
Common Process Editor (CPE):
A Tool for Process Management and Translation

Users Guide
Version 1.0

Steve Polyak
Steve_Polyak@ed.ac.uk

Department of Artificial Intelligence
University of Edinburgh

80 South Bridge, Edinburgh, EH1 1HN, UK

Page: 2 File: cpe.doc - Tuesday, April 7, 1998 8:05 AM

1. Contents

1. CONTENTS...2

2. SUMMARY ...3

3. GETTING STARTED ..3

3.1 USER ROLES ..3
3.2 PROCESS DOMAINS ..4
3.3 BUILDING PROCESSES ..4

4. USER INTERFACE OVERVIEW ..5

4.1 PROCESS EDITOR INTERFACE...5
4.1.1 Menu Options...6
4.1.2 Network Panel..7

4.2 DOMAIN EDITOR INTERFACE..7
4.2.1 Domain Panel ..8

4.3 CUSTOMIZING THE INTERFACE...9
4.3.1 Pluggable Look-and-Feel ..9
4.3.2 Docking Toolbars...10
4.3.3 Tab Positioning..11
4.3.4 Multiple Interface Support ...11

5. PROCESS EDITING ..11

5.1 GENERAL OVERVIEW...11
5.2 ADDING NODES..12
5.3 MOVING NODES...12
5.4 CREATING LINKS..12
5.5 SELECTING NODES, LINKS, TEXT...13
5.6 ALIGNING NODES...14
5.7 ADDING TEXT ..14
5.8 CUT/COPY/PASTE ..14
5.9 WORKING WITH NODE EXPANSIONS...14

5.9.1 Navigating Expansions ..15
5.10 EDITING NODE PROPERTIES ...15
5.11 EDITING PROCESS PROPERTIES ..15

6. DOMAIN EDITING ...16

6.1 STATUS OF DOMAIN EDITING SUPPORT ..16

7. INTELLIGENT ASSISTANCE ...16

7.1 COMMON PROCESS ASSISTANT (CPA)...16
7.2 CHECKING FOR A CONSISTENT PATH..17
7.3 STATE VIEWING ...17

8. FILE INPUT/OUTPUT ..17

8.1 SAVING A PROCESS ...17
8.2 LOADING A PROCESS...17
8.3 PROCESS FILE FORMAT..18

9. QUESTION AND ANSWER..19

10. APPENDIX A: SAMPLE PROCESS FILE..20

2. Summary
The purpose of this document is to provide a guide to the functionality and features of the Common
Process Editor (CPE). This tool is designed to support process management and process translation in a
variety of application areas. In this context, process management includes support for: process creation
and editing; library retrieval/storage; and intelligent assistance. Process translation involves a set of
modules that can import/export process models encoded in various representations. In this way, the
Common Process Editor is seen as “situated” within an environment where interoperability between
tools is required. This means that the CPE can accept input from other tools (e.g. AI planning tools,
other process editors, etc.) which express “standard” process knowledge representations and can pass
knowledge either back to the source tools or along to other special purpose applications (e.g. process
simulator, etc.).

This tool is part of thesis research into a Common Process Framework (CPF). The CPF entails: a
methodology for developing process knowledge (CPM); a first order language used to express this
knowledge (CPL); an ontology (CPO)1 which defines the concepts and terminology in the CPL; and
tool support for this framework via the Common Process Editor (CPE), an intelligent assistant sub-
component (CPA), and a collection of translation modules (CPT).

Currently, the tool is in an early release, version 1.0. While much of the basic functionality is in place
for editing and inspecting processes, there is still much work which must be done to incorporate this
tool into the full CPF. Plans for future versions include: support for process rationale capture using a
design rationale notation, and CPT module development for import/export to the Process Interchange
Format (PIF), the Process Specification Language (PSL) and O-Plan’s Task Formalism (TF).

3. Getting Started
This section provides some of the background knowledge needed to understand the choices of initial
logon to the CPE tool. This involves the selection of a role which will be performed during the session.
The editor allows only one role at a time, but permits a user to switch between roles (i.e. start a new
session) without shutting down and restarting the tool.

3.1 User Roles
When CPE is started, it asks for two pieces of information (see Figure 1). The first is simply the user
name which will be associated with changes made throughout the CPE session2. The user name may
also be used in the future to provide user-specific configuration. This configuration could be specialized
to present information which has been selected as “relevant” to the particular individual.

Figure 1: CPE Logon

The second item of information involves a selection of user role. In accordance with the Common
Process Methodology (CPM), session types are connected to particular roles. The selection of role
identifies the possible set of activities for a CPE session and CPE configures itself accordingly to
accommodate these activities. These role types are listed below along with a brief overview of the
activities performed by each type.

1 This ontology is based on the <I-N-OVA> constraint model of activity.
2 CPE currently fetches the Java System Property “user.name” to initially populate this field.

