node, we are only constrained
to maintain one of them as contributor.

ii) If the condition is only present to make a
GOAL .node a PHANTOM node we can remove all its
contributors if necessary and this will merely
force us to consider ways to achieve the GOAL.

The detai~ o£ the operation is described in
Tate (1976). It emerges that once a pair of con-
flicting ranges are identified it is necessary to
suggest both putting a link from the end of one
range to the beginning of the other and vice versa
(if this is compatible with the existing links in
the network). This is needed to avoid the incom-
pleteness mentioned in section 2.3. This process
is a generalization of the interaction correction
procedure first suggested for linear problem
solvers in Tate (~975).
*The PV-nodesbe£ore nodeN are the "contributors" ,

The p1:ovision of an explicit record of the
cond~tions on any node together with the nodes
which achieve those conditions (the goal structure
of the network) has provided a simplified repre-
sentation of the plan which is of benefit in di-
rect~ng the planner's search (e.g. for (a) or (b)
above). More detail of the NONLIN program and
the procedures used can be found in Tate (1976).
This paper also gives examples of the use of the

program.

We have developed a Task Formalism (TF) to
enable a group of people to co-operatively describe
a task to the system wi th the planner's aid. TF
is completely declarative and this has aided us in
providing the Table of Multiple Effects (TOME) andGoal

St~ucture (GOST). The declarative form of
TF descriptions is also proving of use in the
design of a "Decision Graph" to localize the alter-
ations which need to be made to a network to re-
cover from a search failure (see Daniel, 1977).

~

We are currently engaged on an investigation
of project planning in the scheduling of generator
maintenance in power stations. We hope to gain a
better understanding of the formal channels of
communication used between the planner in an organ-
ization, management who gives directives to the
planner and people from whom the planner gets in-
formation to enable him to plan a project. We
hope to test our present ideas of how this process
is performed (as modelled in NONLIN and TF) on a
realistic application in this domain.

It is vital that comparisons of all ranges
.pecifie4 in the goal structure are not being made
continuously to check for interactions. Our
method ~nsures that only those ranges jeopardized
by any operation on the network need to be checked.
We outline below how this is done for the two'dif-
ferent uses to which the 1inking proce4ure is put.
-.) To detect and remove interactions

As effects are added to nodes in the network,
they are also recorded in the Table of Multiple
EffQcts (TOME). As they are added we can find if
~n intQraction resulted by performing two checks.
~) see if any parallel node has an opposite value

for the statement (a check on the TOME). The
~etwork will already have been marked withre-
apect to the node at which the effect was add-
ed, as a result of question answering.

~i) see if the node given the effect is in parallel
with any range for which the statement must
have a different value (a check on the GOST).

The linking procedure is only entered with any
conflicting nodes or ranges, thus limiting the
computation heeded.
~L To make a statement P have a particular value V
at some node N
--We mentioned in section 4.3 that the QA routine-
can provide lists of "critical" nodes which can be
used to suggest links to make a statement have a
particular value at some node. Given these lists,
the operation can be performed by ensuring that
there is at least one critical PV-node "linked-in"
before nbde N. Th-r9 may already be the case, but
if not, a choice point is made and one of the
crit~ckl PV-nodes is linked before nbde N. The
J.inking pr~cedure is then used to "link-out" all
critical PV-nodes from the PV-range which establi~
es the condition on node N. So here again we
drastically r~duc~ the potential range conflicts
which need to be compared by using the lists of
"cr.it.ical" nodes provided by the question answering
routine.

Acknowledgements
This research WQrk was performed on..a Science

Research Council Grant held by Professor~B. Meltzer
(Grant No. B/RG/94455). The work has benefite4
from discussions with Gottfried Eder and my co-
worker on the project, Lesley Daniel.

~eferences

Daniel,

L. (1977). Project planning: modifying
non-linear plans. Forthcoming DAI Memo.

Fikes, R.E., and Nilsson, N.J. (1971). STRIPS:
a new approach to the application of theorem
proving to problem solving. Artificial
Intelligence, ~, pp. 189-208.

McDermott, D.V. & Sussman, G.J. (1972). The
CONNIVER Reference Manual, MIT AI Lab.,
Memo No. 259.

Sacerdoti,

E.D., (1975a). The non-linear nature
of plans.. Advance papers of 4th Internation-
al Joint Conference on Artificial Intelligence
(IJCAI4), Tbilisi, USSR, pp. 206-214.

Sacerdoti,

E.D. (1975b). A structure for plans
and behaviour, SRI AI Center, Technical Note
109.

5 .Summar~

We have used recent wo~k in AI aimed at gener-
~tih~ plans as partially ordered networks of actions
to aid ih project network construction. Such net-
works are in a suitable form for the use of Oper-
~tions ReSearch optimization techniques. The
preS&ht NONLIN system is a development of NOAH
(Sac:erdoti, 1975a). However, we have sought to
~ro~e over NOAH in several important ways.
«1) Lht~ractions are correcteq for in all legal

ways to avOid an incompleteness present in NOAa
lh faet only 2 alternative orderings need be
eonsidered in order that this is achieved.

b) lnteractions are corrected for only on the
"J.mportant" effects of nodes (those which are
~equired as the contributor to a condition on a
J.~ter node).

c) ~e use a question answering procedure which
beha~es correctly for queries in a partially
ord~red network of nodes;

d) All ~lternatives generated at choice points in
th~ planner's search space are kept for back-
tracking. NOAH did not keep alternatives
wh~re it made arbitrary choices.

Tate,

A. (1975). Using goal structure to direct
search in a problem solver. Ph.D. thesis,
Machine Intelligence Research Unit, Univer-
sity of Edinburgh.

-.0-

-rate, A. (1976). Project planning using a hier-
archic non-1inear pJ.anner4 Research Report
No. 25, Department o£ Artificial Intelligence,
University o£ E~.

I

'J
c~J

j

