
PROJECT PLANNING USING A HIERARCHIC

NON-LINEAR PLANNER

by

Austin Tate

D.A.I.

Research Report No. 25

August 1976

PROJECT PLANNING USING A HIERARCHIC
~~~~~

NQN-"LINEAR PLANNER

Austin Tate

Department of Artificial Intelligence

University of Edinburgh

abstract

We describe work on a project aimed at producing an interactive

program for the construction of project networks (e.g. for house build-

ing tasks). To do this we have developed a planner which can form

plans ~epresented as a partiQlly ordered netwo~k of actions. A formal-

ism (TF) is given for describing a domain in a hierarchic fashion. The

representation of plans and the planner (NONLIN) are fully explained.

During this work, a general technique was developed for answering queries

about Q situation when the informQtion about the world is stored as a

partiQlly ordered network of alterations made to some initial situation.

We give a general procedure for recognizing and correcting for interact-

ions between actions in the network. This is based on an analysis of

the goal structure of the problem. The work is compared to that of

Sacerdoti (l975a) who pioneered the techniques of planning using plans

represented as partially ordered networks of actions.



2

Contents

Abstract 1

2Contents

1. 

Planning and Task Specification 3

8

8

8

20 Task Formalism for domain specifications

201 Hierarchic specification

2.2 Conditions on sub-tasks

203 Task Formalism (TF)

103. 

Representation of the network 19

40 Question answering in a partially ordered network of contexts 21

25

25

26

26

26

28

32

36

'38

5. 

NONLIN: the planner

Sol Top level control

502 Construct the Initial Network

5.3 The basic cycle

504 Or-choice mechanism

5.5 Expanding a node

506 Linking process for the network

5.7 Conditions and their use in the planner

5.8 Useful properties of the data structures representing the

network

6. 

An example problem -block stacking 39

70 House building 46

80 Summary and relation to NOAH 50

53

53

54

55

55

Appendix I: The data base system used by NONL1N

1.1 $* -a semi-open variable for HBASE

1.2 Restricted Variables

1.3 1nstantiable Actors

1.4 Nice Macros

Appendix II:

Error 

messages and warnings 56

Appendix III~ Interrogation routines and network operations 57

Acknowledgements 58

References 59



3

PROJECT PLANNING USING A HIERARCHIC~ ---

NON-LINEAR PLANNER

1. Planning and Task Specification

Recent work on the generation of plans has been concerned with pro-

ducing plans which could be used to transfer the knowledge of an expert

or experts in a domain to a novice. Work of this type has been performed

on the Computer Based Consultant Project (Hart, 1975) at Stanford Research

Institute and on an Electronics Troubleshooting System at MITo Experts

in some field provide a collection of job descriptions each of which may

require the knowledge of other experts to break down sub-tasks. The

system builds up a hierarchy of jobs which can be used to generate plans

at various levels of detail. An apprentice or novice using the system

is interactively directed through a task at a level appropriate to his

skill by the system asking him to perform tasks at a higher level first.

If the higher level tasks are beyond the apprentice, the expert knowledge

encoded in the system is used to choose some way to break down a task.

The planner ensures that all the plan can still be performed successfully

when these more detailed steps are added. Accommodation of further

detail into the plan may cause re-ordering of part of the plana The

lower level tasks are then given to the apprentice who again can signify

his ability to perform them or nota

The Computer Based Consultant is a system intended to guide an ap-

prentice mechanical engineer through various tasks at a workbencho

Typical of the tasks is the assembly of an air compressor. The planning

system used in this project, NOAH (~ets £f ~ction ~ierarchies), was

developed by Sacerdoti (1975a, 1975b). It incorporates novel ideas for

the representation of a plan as a partially-ordered network of actions (a

procedural net) 0 This is in contrast to most previous work on planning

which concentrates on the generation of linear sequences of actions, eog.

STRIPS (F~kes and Nilsson, 1971), LAWALY (Siklossy and Dreussi, 1973),

INTERPLAN (Tate, 1974), etc. Knowledge about a domain is given to NOAH

by writing code in a language SOUP (~emantics £f £ser ~rograms)to explain

how to decompose any task to lower level tasks.

Work at Edinburgh, on a project "Planning~ a joint AI/OR approach"

(Daniel and Tate, 1976), is concerned with the problem of large scale

project planning and the development of an interactive program which

guides a user through the entire planning process. For project planning

a network must be set up so that critical path analysis and other



4

optimization procedures can be used to decide where resources should be

directed to most efficiently achieve a tasko As an exampl~ of the type

of project network upon which optimization techniques can be used, con-

sider a house building task whose component jobs are given in the table

below (taken from Wiest and Levy, 1969, which gives an introduction to

project planning, PERT and critical path analysis techniques) 0

Description Immediate
Predecesso-rs

Time

(days~

a 4

2

4

6

b a

bc

d c

e

f

b 1

2

3

2

4

e

g e

h c

i c,fg"h,i
j

k1

10

3j

k

k

k

d

Excavate v Pour Footers

Pour Concrete Foundations

Erect Frame and Roof

Lay Brickwork

Install Drains

Pour Basement Floor

Install ROugb PlUmbing

Install Rough Wiring

Install Air Conditioning

Fasten Plaster and Plaster Board

Lay Finished Flooring

Install Kitchen Equipment

Install Finished Plumbingm 2

3

2

n

0

Finish Carpentry

Finish Roofing and Flashing

Fasten Gutters and Downspoutsp 10

q b 1

2

3

t Finish Electrical Work s 1

u Finish Grading Pwq 2

v Pour Walks, and Landscape u 5

The jobs in this table and the orderings given between them define the

following project network (of the "Activities on Nodes" type). Each

node gives the node letter and the duration of the activity. If two

jobs are not ordered (i.eo are in "parallel"), this means that the jobs

could be done in any order or simultaneously (depending on some execut-

Lay Storm drains

Sand and Varnish Floors n,s
Paints I,m

ing strategy).



9 r-:-c-4--- ~

\G~v--~~-'-~~ \
\

\
\

p--?v 

+,
~"""

\~v ~~

",~--d-Q~~

~ ~} \::j
AON Diagram-Hause Construction Project

Operational Research has concentrated on the optimization and

scheduling problems for some given network. However, the network can

be difficult and time-consuming to set up. It may also be difficult

to ensure that the ordering constraints on tasks are in their least

This 

is essential to allow the optimization to
constrained form.
achieve the best results. Once a network is constructed and is in

use on a project, much effort can go into modifications to keep it up

t? date with actual progress on a task. The Planning: a joint AI/OR

approach project has initially been concerned with aiding a user in

the process of constructing a project network. To do this, as in the

work of Sacerdoti, we have been investigating the use of a partially-

ordered network of actions to represent a plan (or project) at any

stage of development. Such networks are in a suitable form for the use

of critical path analysis 0 techniques. '-

sults from the fact that either
:) an action achieves a condition for a subsequent action

~ny ordering in the network re-

L

an action interferes with an important effect of another
ii)

action and must be removed outside its range



6

A formalism (TF: has been specified to enable a task to be described

in a hierarchic fashion. Task descriptions can be written independently

of their use at higher lev! management and tradesmen~ I

in their own terminology.