3.2 Process Domains
The first two user roles are involved in the creation and maintenance of process domains. The notion of
a domain is taken from the “planning domain description” which is part of the input to generative
Artificial Intelligence (AI) planning systems. A domain describes the activities which are performed
within a specific application area. So, for example, if the domain is manufacturing then we would have
descriptions of drilling, milling, part assembly, etc. Domain descriptions also entail knowledge of many
other aspects such as the particular resources utilized, the effects of the activities, etc. This is explored
in more depth in section 6.

• Domain Expert
⇒ The domain expert is responsible for the overall structure and design of a domain.

He/she may create some of the high-level activity descriptions for the particular
application. In manufacturing this might be something like: “Manufacture Part” or in
a business context it might be “Replenish Inventory” if the application is supply chain
process management. This individual determines the scope of the domain (i.e.
drawing the boundary between the elements which will be part of the modeled
domain and those that will not).

• Domain Specialist
⇒ An individual may be assigned the role of specialist within a particular domain. It is

his/her responsibility to manage some aspect of the domain created by the Domain
Expert. For small domains, the same individual may play both roles of Domain
Expert and Domain Specialist. In larger, more complex domains, a specialist may
take over the task of detailing particular partitions of the domain that is he/she is
knowledgeable of. In manufacturing, this may result in a departmental partitioning.
(e.g. a sheet metal process specialist, a rubber works specialist, an electronics
specialist, etc.)

3.3 Building Processes
The construction of new processes and the modification of existing processes are carried out within the
overall scope of a particular domain. This work is achieved via CPE sessions enacted in any of three
user roles. Note the dependence of these sessions on prior domain construction sessions. The particular
user role selected is closely related to the session intention. These roles, intentions, and user activities
are considered below.

• Planner / Plan Editor
⇒ Currently, CPE treats these two roles in the same way. The first role involves a

session in which a new process is created interactively by a user “from scratch”. The
second reflects the users intention to retrieve an existing, stored process for further
manipulation. In the case of building “from scratch”, this means that after the user has
selected a domain, he/she takes one of the high-level domain activities (e.g.
Manufacture Part, Replenish Inventory, Build House, etc.) and begins to build a
specific process by expanding it down into more detailed levels and by adding
constraints to suit a particular set of needs. The resultant artifact may be saved in the
process library to be retrieved for future editing.

• Task Assignor
⇒ The Task Assignor role is similar in intention to the previous two, but indicates a

session in which the act of “process building” will be achieved via interoperability
with another tool. The Task Assignor may retrieve a high-level domain activity or a
partially edited process. He/she may add particular specifications of preferences and
requirements to the process. This artifact may then be translated into a format suitable
for input to another tool (e.g. AI planning system). The result of the external tool
activity may then be translated back into the process editor for viewing or to be stored
for future editing sessions.

4. User Interface Overview
The User Interface provided by CPE is currently separated into two main types: a Domain Editor and a
Process Editor. This reflects the two divisions of activity described in sections 3.2 and 3.3. There is a
high degree of overlap though in the types of activities performed in both types (i.e. process creating,
visualization, and editing). This section presents the overall structure of the interface for both uses.

4.1 Process Editor Interface
The process editor is divided into four areas. The areas have been numbered below in Figure 2. Area 1
denotes the “main menu” section. The functionality of the various drop down menus is reviewed in
section 4.1.1. Area 2 consists of a set of tabs which allow the user to switch between multiple open
processes. When a new process is opened, a new tab is added to the list. Correspondingly, closed
processes will result in a tab being deleted. Selecting a tab causes areas 3 and 4 to change to present the
selected process.

Figure 2: Process Editor Interface

The remaining areas, panel 3 and 4, comprise an integrated, dual presentation of the process
knowledge. Area 3 presents a top-down, hierarchical tree view of the process constraints (Note that the
tree functionality has not been completed yet, and does not fully list all of the elements for this process.
This is discussed in more detail below.). The grouping of tree element constraints are based on the
concepts defined in the Common Process Ontology (CPO). The “issues” section contains any of the
outstanding or “future constraints” which have not yet been applied or resolved for this process. For
example, the process may have been expanded down to a particular level of detail , but certain sections,
or nodes may be undefined at an abstract level. These abstract nodes will be listed as future “issues”
remaining unresolved for the process. They are things left “todo”. The “node constraints” list those
activities which have been selected to be included (or not included at this level). Expansion will result
in a new sub-tree of elements under the expanded node constraint.

Area 4 presents a network-style view of the same process knowledge embodied in area 3. Eventually,
the addition or deletion of process constraints in either the tree area or network area will be
automatically reflected in the other panel. Unfortunately, this integration has not been completed yet as
the tree presentation has not been fully completed. Currently the amount of area occupied by either
panel can be changed by dragging the center-splitting bar between the two panel to either the right or
left. More details on the network panel can be found in section 4.1.2.