An "ACTSCHEMA" from a house building specification in the Task

Formalism is given below (the complete listing is given later in section

7).
ACTSCHEMA DECOR

PATTERN «DECORATE»
EXPANSION 1 ACTION «fASTEN PLASTER AND PLASTER BOARD»

2 ACTION «POUR BASEMENT FLOOR»
3 ACTION «LAY FINISHED FLOORING»
4 ACTION «FINISH CARPENTRY»
5 ACTION «SAND AND VARNISH FLOORS»
6 ACTION «PAINT»

ORDERINGS SEQUENCE 2 TO 5 1 --->3 6 --->5
CONDITIONS UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1

UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED «AIR CONDITIONING INSTALLED» AT 1
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING FINISHED» AT 6
SUPERVISED «PLASTERING FINISHED» AT 3 FROM 1
SUPERVISED «BASEMENT FLOOR LAYED» AT 3 FROM 2
SUPERVISED «FLOORING FINISHED» AT 4 FROM 3
SUPERVISED «CARPENTRY FINISHED» AT 5 FROM 4
SUPERVISED «PAINTED» AT 5 FROM 6

else 

Thus experts at a higher level, middle-:an 

each describe their tasks independently and

END 7

The partial ordering on the actions is

:=_>5
The DECOR schema specifies a partial ordering on 6 actions which togethe~

will achieve the "DECORATE" task; SUPERVISED conditions are made true

within the expansion of the task (eog. the ACTION «PAINT» (6), achieves

the SUPERVISED condition «PAINTED» on ACTION 5). UNSUPERVISED con-

ditions are made true by other experts (mainly here by an "INSTALL SERVICES"expert). 

Another condition type, "HOLDS", would say that an ACTSCHEMA con-

tainingit should not be used unless the condition was trueo There are no

effects specified in this ACTSCHEMA as they are all defined by the lower

level actionso



7

A planner, NONLIN has been specified and is implemented in an exper-

imental version which can take task descriptions given in the formalism.

It generates a plan at progressively greater levels of detail and can

handle interactions between the components to produce a plan as a partially-

ordered network of actions. The algorithms employed in the planner have

been designed so that over-linearization is avoided where possible and all

choice points are kept for later analysis or re-planning. A simple clear

representation of the goal structure (GOST) of a plan is kept (the con-

di tions on nodes of the network together with the points where the con-

ditions are achieved). An example of a GOST entry during a house build-

ing task might be

«SUPERVISED «SCAFFOLDING ERECTED» TRUE 6» with value [4].

This would mean that «SCAFFQLD~.EREeTED» had to be true at node 6 and

was made true at node 4 (nodes in a network are numbered). The GOST

specifies a set of "ranges" for which patterns have a certain value.

Goal structure provides information about a plan which would be difficult

to extract from the detail of the plan itself. The use of goal structure

to direct search in a problem solver was first investigated in Tate (1975).

The goal structure of a plan not only provides information to aid the

search of-.t.he planner,'it contains valuable inf.ormation for monitoring

the execution of the plan and for directing such modifications as are

necessary to the plan so that it will achieve its purpose after execution

failures. NONLIN and the task formalism (TF) are fully described in this

paper.



8

2. Task ~ormalism for domain spe.sifications

At the outset of this work the problem of specifying a domain to a

problem solver in a hierarchic fashion was recognized as being of primary

importance. A uniform and straightforward method of description was

sought to allow a domain to be specified hierarchically. We believe the

formalism described below gives a powerful descriptive tool. However,

we would anticipate some interface being used to give the user greater

flexibility.

2.1 Hierarchic Specific~:!:ion

We wish to allow high level definitions of a task to be'given,. each

part of which can be expanded into lower level descriptions and so on

down to some arbitrary level which the user of the program requires as

output. It should be possible for each component at lower levels to be

specified in a modular way -not requiring knowledge of the exact form

of other components.

For example, consider a house building task, someone at the highest

level decides he can build a house if he had (a) built some walls and a

roof and had carried out (b) the installation of services and (c) done

the fitting out and decoration. The ;builder may know nothing about how

to perform some of the sub-tasks so he asks experts in each field to de-

cide on ways to do these. The experts in turn specify jobs to be done

or lower level tasks to be planned by further, more specializedq experts.

Eventually we get down to the "shop floor" and tradesmen presumably signal

that they can or cannot carry out their appointed task at the appointed

time in the overall plan. The planner is left with the task of ensuring

that each part can be performed successfully and that the overall purpose

of the plan is achieved.

2.2 Conditions for sub-tasks

When sub-tasks are being planned the experts may know that the

individual jobs ought to be done in a particular order, or know that

several jobs can be done together (in parallel). They kno~ that certain

conditions ought to hold before some jobs can proceed. For example, a

carpet layer knows that before he does his job the floor boards ought to

be layed, even though that isn't part of his job. These conditions are

not under the supervision of this expert and are the responsibility of

others. They will be termed UNSUPERVIS!D CONDITIONS.

Experts also know that certain conditions must be made to hold under

their supervision before their task can be completed. Again, the carpet



9

fitter knows it is his responsibility to get the carpet to the site, but

the details of that task may be sub-contracted. Such conditions will be

termed SUPERVISED CONDITI~~S. ~ as we will see these correspond to

normal preconditions in means-end analysis driven systems such as STRIPS

(Fikes and Nilsson, 1971).

There is a third type of condition which an expert may imposeo

Conditions may be stated which must hold before this expert can be called

into use at allo For exampleq consider a block stacking expert which

knows how to clear blocks by moving a block on top of the block to be

cleared to some other placeo If a block cannot be found to be on top

of the one to be cleared it is no use calling this expert at allo If

the conditions were merely stated as a goal to be achieved before the

movement of the upper block to somewhere else was doneg we could get into

a situation where we actually move some block onto the one to be cleared

and then move it off again. Such static conditions on the use of aparticular 

expert will be called HOLD CONDITIONS. Hold conditions can

be considered to be an extension to the check of relevancy of some oper-

ator which imposes them (extra to the actual pattern-directed invocation-ioe., 

the check that this operator adds some sought for pattern) 0

They can also be used to instantiate variables for some operator in the

way that the pattern directed invocation does, or to impose global con-

ditions (ioe. those which should never be achieved) 0

So we appear to need three different types of conditions:*

(a) Unsupervised conditions

(b) Supervised conditions

(c) Hold conditions

Only conditions of type (b) should cause further expansions to be made

totfie~plan being generated, i.e., allow further experts to be called in

to plan to achieve the conditions. This is why they correspond to

normal preconditions as specified by any operator in a means-end analysis

driven systemo The other two types of conditions merely direct theplanner 

when to use the operator. Hold conditions will allow acceptanceor 

rejection of the use of an operator at any given point in a plano

*Of course in any particular domain description certain types of conditions

may not be usedo In fact another condition type" COMPUTEQ is provided to

allow the interface of computational processes (see section 2,3.1)0



10

Unsupervised conditions specify ordering constraints on when this operator

can appearo In this latter case, if expansions were allowed to achieve

the unsupervised conditions we could find that the net contained much

redundancy which could be difficult to resolveo It seems better to

allocate jobs to the appropriate expertso

2.3 Task Formalism (TF)

I wanted a completely declarative representation of the knowledge of

experts (c.f. NOAH's SOUP code) and the effects of actions. The repre-

sentation is based on the operator schemas provided in STRIPS (Fikes and

Nilsson, 1971)0 The components of the representation are given below.