4.1.1 Menu Options
The main menu for the process editor supports most of the “editor level” command functionality. The
various commands are separated into four major types: File Menu, Options Menu, Tools Menu, and
Help Menu. This section provides a brief overview of the activities supported by each.

Figure 3: File Menu

The first section of the file menu provides access to the creation, retrieval, saving, and closing of
processes. Selecting “New Process” results in a tab which can be used to switch to the new process. For
more information on the open and save functionality, see section 8. Selecting “Close Process…” results
in a dialog in which the user may select the particular process which is to be removed form the editor
list of open processes.

Figure 4: Close Process Dialog

The “Export to…” sub-menu provides the hook for interfacing to the Common Process Translator
(CPT) modules. These modules have not been created yet, but will eventually be able to be accessed
from this area. The logoff menu option allows a user to switch roles. This command will reinitialize the
editor and will present the original logon dialog. Finally, the Exit command will shut down the editor.

The functionality of the options menu is presented in sections 4.3.1and 4.3.3. The only exception to this
is the menu state toggle for “debugging”. This flag has been added to provide detailed system traces for
various functions. The output goes to the default Java System.out stream. This is mainly for testing
purposes and will eventually be removed in a later version.

Figure 5: Tools Menu

The Tools Menu provides a hook for communicating with external tools as well as access to native Java
tool modules. The Assistant sub-menu provides access to both types. The “Check Process” command is
conveyed to the prolog-based Common Process Assistant (CPA). The process knowledge is sent via
TCP/IP to this socket-based program. Currently the CPA has been developed to formally reason about
the temporal relationships in the process. It maps the timepoint relations onto the 13 Allen Interval
Relationships and uses Allen’s transitivity table to reason about the validity of the specification. The
next version of the CPE will provide an option for configuration the IP address of the CPA and for
providing a detailed presentation of the errors encountered. The “Check Linear Path” command
provides access to a native Java module which performs another temporal check of the assigned
relationships. It collapses the timepoints that are assigned to be equal (see section 5.4 “Creating Links”)

and performs a topological sort to determine whether a linearization of the network is possible. If it is
possible, a simple dialog like the one shown in Figure 6 will be displayed, otherwise the dialog will
state “No Solution!”. The planner sub-menu is currently blank, but it is hoped that future functionality
will be added to allow process/domain specifications to be sent to a generative AI planner. The result of
the planning will be accessible in the CPE as well.

Figure 6: Result of "Check Linear Path"

The final main menu entry is the “Help Menu”. The help menu provides a “Contents” and an “About”
command. Selecting the “Contents” option provides a dialog with a hypertext help system. This help
system has not been completed in this version. The “About” command provides a basic dialog
containing the program and version information.

4.1.2 Network Panel
The network panel was presented in section 4.1. This panel is used for editing a graphical network-style
presentation of the selected process. This panel actually consists of two parts: a set of windows and a
main desktop area. The desktop area “contains” the set of windows. When a new process is created,
there is initially one window, containing a “start” and “finish” node which represent the temporal scope
of the entire process. The “start” node is constrained to be before the “finish” node via a precedence
link. More windows may be added to the desktop when detailed expansions are selected for particular
nodes. These windows may be “opened” on the desktop along with the original top-level process
window. Any window may also be “iconized” or “maximized” on the desktop in order to provide
flexibility in process/sub-process editing. Note that each process/sub-process window has its own
toolbar for accepting user commands. This options available in this toolbar are reviewed in section 5.1
(Note that the toolbar buttons provide “tooltip” popup identification signs when the mouse is positioned
over them.)

4.2 Domain Editor Interface

The domain editor interface shares many of the same elements with the process editor. Domain Editor
additions to the main menu are discussed below. The main difference to observe is that the left panel
contains a presentation of the entire currently selected domain. The right panel desktop is now used to
edit domain process knowledge (note that only the graphical, network-style presentation is used for
domain processes). Unfortunately, much of the domain editor implementation has not been completed
yet, but the following section provides an overview of the functionality and features which will soon be
available.

Figure 7: Domain Editor Interface3

When the user logs in as a Domain Expert or Domain Specialist the File Menu will also contain a
section for managing domains (see Figure 8). This includes options for creating new domains, opening
and saving existing ones and closing the current domain. Only one domain is allowed to be edited at a
time.

Figure 8: Domain Sub-Menu

4.2.1 Domain Panel
In accordance with the Common Process Methodology (CPM), domains are structured into levels.
These levels can be given user-specific names to reflect their particular role in partitioning the domain
space. For example, in Figure 7, the “build_house” activity4 has been created at the “Task Level”. The
additional levels for this house-building domain include: a house model level, house material level,
main building level, and a primitive building level. Levels are also intended to support the grouping of
“effects, events, objects, etc.”.