An example will follow in case the BNF gets a bit much (as in the POp-2

manual <.o.>? means 0 or one example of <0.0>-- i.e. optional, <.o.>*?

means 0 or more examples of <000»0



11

2.3.l0PSCHEMAs
(i) OPSCHEMAIACTSCHEMA introduces the definition of the experto

(ii) <name> a POP-2 variable through which the opschema can be

accessed. Any components can now be defined in any

order by writing their codeword. Typing "END" ends

the definition. Typing REVIEW <name> allows further

components to be added to or defined.

One can also use a <name> ANONYMOUS if subsequent

REVIEWing is not neededo

The order of the following components is immaterial. ";" is ignored

between comp9~ents but is needed after a VARS (see vi).

(iii) PATTERN <pattern> An HBASE pattern used for pattern-directed

invocation of this opschema.

e.g. expansion of GOAL <pattern> will cause this

opschema to be considered. A simple extension to

the definition of a pattern component is envisaged

to allow one opschema to be used to achieve several

goals e.g., PATTERN <pattl> OR <patt2> 0..;

(iv) <expansion form>

The expansion this expert suggests to achieve the in-

vocation <pattern>o An expansion is made up of a

collection of nodes with ordering information and a

collection of conditions which must be true at the

points at which certain nodes in the expansion are

placed. D~MMY nodes are automatically inserted where

necessary to give a unique start and end node to the

ordering, or they may be given by a user to enable

conditions to be attached at points not represented

by a normal node.

<expansion form>::=

EXPANSION <nodes defn>? <orderings defn>? <conditions defn>?

I <conditions defn> If no <nodes defn> given then it only

possible to specify conditions ~T SE~

(e.g. in defining a primitive action)



12

d ",,1 d f *? '. .,<nodes efn>~~= <no e orm> .-'..\:".

<node form>::~ <nodenumber>? DUMMY

I <nodenumber>? < node type> <pattern> <node cost>?

Node numbers are optional for a user's convenience.

1-'.1::" "(If,'!' As the system numbers nodes in the order they are

" .~O given in < nodes defn~, take care the <node number> s

in an <orderings defn> refer the numbers given by

the system.

~nodenumber>::= <integer>

<node type> : : = GOAL I ACTION .i.J :i

<node cost>:: = ~ <number> ,.;: ':

Nodes are given zero cost by defaulto A cost

assigned in a schema overrides one assigned by

COST (see 20302)0

<orderings defn>::=

ORDERINGS <ordering form>*?

We are currently considering a graphics system for

the input of the partial ordering on nodes.

<ordering form>::=

<nodenumber> <ordering separator> <nodenumber>

SEQUENCE <nodenumber> TO <nodenumber>

SEQUENCE 2 TO 4 is equivalent to 2 '---> 3 and

3 ---> 4. Redundant links will be tidied up

by the system. Ensure <nodenumbers> are in the

range of nodes given and refer to the order of

nodes as given in the <nodes defn>.'

<ordering separator>::=

.ny POP-2 word not a marco>

--->" is used in the examples given in this paper.

<conditions defn>::=

CONDITIONS <condition form>*?

<condition form>:~=

AUTO Fill in supervised conditions ~ each

GOAL node ~ following node automatically for

this schema. This overrides the variable AUTOCOND

being set to O. AUTOCOND set to 1 means this is

done for each schema anyway.

NONAUTO This overrides the variable AUTOCOND

being set to 1 for this schema.



13

SUPERVISED <not>? <pattern> AT <nodenumber> FROM

<contributors>

UNSUPERVISED <not>? <pattern> AT <AT specification>

HOLDS <not>? <pattern> AT <AT specification>

COMPUTE <not>? [<pattern> = <compute clause>]

HOLD and COMPUTE conditions are tested by the system

in the order given, hence variables will be set in

the order given. A COMPUTE condition is provided

as a temporary way of interfacing to computational

facilities or numeric data bases. If the <compute

clause> is a pattern, its ~ is looked up in

ALWAYCTXT and matched against the <pattern> before

the =. Otherwise the <compute clause> is inter-

preted as a function call on several arguments

(which could be OPSCHEMA variables) which will

produce a value to be matched against the <pattern>

before the =.

e.g. 

COMPUTE [ «$*X $*Y $Z » = POSITION $*BLOCKJo

<AT specification>g~=

<nodenumber> I SELF

.~~LFallo1;q~d if there is no <nodes defn>.

<contributors>~

[<nodenumber>*J<nodenumber>

<compute clause>gg=

<h~+~bV"'" I~-~:-
<not>g:= NOT

<POP~2 function name> ,<argument>*?

GOAL

,~

An expansion therefore defines a collection of nodes with ordering in-

formation between them, and specifies any conditions before any node.

For examplef an expansion written:
-~-.

EXPANSION 1 GOAL <pl>
2 GOAL <p2> would definft"'tne: net
3 ACTION <p3>

IORDERINGS 1 --->3 2 ---> 3 I,
CONDITIONS SUPERVISED <pI> AT 3 FROM 1

SUPERVISED <p2> AT 3 FROM 2
<p3>

'¥GOAL

~
SUPERVI SEJ? ,_<pI>
SUPERVISED <p2>

CONDITIONS AUTO and AUTOCOND

To save repetition of GOAL <pattern> node forms and a corresponding

CONDITION SUPERVISED <pattern> condition form on a succeeding nodeg a



14

variable AUTOCOND may be set true to provide the CONDITION statements

automatically for the node following each GOAL <pattern> one. This

will occur commonly.eog. 

with AUTOCOND true
EXPANSION I GOAL <pI> is the same ~ --~-./ "; ~

2 GOAL <p2> as writing ~,:'~
3 ACTION <p3> i. .~'<,;..,. .

, t"
ORDERINGS I --->3 2 --->3 ('

EXPANSION 1 GOAL <pI>
2 GOAL <p2>
3 ACTLON','~p3>

ORDERINGS 1--->3 2 >3
CONDITIONS SUPERVISED "~I~'AT:3 FROM 1

SUPERVISED <{'2> AT 3 FROM 2

AUTOCOND set to false may be overridden for any individual schema by

writing CONDITIONS AUTO in its <expansion form>. AUTOCOND set to true

may be locally overridden by writing CONDITIONS NONAUTO.

Defaul t Expansions !n OPSCHEMAs

OPSCHEMAs are given a null expansion by default until the expansion

is defined. At run time only ACTION nodes can have a null expansion.

GOAL nodes should have some expansion.

GOAL AND ACTION roles in EXPANSIONS

The difference between putting GOAL <pattern> and ACTION <pattern>

in an expansion should be mentioned. An expansion of either causes the

list of OPSCHEMAs and ACTSCHEMAs to be searched for any whose PATTERN

component matches the <pattern> of the node being expanded. However,

the GOAL <pattern> node is given an effect which says that <pattern>

will be true at this nodeo This is additional to any MAINEFFECTS

defined for a pattern (see 2.302). The effect can be used to detect

interactions etc. before expansion. Efforts will be made to see if a

<pattern>at a goal node is true before ways to expand the <pattern>

are tried. The ACTION <pattern>node is not given such an effect and

no attempt is made to see if its <pattern> is true at the point in the

net.