The next section of domain information contains the types used for this domain. The simple Three Little
Pigs world described above consists of house building “materials” which may be assigned the values of
{Straw, Sticks, Bricks}. The “Always” section lists the invariant domain assertions. Currently the
domain editor permits syntactically unconstrained sentences for such expressions. The particular syntax
used here is from the Task Formalism (TF) language. Finally, the last section describes the resource

3 The “Three Little Pigs” domain is based on an O-Plan Task Formalism example.
4 The “-0” ending on the domain process name is temporarily being used to indicate which slot it is in.
(See section 8 for information on slots)

types which are present in the domain. These type groupings are defined in the Common Process
Ontology (CPO).

Double-Clicking on a process entry in the domain panel pops up the file Input/Output menu for
retrieving the process. Future modifications will track open processes and will provide smoother
integration between the domain and process panels. As with the process editor, the domain editor
permits multiple open processes.

4.3 Customizing the Interface

4.3.1 Pluggable Look-and-Feel
CPE has intentionally been created as an "open platform" tool. As a Java applet, the tool can be run
using any browser which provides a Java Virtual Machine (JVM) which provides adequate support for
the Java Foundation Classes (JFC). CPE supports the multiple "look-and-feel" option provided by the
Java "Pluggable Look-and-Feel" extensions. This facilitates the presentation of a set of visual elements
which are consistent with the particular running platform. Currently the Macintosh look-an-feel has not
yet been released, but the following are supported: a Windows look-and-feel which emulates Windows
95/98 or Windows NT; a motif look-and-feel which emulates a UNIX/LINUX X Window presentation;
and a new platform independent Java standard look-and-feel called "Metal". This configuration can be
changed using the “Options” menu. A sample of each are shown below.

Figure 9: Look-and-Feel Menu Options

Figure 10: "Metal" Look-and-Feel

Figure 11: "Windows" Look-and-Feel

Figure 12: "Motif" Look-and-Feel

4.3.2 Docking Toolbars
Along with the choice of Java look-and-feel, there is also additional support for configuring the user
interface. Part of this support is based on the dockable toolbars provided by the Java Foundation
Classes (JFC). The toolbar can be “torn” from its default position at the top of the window by left-
clicking on any non-button portion of the toolbar and dragging it away. The toolbar can then be dragged
over any of the four sides of the window to “dock” it onto a particular side or it can be dragged outside
the window and dropped in the client area to provide a “floating” tool bar. See Figure 14 and Figure 13
for examples of a floating and left-docked toolbar.

Figure 13: Toolbar Docked to the Left

Figure 14: "Floating" Toolbar Support

4.3.3 Tab Positioning
 In addition to the “dockable” toolbars described in the previous section, there is also a choice of tab
placement. These tabs allow the user to switch between various processes when multiple processes have
been opened. The default is to place these tabs along the top of the interface, but any of the four
positions are possible. The placement along the bottom is similar to a Microsoft Excel “worksheet”
presentation.

Figure 15: Tab Placement Menu

4.3.4 Multiple Interface Support
Many of the commands available in the editor can be invoked in more than one way. The two main
interface options in the CPE are the context-sensitive popup menu and the toolbar. For example, a new
activity can be added to a process in one of two ways. The user may click the leftmost button on the
toolbar which looks like a small, white box. If it is the first activity to be added, it will automatically be
placed between the start/finish nodes and the proper temporal constraints added. Any additional
activities added in this way will be created in the top left corner of the process window. Alternatively, a
user may right-click anywhere in the process window space and a context-sensitive menu will appear
(see Figure 16). Selecting the “Add Activity” command will create a new activity node at the point
where the user right-clicked on the process window. Note “context-sensitive” means that a different
menu will appear if right-clicking over a node (see section 5.9).

Figure 16: Process Popup Menu

5. Process Editing

5.1 General Overview
This section presents a task-oriented description of the functionality available for process editing. The
steps required for each task are listed under each subheading. In most cases, there is more than one way
to achieve the process editing task as described in section 4.3.4.

New top-level process windows contain a start and finish node which define the temporal scope of the
process. Sub-process windows are scoped by a begin and end node pairing. These nodes cannot be
deleted, but they can be selected and positioned on the window.

5.2 Adding Nodes
Currently in the CPE there are two different “types” of nodes: activity nodes and dummy nodes.
Activity nodes (shown as rectangular boxes) represent the activities performed within the process
whereas the dummy nodes (shown as ellipse shapes) can be used to provide “special” support for
process structuring (e.g. split/join nodes, start/finish, and/or, etc.) Future CPE versions will add more
specialized node types.

The user may click either of the two leftmost buttons on the toolbar, corresponding to a new activity
node or new dummy node. New dummy nodes are automatically placed in the top left corner of the
process window. If it is the first activity to be added, it will automatically be placed between the
start/finish nodes and the proper temporal constraints added. Any additional activities added in this way
will be created in the top left corner of the process window. Alternatively, a user may right-click
anywhere in the process window space and a context-sensitive menu will appear (see Figure 16).
Selecting the “Add Activity” or “Add Dummy” command will create a new node at the point where the
user right-clicked on the process window. The default label for new nodes is either “act#” or “dummy#”
where # is simply the next value of an 32-bit integer counter. These labels can be changed in the node
properties dialog (see section 5.9).

5.3 Moving Nodes
Node positions can be changed by clicking and holding the left button down inside a node. Dragging
the mouse while holding the button down will change the position of the node. Releasing the left button
will fix the node in the new position. Any links attached to the moved node are updated while dragging.
Note that the nodes can only be dragged to the edge of the process window. Dragging out of the
window will suspend the repositioning of the node until the mouse has returned to the process window.
Future versions may provide: selected group moving and layout grids and “snap to grid” functionality
for easier node positioning. See also section 5.4 for automatically moving nodes.

5.4 Creating Links
There are currently 2 different types of links in CPE: a before link and an equals link. The before link
appears as a directed arc between two nodes and the equal link is represented by a double-line arc. All
CPE nodes are actually made of two “halves”. From the left most edge to the center of the node is
considered the “begin” half of the node whereas the center of the node to the right most edge denotes
the “end” half of the node. For example, two links have been drawn in Figure 17. One is a before link
between the begin of “act1” and the begin of “act2”. The other is an equals link between the ends of
“act1” and “act2”.

Figure 17: CPE Links Example

The node halves actually represent the begin/end timepoints which define the temporal scope of the
activity. The two drawn links in Figure 17 specify the following constraints in natural language:
“Activity act1 must begin before activity act2 begins. Activities act1 and act2 must finish at the same
time”.
Such specifications can be created in the process network panel in one of two ways: using the toolbar or
the popup menu. Let’s say we’d like to specify that act1 must be performed before act2 using the
toolbar. The first step is to select the act1 which can simply be done by left-clicking the node (and
releasing). Next, click the toolbar button which represents the before link (arrow pointing right). If no
node has been selected or multiple nodes are selected, the user will receive an error dialog (see Figure
18 and Figure 19).

Figure 18: No Node Selected Error

Figure 19: Multiple Node Selected Error

After clicking the toolbar button, a red tracking line will appear which originates from the end half of
the selected node (note that the toolbar option only supports linking from the end, if linking from the
begin, use the popup menu method instead). The tracking line will follow the mouse movement until the
user left clicks in the window. Left clicking on any node half will result in a link being created between
the two halves or timepoints. Left clicking anywhere else in the process window will terminate the link
drawing process. The exact same steps as above can be performed for drawing an equals link. Simply
select the equal link button from the toolbar instead.

A more flexible option is to right-click on a node half. A context-sensitive menu will appear with a set
of commands (see Figure 20). Selecting the “Add Before Link” or “Add Equals Link” will place the
user in the same line tracking state as described above.

Figure 20: Node Popup Menu

Note that the start/finish or begin/end nodes are exceptions to this in that only one half of each node is
accessible for participating in a link relationship. Specifically, only the end half of start/begin nodes and
the begin half of finish/end nodes can be accessed. Future link drawing may support multiple “control”
points for maintaining clearer arc connections.

5.5 Selecting Nodes, Links, Text
Many of the process editing commands rely on either single or multiple selections of nodes, text and
links. There are a number of ways to perform these selections in CPE. The first method, which has been
described earlier, is simply to left-click once on any node (note node selection and text selection is
identical). The node background color will become reddish to indicate that it has been selected. Left
clicking on another node will change the selection to the new node. All selections can be cleared by
simple left clicking anywhere on the “blank” process window space. Multiple node selections can be
incrementally made by holding down the “Control” key while left clicking on various nodes. A

“Control-Left Click” will “toggle” the selected state of the node without changing the selected status of
other nodes and links.
Another way of selecting nodes (and links) is to draw out a “bounding box” around the desired area.
This can be accomplished by clicking and holding down the left mouse button in any process window
space. Dragging the mouse will result in a red line selection box being drawn from the original point of
origin. Releasing the mouse button will result in a selection of anything that the bounding box touches.
Links will be “reddish” along with nodes to indicate their selected status.

5.6 Aligning Nodes
CPE provides support for aligning sets of selected nodes. This functionality is available on the right
most set of buttons on the process toolbar (see Figure 14). The first step is to select the nodes which
will be aligned (see section 5.5 on selecting nodes). Clicking the “aligntop” button (see the tooltips) will
result in all of the selected nodes being repositioned at the same y-axis position of the node nearest the
top of the window. Clicking the “alignbottom” button will result in all of selected nodes being
repositioned at the same y-axis position of the node nearest the bottom of the window. The “alignleft”
and “alignright” buttons execute the corresponding positioning along the x-axis. The “aligncenter”
button will position selected nodes along a fixed vertical line.