(v)

Co~ditional E~Eansion of a EatterE

Any pattern may have several opschemas. Each of these may specify

alternate ways that the node with the pattern can be expanded. It is.
therefore possible to specify different hold conditions in an expansion

such that we get conditional expansion of the pattern. .

EFFECTS <effect form>*? The changes made to the world model after the

last component of the expansion has been

executed.



15

<effect fo:tm>~:= + <pattern> means true ~ value «pattern»

-<pattern> means false ~ value «pattern»

VARS 

<var form>*? ;

<var form>::: <POP-2 variable name> ~initial value>

<initial value~~:= UNDEFined variable, can be set to any value.

I <HBASE actor> (restriction on variable)

I <any particular value>

Variables in the components of an opschema with prefix $* are semi-open

variables (Bobrow & Raphael, 1974) and refer to the variable specified

in VARS (an alist). See appendix I for details of $* and variablerestriction.

(vii) END ends the definition of the opschemao

As mentioned previously the form given above may be considered to be too free

in the sense that it does not structure a user's thoughts to let him define a

domain in a simple way. Following a suggestion made by Jerry Schwarz I intro-

duced ACTSCHEMA as an alternative header word for an OPSCHEMA. An ACTSCHEMA

has the same syntax and components as an OPSCHEMA except that ACTSCHEMA re-

places OPSCHEMA at its beginning. They are semantically equivalent. How-

ever, it is proposed that a user may consider that OPSCHEMAS are definitions

of how to achieve certain GOALS. They should have an EXPANSION component

but should not specify the effects of the execution of the expansion. This

should be left to ACTSCHEMAs which define the effects of the ac~ions but

should not have any expansion component (except, possibly, for adding con-

ditions}. This may help non-expert users of the system to code simple domains.

e.g., Consider Sacerdoti's SOUP formulation of the block stacking domain

(see Sacerdoti, 1975a) translated to TF (our task formalism). The

variable AUTOCOND is set true to automatically insert the SUPERVISED

conditions before any node following a GOAL node (see iv above) 0

The layout is for the human reader only and can be in any style a

user may prefer. -

ACTSCHEMA PUTON
PATTERN «PUT $*X ON TOP OF $*Y»
CONDITIONS HOLDS «CLEARTOP $*X» AT SELF

HOLDS «CLEARTOP $*Y» AT SELF
HOLDS «ON $*X $*Z» AT SELF

EFFECTS + «ON $*X $*Y»
-«CLEARTOP $*Y»
-«ON $*X $*Z»
+ «CLEARTOP $*Z»

VARS X UNDEF Y UNDEF Z UNDEF;

END,



16

OPSCHEMA MAKEON
PATTERN «ON $*X $*Y»
EXPANSION 1 GOAL «CLEARTOP $*X»

2 GOAL «CLEARTOP $*Y»
3 ACTION «PUT $*X ON TOP OF $*Y»

ORDERINGS 1 --->3 2 ---> 3
VARS X UNDEF Y UNDEF 1END;

OPSCHEMA MAKECLEAR

PATTERN «CLEARTOP $*X»

EXPANSION 1 GOAL «CLEARTOP $kY»

2 ACTION «PUT $*Y ON TOP OF $*Z»
ORDERINGS 1 ---> 2
CONDITIONS HOLDS «ON $*Y $*X» AT 2

HOLDS «CLEARTOP $*Z» AT 2
VARS X <:NON TABLE:> Y UNDEF Z <gET <:NON $*X~> <gNON $*Yg> ~>1END;

ALWAYS «CLEARTOP TABLE»,.

~ There are two separate OPSCHEMAs w' one of which knows how to clear

~e top of~~~Pl~ck and the other knows how to place one block above another.

However, there is only one action involved and the effects of this are

described separately. The two OPSCHEMAs act as extra sources of knowledge

on how to use the primitive action to accomplish certain tasks.

Now, of courseN it is possible to give both an expansion and effects

to an OPSCHEMA (or ACTSCHEMA). For examplew high level action descriptions

can be defined by giving an ACTSCHEMA an expansion component~

e.g. (PUTON X Y) may expand to three lower level actions

(PICKUP X), (GOABOVE Y); (PUTDOWN X ON Y).

and effects may be given at the higher level as well as the lower. The

higher level action may refer to effects on different predicates than the

low level actions. Similarily, effects can be added to OPSCHEMAs if re-quired. 

The possibilities are endless. I will not pursue the design

criteria for a formalism which may be used as an interface from a user to

the OPSCHEMAs which NONLIN useso HOWEVER, the design of TF will be a

major component of the research being undertaken on the "Planning: a

joint AIloR approach" project.

2.3.2. Other Definitions in TF,

(a) The 'ALWAYS <pattern>u statements (as used in the block stacking

example in section 203..1) says that <pattern> is

true in any situation.



17

(b) MAlNEFFECTS is used to declare the effects of a particular action

which are independent of the choice of an expansion

for it. It can also be used to declare logical

consequences of a goal pattern being true at some

point in the plan. Main effects are those effects

always associated with the occurrence of the <pattern>

in the plan.

(not needed if no variables in the <pattern»

MAINEFFECTS <pattern>

VARS <var form>*? ;

<effect form>*?

(0)

END;

where <var form> is defined in 2.3.1 (vi) and <effect form> in 2.301 (v)

PRIMITIVE <pattern>*; declares each of the <pattern>s given to have

null expansions. This saves writing an OPSCHEMA for

each and is also more efficient for the planner. Of

course, as mentioned previously, only actions can be

declared PRIMITIVEo

2 further options are allowed in PRIMITIVE.

i) PRIMITIVE <pattern> with EFFECT <effect form>;

or PRIMITIVE <pattern> with EFFECTS <effect form>*7

is equivalent to writing PRIMITIVE <pattern>; and

giving MAINEFFECT <pattern> <effect form>* END;

This appears to be a commonly useful facility.

ii) any <pattern> in a primitive declaration (after

any effects if these are given) can be assigned a

cost (duration etc.) by following it by a <node

cost> (e.g. :12). This may be easier to write

than a COST definition.

(d) LEVELS <level defn>* ;
,

<level defn>::= <pattern> :fnumber>

LEVELS is used to define the hierarchy of <pattern>S

which can be expanded during planning. The planner

tries to expand <~e:~ttern>s which are highest in this

defined hierarchy first. A lower number indicates

a pattern higher in the hierarchy. Any <pattern>

not given a level is assumed to have level 0 and'~

thus expanded firsto It is not essential to give

levels for planning to be ~uccessful, however, it



18

may make it more efficient. It should be possible

to build up the level list automatically in due course.

COST <cost defn>* ,(e)

<cost defn>~:= <pattern> <number>

COST is used to define node costs or durations for anypatCern. 

The cost of any node is stored in the NODECOST

component and can be used by critical path or other

algorithms either during or after planning. It is not

used in the current version of the program (AUgust 1976).

Costs may also be given in a PRIMITIVE declaration (see

(c) above) or in the expansion of any schema (by follow-

ing a node definition by ~ number). A cost assigned

within a schema~9?errides one assigned by the COST form.

Nodes by default are given zero cost.



19

3. Repre~entation of the Netwo!~

For reasons which I hope will become clear as the planner is described

the network is represented as follows~

.a collection of nodes kept in a flexible strip ALLNODES of current

~length MAXNODES containing NUMNODES nodes. The strip is increased as

necessary in increments of INCRNODES. Nodes are referred to via their

subllfipt in ALLNODES e.g. NODE(4). Lists of PRENODES and SUCCNODES

for each node are kept and refer to the appropriate ALLNODES subscripts.