5.7 Adding Text
Textual annotations can be added anywhere on the process window. These are used to simply provide
more information about the process (e.g. labeling sections, adding comments, etc.). Just like nodes, they
can be dragged and positioned once added. There are two options for adding text. Clicking the text
button (the “T”) in the toolbar or right-clicking on the process window space and selecting the “Add
Text” command. The advantage of using the popup menu is that the annotation will be placed at the
point where the right-click occurred whereas the toolbar option will place the text in the top left corner
of the process window. In either case, an “add text” dialog will appear. Multi-line text annotations can
be created using this dialog (see Figure 21).

Figure 21: Add Text Dialog

5.8 Cut/Copy/Paste
CPE provides Cut/Copy/Paste operations for transferring process information from one process to
another. This works on a simple “clipboard” style approach. The required nodes, links and text must
first be selected in the source process window. Clicking the “Cut” or “Paste” toolbar buttons will
transfer the selected items to the “clipboard”. In the case of cut, it will also remove the selected
elements from the process window. The user may now create a new process or switch to an existing one
using the process tabs. Clicking the “Paste” toolbar button in the target process window will add the
contents of the clipboard to the process window.

5.9 Working with Node Expansions
Activity nodes may be assigned a node expansion. An expansion provides detailed steps for performing
an activity. Currently, activity expansions can be created by right-clicking on an activity node and
selecting “Add Expansion” from the node popup menu (see Figure 20). This creates a new process
window on the process panel desktop area. This sub-process window is defined within the temporal
scope of the expanded node begin/end timepoints. The expanded node displays a “shadow” to indicate
that an expansion has been attached to it. The new sub-process window can be minimized, opened, or
maximized. Unfortunately, the delete expansion command has not been implemented yet.

5.9.1 Navigating Expansions
In order to provide intuitive navigation of the process expansions, an “expand” (simple arrow pointing
down) and “up” (simple arrow pointing up) button has been added to the process toolbar. The “up”
button is only present on sub-process windows (see Figure 22).

Figure 22: Sub-Process Window

In order to use the “expand” button, a node which has an underlying expansion must be selected.
Clicking the “expand” button will bring the sub-process window to the “top” of the process panel
desktop (note this will open a minimized sub-process windows as well). In the reverse direction, a user
may wish to navigate from a sub-process window to the parent process. This can be accomplished by
simply clicking the “up” toolbar button. The name of the parent process is also accessible in a sub-
process by viewing the process property sheet (see section 5.11).

5.10 Editing Node Properties
Detailed information about an activity node can be accessed in the node property sheet. This sheet can
be accessed in one of two ways. The user can first select a node and then click the “properties” toolbar
button (the button with the “…”) or by right-clicking on the node and choosing the “Properties” menu
option. Currently there is support for the activity name, status, and variables (see Figure 23). The
activity name is the label that is displayed for the node. This can be a multi-line value. The activity
status was used for a demonstration of process state viewing and may be removed in future versions.
Selecting different activity status values will change the background color of the node. The variables
section provides a simple string list interface where syntactically unconstrained expressions can be
attached. This might be used to state something like “?material=straw” for assigned values or
“?material=” for unassigned variables. Future work will seek to structure this input.

Figure 23: Node Property Sheet

5.11 Editing Process Properties
The bulk of process knowledge accessible in the process network panel is captured in the process
property sheet. This sheet can be accessed in one of two ways. The user may click the toolbar
“properties” button without having any nodes selected or the user can right-click on the process window
area and select “Properties” from the popup menu.

Figure 24: Process Property Sheet

The process property sheet is divided into 7 sections (see Figure 24): general, requirements,
preferences, variables, resources, conditions, and effects. The general section currently contains the
process label which is displayed on the process window title bar. The “expands” entry is for viewing
only and is used to display the parent process label for sub-processes. The bounding nodes option is
used to select the appropriate scope nodes. Start-Finish are reserved for the relative bounding points for
the entire process whereas begin-end should be used to bound sub-processes. The other 6 sections are
all currently unstructured lists of strings. The “Requirements” section contains expressions which must
be true for this process (i.e. hard constraints) the “Preferences” section contains expressions which are
desired to be true (i.e. soft constraints). The “Conditions” and “Effects” section can be used for
standard STRIPS-style expressions found in most AI planning systems. The “variables” section
provides the same support as described in the node property sheet (see 5.10). Finally, the resources
section defines the resource usage of the activities in the process.

6. Domain Editing

6.1 Status of Domain Editing Support
While much of the process editing support is in place, the domain editor implementation still needs
much work. The tree presentation of the domain will eventually be able to support adding/deleting of
domain items and dragging/drop of tree nodes onto the process desktop. A simple file format for saving
and retrieving the domain will be added as well. Once this has been done, the process editor can be
properly constrained to work within the bounds of a selected domain.

7. Intelligent Assistance

7.1 Common Process Assistant (CPA)
The common process assistant is currently implemented as a socket-based sicstus prolog program which
can reason over the temporal relationships in a process specification designed using the CPE. The CPA
maps the timepoint based relations from CPE into a set of Allen interval relationships. Transitivity
relations are then used to infer the relationships between any three intervals. Using Allen’s transitivity
table for intervals, each relationship is examined to determine whether it is legal with respect to the
other defined relationships. Any “abnormal” or “inappropriate” assignments are returned back to the
editor for display to the user. This return of information from CPA to CPE has not been implemented
yet. Future information passed back from the CPA may also contain the set of valid alternatives for the
inappropriate relationship.

7.2 Checking for a Consistent Path
Native temporal checking of the process is also possible by scanning for a valid path given the partially
ordered network. This module was presented in section 4.1.1. This tool works by collapsing all of the
designated “equal” time points into single points. The total set of unique timepoints are then
toplogically sorted based on the precedence relationships. If a valid linearization is possible the module
will display it, otherwise it returns “No Solution!”. (See Figure 6).

7.3 State Viewing
One of the future intelligent tool modules will allow an interactive query of the state at any point in the
network. This will be implemented using a Modal Truth Criterion (MTC) or Question Answering (QA)
approach. Additional state support may also be provided via the visualization of the process goal
structure (GOST) and table of multiple process effects (TOME).

8. File Input/Output
Currently File Input/Output for the CPE applet is performed using the FTP protocol. At the time of
writing this applet, the Java sandbox security model had prevented access to the local filestore. In order
to provide a secure, reliable file input/output mechanism, FTP was selected for file transfer. There is a
further constraint imposed by the Java security model which requires the FTP server to reside at the
same location as the World Wide Web server. The next version will provide a “digitially signed” applet
that has Java permission for writing to/from the local filestore.

8.1 Saving A Process
Process representations can be saved to a file area which can be accessed via FTP. The file format is
discussed below. When the user selects “Save Process As…” from the main menu, the following dialog
is displayed (see Figure 25). The hostname cannot be changed due to the constraint discussed above.
The user ID and password required to access the FTP server must be entered. Currently, CPE uses a
simple “fileslot” system for saving and retrieving files. This translates into a file called “cpe##.txt”
where ## is the selected slot. The source process must be selected from a drop-down list of currently
open processes.

Figure 25: CPE Save Dialog

8.2 Loading A Process
Process representations can be loaded from a file area which can be accessed via FTP. The file format
is discussed below. When the user selects “Open Process…” from the main menu, the following dialog
is displayed (see Figure 26). The hostname cannot be changed due to the constraint discussed above.
The user ID and password required to access the FTP server must be entered. Currently, CPE uses a
simple “fileslot” system for saving and retrieving files. This translates into a file called “cpe##.txt”
where ## is the selected slot. The target process must be selected from a drop-down list of currently
open processes.

Figure 26: CPE Open Dialog

8.3 Process File Format
The current CPE process file layout has a very simple structure. A single ASCII-based text file
represents an entire process (along with sub-process information). A sample file which corresponds to
the Figure 2 process network is shown in section 10. The future versions of CPE will use the Common
Process Language (CPL) for native input/output.

The files are divided into multiple “line types”. There are currently 5 types: comment_line,
frame_line, node_line, edge_line, and text_line. The first character of each line determines which of
these types a particular line represents: {%, F, N, E,T}. Comment lines (%) can contain any characters
after the comment symbol and before the newline character.

CPE currently writes out 10 comment lines at the beginning of a file to provide information about the
saved file. For example, the following text shows that this file was saved on Nov. 20, 1997 by a
Macintosh user, using Netscape. Comment lines are also used to mark off file sections and to provide
“header” information for line entries. The end of the file is marked by an %End line (note these
comments are not required, but provide a more “readable” presentation).

%Common Process Editor, version 1.0, AIAI, 1997
%Date: Thu Nov 20 11:00:44 GMT+01:00 1997
%--
%java.version: 1.1.2
%java.vendor: Netscape Communications Corporation
%java.class.version: 45.3
%os.name: Mac OS
%os.arch: PowerPC
%os.version: 7.5

A frame_line contains the following data (Note that the x, y, width, and height data is no longer used).
The unquoted vertical bar, | denotes optional values whereas the quoted bar ‘|’is a token in the file. The
brackets, [] are used to indicate optional values.