By convention. NODE(l) is the start node of the networkf and NODE (2) is

the end node. Access to these is needed for the calculations of

.

critical path length.

Each node has associated with it

nodenum its subscript in ALLNODES

node type GOAL, ACTION, PHANTOM, PLANHEAD or DUMMY

pattern used to seek an expansion

nodectxt a context containing the effects of this node.

The partially ordered network of contexts is

defined by the nodectxts and the prenodes and

succnodes links.

together these 2 components hold the network and
conditions for ~ expansion of this node (these
would be set after a choice of expansion.

the node was inserted as a result of the expansion

of its parentnode

a list of nodes linked immediately before this one
" " after"

a cost for the execution of this node (0 by default) 0

a list of variables which may occur in the expansion

or expanconds together with their values (an alist)

a marker used to discover the relation of this node to

any other in the network "BEFORE", "NODE" i "AFTER" or

0 (for parallel node) with respect to a node held in

the variable NETMARKED. It is also used to help re-

locate a chosen expansion being inserted into ALLNODES

(see section 5.5)

expansion
expanconds

parentnode

prenodes

succnodes

nodecost

nodevars

nodemark

The network thus described gives the ordering constraints between the nodes

in the network. 2 other structures are used, a TOME and a GOST.

.Table of Multiple Effects (TOME)

As in Sacerdoti (1975a) this provides a simple means of determining the



20

values given to any pattern at any node quickly.

It is used to detect interactions.

Its entries are HBASE items

« <pattern> <nodenum> » and have value <value>.

.Goal Structure (GOST)

any condition~ on any node is stored in GOST together with a list of

"contributors". Contributors are nodesii anyone of which could make

this condition hold. See section on the QA system for how the con-

tributors for any pattern are found.

A GOST entry is

« <condtype> <pattern> <value> <nodenum> »
and has value <list of contributors>

<condtypes> currently dealt with are those outlined in section 2.2,

SUPERVISED, UNSUPERVISED and HOLDS. A system generated <condtype>

PHANTOM can also appear 0 The Goal Structure therefore allows the

purposes of any particular effect at any node to be determined (if

it has any). This allows interactions to be detected and allows

corrections (suggested linearizations) to be sensitive to the im-

portant effects of nodes (those with purposes). Unimportant effects

are therefore ignored.

Once the interacting effects of nodes are determined and the goal

structure is available simple linearizations can be suggested to

remove the interactions (as in INTERPLAN -Tate, 1975a and 1975b).

Two special nodenums are used in the GOST, these are 0 for ALWAYCTXT

as a contributor and -1 for INITCTXT as a contributor (these are

needed because of the di$tributedwo'rld~model representation -see

section 4 on QA system).

Nbtethat TOME and GOSTmentties as wellas'the pointers between nodes

are in terms of node numbers (entries in ALLNODES). This convention allows

a simple scheme to be used to copy a network when needed for a choice point

and allows expansions to be made with the minimum of effort. The entries

are also arranged so that efficient lookup via HBASE SUPITEMS of a pattern

is possibleft

a) P on its own is a NODECTXT entry

b) P in the lst,place is a TOME entry

c) P in 2nd place is a GOST entry



21

4. uestion answerin contexts

Current data base systems which provide a context mechanism, e.g.

CONNIVER (McDermott and Sussman, 1972) and HBASE (Barrow, 1975), provide

efficient facilities for storing a changing data base by remembering the

alteration_s, made to an initial situation. Howeverj/ they only provide

facilities for the determination of the value of a pattern with respect

to a given context in a fully ordered tree of contextso The nature of

non-linear planning makes it very desirable that we store only the changes

made to a world model to allow the determination of the value of patterns

with respect to a given context in a partially ordered network of contexts.

In such a network we define the order in time of 2 contexts to be specified

if there is a chain of time ordering links between them. In the diagram

below x + y means x before y.

J

A tree of contexts A partially ordered network of contexts

In a tree of contexts there is a strict time sequence along a single

context path so answers are fully determinate. In the partially-ordered

network answers will depend on the nodes in parallel with a particular node

as well as the answer got by retracing back through a network. This answer,

got by retracing through the network, will itself vary as nodes are linked

earlier in the network. This is the reason why a full world model should

not be kept for each context and why it is best to store only the changes

to the world model at each point.

The questions asked of the QA system will be of two kinds:-

(a) Does P have value Vat node N in the current network? It could

have value definitely V, definitely not V, UNKNOWN because it is

both V and a value other than V on parallel branches or undefined

because it is not mentioned anywhere.

(b) What links would have to be added to the network to make P have a

certain value if it did not have this value in the given network?



22

The QA system will recognize its function by a parameter "NONLINK" for (a)

or "LINK" for (b) 0 The system finds 4 lists of nodes in the network and

uses these to give a truth result for the request. The lists contain the

information needed to suggest links if this is required..~ 

-P-node is a node which gives statement P a value.

,PV-node"" " " " " """ V.

PNOTV-node other than V.

a critical node for (P,N) is a node which, in a possible linear--
~

izationq gives a value to statement P for the last time before

node N. (i.eo could be made to be the nearest predecessor of

N which gives a value to P in some legal linearization).

~~. The critical nodes for (P,N) are

i) the last P-node on each incoming branch of N (ig~ore

P-nodes which are also predece~ssors of any other critical

nodes since there may be redundant links in the network).

ii) all P~odes which are in parallel with N.

The system finds lists VL critical PV-nodes which are predecessors of N

" cVNOTL

PARVL

PNOTV-nodes "

PV-nodes which are in parallel with N

PARVNOTL PNOTV-nodes" "

QA (P,V,N, "LINK" of "NOLINK".) first attempts to see if P definitely has

value V at node N or definitely has not.

P definitely has value V at node N if there is at least one critical PV-node

before, node N, and there are no critical PNOTV-nodes.

P definitely does not have value V at node N if there is at least one

critical PNOTV-node and there are no critical PV-nodes.

If neither of these 2 definite cases arises then it may be possible to

~ P have value V at node N by making suitable links in the networko

This is only done if "LINK" is signalled to QA. If "NOLINK" and there

are critical PV-nodes but no critical PNOTV-node then return "undef" (ioe3

P has value Vat some node in parallel with N and is not given an opposite

value anywhere) otherwise return "UNKNOWN". To make P have value V at node

N it is necessary to have at least one critical PV-node linked in before

node N and to link out all critical PNOTV-nodes (both parallel to-and pre-

decessors of N)Q so that they cannot be placed between at least one critical

PV-node and No The system will suggest a possibility list of different

sets of compatible links to achieve the above conditions. The process used



23

to suggest compatible links for this scheme is very closely based on the

process which corrects for interactinns in a network. The common linking

procedure used is described later (see section 5.6). It is given the 4

lists, VL8 PARVL, VNOTL and PARVNOTL.

Linking restrictions

It is legal to make a new link between 2 nodes

(a) if they are not linked in the opposite ordero

(b) every node which achieves a pattern as a condition for some

other node (its purpose) continues to do SOo

Redundant links may be removed or left in. The planner to be described

later removes redundant links to ease the printing of the networks.

The notion of contributors to a condition, --~ ~-

It is possible that an answer to some question "does P have value V

at node Nil is answered positively and that there be more than one criticalPV-node. 

In this case it is possible to remember that ~~pf the critical

PV-nodes could make the pattern P have value V at node N. We keep the list

of critical PV-nodes as a set of contributors to any condition satisfied in

this way. The system can allow the set of contributors to be reduced (eeg.

by not correcting for certain interactions etc.) So long as at least one

contributor remains for any condition. This facilitjis used extensively

in the planner to prevent choices of linearization earlier than necessarYe

A distributed world model

The QA system used by NONLIN, besides providingW,facilities outlined

above for storing the effects of nodes in the network and retrieving the

value of any pattern in this network with respect to any node, also keeps

two data bases.

There is a data base called ALWAYCTXT which holds the values of any

patterns given as unchangeable or global facts eege «CLEARTOP TABLE»

is always trueo

There is a data base called INITCTXT which is set by the system to be

a copy of the world situation the user asks a plan to be found ine Any

items in ALWAYCTXT are removed from INITCTXT to keep them disjointe

As in NOAH (SacerdotiQ 1975bQ pages 20-22)Q whenever the value of a

statement is modified in the plan it is removed from INITCTXT and put in

the context held in the first node of the plan (a special PLANHEAD node) 0

This means that statements in ALWAYCTCT6 INITCTXT and the network itself

are all disjoint and an answer for any query can be obtained efficiently

by going to ALWAYCTXT and INITCTXT before interrogating the network (under



24

the assumption that the number of patterns whose values are altered in a

plan is small compared to the total number of facts known to the system).

Gettin a list of all atterns which match P with value V at node N

The scheme outlined above is only satisfactory for finding whether a

certain fully instantiated pattern has value V at node N in a network ofcontexts. 

It is sometimes necessary to get a possibility list of patterns

which match some given pattern and which have value V at node N. We have

provided a simple facility to do this in the case where ffNOLINK"!"'!is re-
..,quired. 

The possibility list is made up of three parts

i) fetch all items matching P with value V from ALWAYCTXT

ii) fetch all items matching P with value V from INITCTXT

iii) the table of multiple effects (TOME) keeps entries for any pattern

given a value at any node in the network. We get any TOME entry

which gives value V to a pattern matching that required. The TOME

entry gives us the node number at which the pattern is given the

value. If this node is time linked before N, it is possible that

the pattern may still have value V at N. This is checked using

the algorithm defined for fully instantiated patterns.

Note I am grateful to Gottfried Eder for discussions during the design

of this algorithm. He suggested the terminology of "critical

nodes"Q "linking in" and "linking out".



25

5. NONLIN: The Planner~

NONLIN is an operational program which performs all the functions

specified in this report. rt is written in POP-2 (Burstall, Collins

and Popplestone, 1971) and uses the HBASE data base system (Barrow,

1975) with additions (see Appendix I). The program runs under the

POP-2 interpreter on the Edinburgh DECIO under time-sharing. With

the associated OPSCHEMA construction programs and output routines it

occupies 8K words of store. ,

5.1 Top Level Control

{;ONSTRUCT
INITIAL NETWORK,

YEs)

NODE IN

~ORK
EXPANDED? .

YES
'lQ EXPAND

? ,/

~

EXPAND
NEXT NODE

OK CORRECT ANY

INTERACTIONS
OK

, l;ANNU'~

SATISFY
UNSUPERVISED
CO~"DITIONS

CANNOT

OK!

CHOOSE 

ALTERNATIVE
NET 'I'O EXPAND

OK

* these 3 operations may

add alternative ways to
proceed (choice points
of alternative nets).

SUCCESS

IPRINr NE'lWORK



26

5.2 

Construct the Initial Network

Typing PLAN <expansion form>, to NONLIN constructs an initial network

to start planningo <expansion form> has all the flexibility allowed in

any expansion of an OPSCHEMA (it may contain ACTION nodes, ORDERINGS and

CONDITIONS as well as the more normal GOAL nodes).

e.g. with AUTOCOND set true we could write

PLAN GOAL «ON A B»
GOAL «ON B C»,

for 2 parallel goals (note that the goals were not given the

optional node numbers as no orderings etc. were to be specified).

The network constructed consists of the special PLANHEAD node followed

;~f a goar node whose pattern is "GOAL" and whose expansion is the <expansion

form> giveno

(:~~~~~~~~:::)

5.3 The Basic Cycle

For each node in a network we EXPAND it and correct any INTERACTIONS 0 *

After this process has been performed for each node we check if a variable

SOMETOEXPAND is set (i. eo has EXPAND introduced new nodes into the net) 0

If the variable is set we must repeat the expansion cycle. If not then

the network is fully expanded and we can exit successfully (subject to any

UNSUPERVISED conditions being satisfied) $ The expansion and interaction

correction (linking) modules will be described separately below.

At present the system is run mostly "stand-alone" without user inter-

actiono However, for the use to which it will be put in the Planning:

a joint AI/OR approach project, it is envisaged that a user will aid in

the choice of nodes to expand and linearizations to make etc. Several

primitives which may be used for interrogating the system and making

directions to it are given in Appendix III.

5.4 Or-choice Mechanism

While expanding a node alternative operator choices and alternative

instantiation choices may be found. These are added onto a list of choicepoints. 

Also when correcting for any interaction several linearizations

may be suggested 6 again the alternatives are remembered as choice points.

* This is rather simplistic. In fact only nodes above a certain LEVEL

in a defined hierarchy of patterns are expanded.



27

Whenever an expansion cannot be made or an interaction cannot be corrected

an alternative is chosen ~_the choice points and planning is resumed

from that point. It is also possible to generate further solutions after

a successful exit from NONLIN by repeatedly typing REPLAN.

At present choices are kept in a very simple fashion by ordering them

according to a numeric heuristic on a list. This will be inade~ate in

a system operating in a domain with many operator choices and in which

complex interactions can occur. At present we are investigating the use

of a decision graph which will remember the dependancy of certain nodes

and links on earlier choices (Daniel, 1976). Selective removal of nodes

or links in the graph related to a failure will then be possible. Such

a scheme was used by Hayes (1975) for a journey planning system which

could deal with execution failures while travelling.



28

5.5 Expanding a Node

A node is expanded to find more detail of how a task can be performed

or a goal achieved. There are certain nodes in the network which should

not be expanded because they are present only to correctly define the net.

These nodes are the PLANHEAD node and any DUMMY node. The former is

inserted to allow facts used in the plan from the initial planning situation

to be stored for question-answering. The DUMMY nodes are inserted to allow

conditions to be attached unambiguously to some point in the plan (by a

user o~.the system). These two types of nodes are not expandable and are

merely returned unaltered by the expansion function.

Thus 3 types of nodes are considered expandable, GOAL nodes, PHANTOM

nodes and ACTION nodes.

1) GOAL nodes A goal node is assumed to be present to state that the

pattern of the node should be true at the node. There

are three ways this could be achieved.

a) If the pattern was already true at that point.

b) If we could introduce links into the network to,
make the pattern true at that point.

c) If we could make an expansion of the node which

would make the pattern be true.

In cases (a) and (b), the GOAL node is 'returned with a new type
'.

"PHANTOM". A GOST entry with <condtype> "PHANTOM" is made to show the

contributors which make the pattern true at the node. Links will have

been put in the network as a result of (b).