• frame_line symbol: F<blank>
• x position: <integer><blank>
• y position: <integer><blank>
• frame width: <integer><blank>
• frame height: <integer><blank>
• current node count: <integer>
• process key: {<string>}
• process label: {<string>}
• top-level process flag: {[Y|N]}
• StartFinish flag: {[Y|N]}

• Precondition list: {[<string>’|’<string>’|’...<string>]}
• Effects list: {[<string>’|’<string>’|’...<string>]}
• Requirements list: {[<string>’|’<string>’|’...<string>]}
• Preferences list: {[<string>’|’<string>’|’...<string>]}
• Variables list: {[<string>’|’<string>’|’...<string>]}
• Resources list: {[<string>’|’<string>’|’...<string>]}

A node_line contains the following data. The unquoted vertical bar, | denotes optional values whereas
the quoted bar ‘|’is a token in the file. The unquoted brackets, [] are used to indicate optional values.

• node_line symbol: N<blank>
• node key: {<string>}<blank>
• node x position: <integer><blank>
• node y position: <integer><blank>
• node type (activity or special): N|S<blank>
• node status: 0|1|2|3|4<blank>
• selected status: Y|N<blank>
• node label: {<line1>[~ <line2>~<line3>...<lineN>]}
• expand process key: {<string>}
• Variables list: {[<string>’|’<string>’|’...<string>]}

An edge_line contains the following data. The unquoted vertical bar, | denotes optional values whereas
the quoted bar ‘|’is a token in the file.

• edge_line symbol: E<blank>
• from node key: {<string>}
• from node half: B|E
• to node key: {<string>}
• to node half: B|E
• link type: {<|=}

A text_line contains the following data. The unquoted vertical bar, | denotes optional values whereas the
quoted bar ‘|’is a token in the file. The unquoted brackets, [] are used to indicate optional values.

• text_line symbol: T<blank>
• text label: {<line1>[~ <line2>~<line3>...<lineN>]}<blank>
• text x position: <integer><blank>
• text y position: <integer><blank>
• text selected flag: Y|N

9. Question and Answer
• Why Java?

⇒ The main reason for choosing Java was the platform independence. The tool can now
be run on most of the main platforms without recoding the editor.

• How Do I Right-Click If I am Using a One-Button Mouse System (e.g. Macintosh)?

⇒ Hold down the “command” key when clicking.

• etc.

10. Appendix A: Sample Process File
This sample CPE process file corresponds to the process network diagram shown in Figure 2.

%Common Process Editor, version 1.0, AIAI, 1997
%Date: Mon Apr 06 19:20:34 GMT+00:00 1998
%--
%java.version: 1.2beta2
%java.vendor: Sun Microsystems Inc.
%java.class.version: 45.3
%os.name: Windows NT
%os.arch: x86
%os.version: 4.0
%--
%Frame: x,y,w,h,count,key,label,top,StartFinish,pre,eff,req,pref,var,res
F 0 0 800 800 4{Process-1-1}{Process-1-1}{Y}{ }{Y}{ }{ }{ }{ }{ }{ }
%--
%Nodes: N {key} x y type [N,S] , status [0-4], selected [Y,N], label, expand, {vars|}
N {Finish} 322 50 S 0 N{Finish}{ }{}
N {Start} 41 93 S 0 N{Start}{ }{}
N {act1} 160 39 N 0 N{act1}{Process-1-2 }{}
N {act2} 160 149 N 0 N{act2}{Process-1-3 }{}
N {act3} 270 143 N 0 N{act3}{ }{}
%--
%Edges: from, to
E {Start}E{act1}B{<}
E {act1}E{Finish}B{<}
E {Start}E{act2}B{<}
E {act2}E{act3}B{<}
E {act3}E{Finish}B{<}
%--
%Text: text, x, y, selected [Y,N]
%--
%Frame: x,y,w,h,count,key,label,top,StartFinish,pre,eff,req,pref,var,res
F 0 0 800 800 1{Process-1-2}{Process-1-2}{N}{Process-1-1 }{Y}{ }{ }{ }{ }{ }{ }
%--
%Nodes: N {key} x y type [N,S] , status [0-4], selected [Y,N], label, expand, {vars|}
N {Finish} 200 50 S 0 N{Finish}{ }{}
N {Start} 20 50 S 0 N{Start}{ }{}
%--
%Edges: from, to
E {Start}E{Finish}B{<}
%--
%Text: text, x, y, selected [Y,N]
%--
%Frame: x,y,w,h,count,key,label,top,StartFinish,pre,eff,req,pref,var,res
F 0 0 800 800 1{Process-1-3}{Process-1-3}{N}{Process-1-1 }{Y}{ }{ }{ }{ }{ }{ }
%--
%Nodes: N {key} x y type [N,S] , status [0-4], selected [Y,N], label, expand, {vars|}
N {Finish} 200 50 S 0 N{Finish}{ }{}
N {Start} 20 50 S 0 N{Start}{ }{}
%--
%Edges: from, to
E {Start}E{Finish}B{<}
%--
%Text: text, x, y, selected [Y,N]
%End