In case (c) i it is necessary to find an expansion for thf.pattern

and replace the goal node by the expansion in the network. A list of

~~'BgMAS (or ACTSCHEMAS) which can be used to expand any pattern is kept

in a list ACHLIST (built up by the system as the schemas are input). One

is chosen and alternative ways to expand the pattern or alternative in-

stantiations in the expansion chosen are kept as choice points. The

process used to link an expansion into the network is described later in

this section.

2) PHANTOM nodes

If the pattern of a phantom node is still true at the node (there are

still contributors which make it true) the node is returned unaltered.

However, if the network has been altered such that the pattern of the

PHANTOM node does not now holdu the node type is altered to "GOAL" and the

expansion process for GOAL nodes is used.



29

3: ACTION nodes An action node is assumed to be present as a command

to do something. No attempt is therefore made to see

if its pattern is true or can be made true (by linking)

as cases (a) and (b) for goal nodeso However, case (c)

is performed exactly as for GOAL nodes 0 An expansion

of the pattern is sought and if there is one it replaces

the action node in the network"

Null Expan~ion

An action node is allowed to have a null expansion

This indicates to the system that the action can be

considered primitive and it should not be replaced

in the network or expanded further. The expansion

function returns action nodes which have a null

expansion unaltered,

~ expansion with conditions only
In the special case of an action node whose expansion

consists only of a set of conditions (i.eo no further

action or goal nodes are given), the expansion is

treated as being null and the conditions are merely

added to the node being expanded and this is returned

otherwise unaltered..,

R~p_la~c!!:!;~ a node by~?expansio!:!;

To fit an expansion of a node into the network in place of an existing

(higher level) node we should perform the following 6 functions.

1) prenodes links of the existing node are attached to the front of

the expansion 0 All prenodes are modified to point to the front

2)

of the expansion"

Succnodes links of the existing node are attached to the last node of

the expansionc All succnodes are modified to point to the last node

3)

4)

of the expansion"

Any conditions on the higher level node are made into conditions on

the first node of the expansion~ The contributors to any condition

from the higher level are inherited"

Any effects of the higher level node are attached as effects of the

last node of the expansion 0 Higher level effects will have been

achieved when the whole expansion is completedo



30

5) Any nodes for which the higher level node cont~ibuted towards some

condition (the purposes of the higher level node), take the last node

of:the expansion as the contributor (because of (4».

6) TOME entries refer to the node number at which a pattern is given a

value. TOME entries for the higher level node should refer to the

last node of the expansion (because of (4».

In order to facilitate a simple update of the network when an ex-

pansion is made, all nodes in an expansion except the last node are in-

serted onto the end of the ALLNODES flexible strip of nodes in the network

(incrementing NUMNODES), then the last node of the expansion !eplaces the

higher level node entry in ALLNODES. The last node thus inherits the node

number of the higher level node.

Since PRENODES and SUCCNODES links, TOME and GOST entries are all in

termso-f"node numbers, operations (2), (4), (5), and (6) above are automatic,

since the numbers refer to the correct node. Only operations (1) and (3)

need be performed. After this is done, the MAINEFFECTS (see section 20302)

of any pattern are made and true is given as the valuepf the pattern of any

GOAL node,

Is this simple approach sufficie~y;?

We have had a great deal of discussion to try to decide whether the

simple process of linking an expansion to the net in place of a node issufficient.. 

Schemes have been tried of apportioning the effects of a

higher level node between the nodes of an expansion; of linking prenodes

links to nodes of the expansion which repeat a condition of the higher level

nodei and linking succnodes to nodes of the expansion which repeat effects

of the higher level node, The scheme presented for the replacement of a

node by an expansion (as Sacerdoti, 1975a) assumes two things.

a) a condition on a node means that this condition only need

hold before the first node in any expansiono

b) the effects of a node are those achieved by executing some

expansion of the node (i.e. can only be assumed to hold after

the last node of an expansion is performed).

This seems to be a natural assumption to ~ake when describing a task

hierarchically and should simplify any problem a user may otherwise have

had,



31

Relocatable Expansio_n_s

In order to ease the insertion of an expansion into the network, each

expansion schema in an operator schema is kept as a minature network of nodes

in the same form as the main network being generated by the planner and as a

list of conditions on these nodeso Prenodes, succnodes and conditions all

are given with node numbers relative to the strip representing this minature

network. The first and last nodes in the strip are the first and last

nodes respectively in the expansiono To insert an expansion in the main

network we use the current size of the network (NUMNODES) to give a relocator

to be added to all node numbers referred to in the prenodes8 succnodes and

c~di tiori;~;entries of the expansion 0 Since the last node of an expansion

actually replaces the node being expanded! this is treated separatelyo

Since expansion schemas are stored as network fragments it should be

possible to use the planner to build up small networks from more primitive

jobs in order that the network can be saved as a schema and used as a com-

ponent of larger tasks (the use of small, well worked out components is
-,

cammon in network p~nning)o This is one area in which further effort

must be made to develop the user interaction facilitieso



32

506 Li~ing[p.rbCass for the network

There are two occasions on which it is necessary to suggest links in

the network.

a)b) To linearize the net to remove a list of interactionso

To make a statement have a particular value at some node

(as a result of a request to "LINK" to the QA module -see

section 4).

The same process is used in both of the above tasks.

We start with a SUGGESTed set of networkso Initially this would

only be the original (input) network, but later it would be set on each

iteration to be a NEWSUGGESTed set of networks defined below. We also

have a list of interaction records (INTERACT) each of which gives a node

N at which a statement P has a value V and a list of nodes NI, ..~,Ni, ...N~

at which statement P has a value other than V (say V) and which contribute
i i -to a set of purposes PNI 0.. PN such that P can have value V for part of

n .
the time for which P could have value V at node N, Some of the Nl may

give P a value V and be in parallel with node N and interact for this

reason alone (i.eo they may have no purpose for P).

We must ensure that we suggest appropriate linearizations to make P

have the appropriate value for any point in the network so that the purposes

are achieved, We have a set of "ranges" for which P must have value V (the

range may be a single node at which P has value V if it has no purpose).

We also find a set of "ranges" for which P must have value V (from the

single node N to any nodes (PNI' .c. PNm) to which N "contributes" patternP 

to achieve a condition) 0 All that is needed is to ensure that none of

the "V ranges" overlap with any "V range". The algorithm below performs

this tasko It also takes into account two facts.

a) only one contributor to any purpose is necessar~c This

allows the number of ranges to be reduced.

b) if the type of condition is a PHANTOM we can remove all

contributors if necessary as this will merely make the

node with the PHANTOM condi tions into a goal node.

The prooe$'s,' preduc@. !;~tl networks :bas,- -t;ttt~, ~ft1~ ~ SUGGEST~"f_- -!

which links can be made to remove all interactions in the list INTERACTo



33

Given a list SUGGEST of networks and a list INTERACT of interact record.

Iterations

1)

2)

For each member of the list INTERACT choose an interact record which

gives one node (say N) at which a statement is given a value V and

which has purposes PN ,...PN and a set of interacting nodes
1 ..Q, 1 m .,

N , ...N~, ..0N each of which has purposes PN~.o. PN~

for each N choose a member of the set of interacting nodes
1 i .Q, i .N ,.00N ,..0N (say N -OPP ~n the program) 0

Nand Ni may establish P with value V and V respectively for some

other nodes (the purposes if any are given in the GOST -see section 3)
i i i

PN1' 000 PNj' 000 PN~ and PN1' 0.. PNkf 010 PNn.
If there are hb PN, (ioe. m = 0) or no PNk (i.e. n = 0), the single

, J
nodes N or N~ respectively are used to define the "ranges" belowo

for each PN, we define a VRANGE (a period for which P must have
J

value V) from ~ to PNj'

for each PN~ we defi~e a ~GE (a period for which P must
-~ ~

have value V) from N to PNk'

3)

4)

0- VRANGE G)

r;l"\ -:-- -~~ VRANGE ~~ ~

0 if no PNj
r:T'\ .
~ if no P~

or

or

5)

Alternatives

for each network currently in SUGGEST we must try to remove

any overlap of these two interacting ranges or remove the

oN or Ni as "contributors" to PNj or PN~ respectively.

** We must suggest putting the VRANGE both (a) before and (b)

after the VRANGE. This is in fact an elegant generalization

of the interaction correction procedure first suggested in

Tate (1974 and 1975b). This merely involves putting a link

from the end of one block to the beginning of the other in

both cases. This can only be done if a link does not exist

in the opposite direction.

for each alternative (a) and (b) above we suggest the following.

(1) (a) & (b) with" neither N nor Ni removed as contributors to PN, and PNi.
..J

(2) (a) & (b) With N~ removed as a contributor to PN~ but ~ not so removed

(3) (a) & (b) With N removed as a contributor to PN, but N~ not so removed
J

(4) An unaltered net (no extra links) is suggested with N removed
i i

as a contributor to PNj and N removed as a contributor to PNk

Any legal net produced is added to the list NEWSUGGEST which after dealing with

**When choosing between the alternatives we should prefer- orderings which do hot
put a statement with a particular value ~~f_t~ some node which has an Urtsuper-
vised condition for that statement and value.



34

Any legal suggestion is added to the list NEWSUGGEST. Note that if

ever both VRANGE and VRANGE becomes a single node no interaction is present

and the net can be left as it stands (alternative 4). Only one unaltered

net should be produced for any single VRANGE/VRANGE ordering attempt.

Some of the alternatives (1) (a) + (3) (b) may produce such an unaltered

net so redundancy must be checked. It is anticipated that many of the

orderings attempted will fail because of incompatible linking in the net-works. 

This will be especially so when there are several interact records

or many purposes for nodes.

Use of the Linking Process

The function: as described can correct for any number of interactions in

any suggested set of networks. It is thus possible to write the planner so

that it performs interaction correction at any time the designer wishes.

Different schemes of correcting when one interaction is found 0 when an ex-

pansion of a node is made, or after all nodes in the current net have been

expanded once can thus be experimented with.

In NONLIN the linking process is used for the two purposes mentioned

at the beginning of this section.

(a) tolinear_i_z_e, the ,net ~~~ove interactions

As effects are added to nodes in the net they are also recorded in the

TOME (whose entries are of the form« <pattern> <nodenum> » with a value).

When any TOME entry is made, a check is made to see if~-

i) any parallel node has an opposite value for the pattern (in TOME)

ii) any node has a condition for the pattern with an opposite value,

and has a contributor such that part of the range for the pattern

to have an opposite value is in parallel with the node just given

the effect. (found from GOST)

e.g. P with value false ("-") being entered at node (4)

,:; + P at (3) interacts

+ P at (1) and a purpose at (2) does not

+ P at (\' and a purpose at (6) does not

+ P at any other node which has a purpose

at some later node interacts

Interact records (as described earlier) are found for each potential inter-

action and put in the list INTERACT. If severa~ effects are added which cause
i

interactions all the interact records are added to the list INTERACT.

The linking process described is then entered with a single suggested net

(the current network) and the list INTERACT.



35

N.B.

it is only necessary to "link-in" one critical PV=node before N since

linking more would merely add extra ordering constraints to a network

without contributing to any purpose. This would then make "linking-out" 

harder too.

action records are being handled and m linearization were suggested to correctfor 

them or no ways were found to correct for them.

(b) to make a statement have a articular value at some node

When the QA system was asked if P had a value V at node N and failed to

prove that this was true, if the system was given a parameter "LINK" it may

be able to return four lists (VLe PARVLq VNOTL and PARVNOTL) of nodes which

can be used to suggest ways of making P have value V at node No See the

section on the QA system for the justification for the "link-to-make-true"procedure. 

That section also gives the definition of the critical PV-nodes

(VL and PARVL) and the critical PNOTV-nodes (VNOTL and PARVNOTL).

The'procedure is to "link-in" one critical PV-node before node N if such

a node does not already exist (if VL is not null then there is already one"linked-in" 

critical PV-node). This linking may suggest one or more networks

andw~!must now "link-out" all critical PNOTV-nodes from between a linked-in

critical PV-node and N. So for each network suggested we construct interact

records in the list INTERACT for each crLtical PNOTV-node and call the linking

process described in this section.



36

~o_7 -Conditions and their use in the planner

An expansion specifies various nodeso their time=order linking and the

conditions which must hold before each node. Basically a condition on a

node is inserted in the GOST when that node is added to the network. The
'"

GOST entry for the co~tion stores the UQo.~ibutors", or nodesl/ anyone of

which would be sufficient to make the condition hold. Conditions have differ-

ent types as explained in the section on domain description (section 2.2).

The differences between the handling of the different types is given below.

There is a rule for dec;J.ding which type a condition should have if it

is given two different types at different levels of description.

SUPERVISED

f
HOLDS

t
UNSUPERVISED

Fill in immediately 0 Must have one contr.i\utor
from within the expansion just madeo

Fill in immediatelyo Can have severalcontributors.

Fill in by the time the plan is finished.

Higher types replace lower oneso A PHANTOM condition type can only

be added to an unexpanded nodeu and it has a pattern which is the pattern

of the node itself. Since it is impossible to have a condition on a node

(ioeo a pattern must hold before the node) which is the pattern of the node

itselfuPHANTOM need not be included in the priority orderingo PHANTOM is

essentially for system use only. Compute conditions are evaluated at the

time an expansion is chosen and do not appear in a GOST.

!!old, ~?d Compute

Hold and compute conditions are gathered together at the beginning of the

list of conditions of the OPSCHEMA in the order they were written. This

first part of the list of conditions is used as a further check on the

applicabili ty of an OPSCHEMA after the pattern directed invocation through

the OPPATTERN. Each hold condition must have some instance at the point

in the plan where the expansion is to be made. So a hold condition must

hold at the point in the plan immediately before an expansion and continue

to hold up to the node where it is a cQpditiono If a hold condition is

not true when an OPSCHEMA is chosen the OPSCHEMA is considered inapplicable.

Compute conditions are also evaluated when an OPSCHEMA is chosen" If they

do not produce a successful resultu the OPSCHEMA is considered inapplicable.

!!nsuperv2sed
An unsupervised condition need not be made to hold until the plan is

completed in all other detailso It specifies a final ordering constraint

on the plan. Alternative linearizations may be chosen with regard to the

later ability to set Unsupervised conditions.



37

f!!~~ervi_s_e~
A supervised condition is always put as a goal node explicitly in the

net and the goal node is made the ~ contributor to the satisfaction of

a supervised condition on a following node. The goal node is inserted

explicitly~ allow it to be expanded out if the goal pattern is not true

(Supervis.ed conditions are the only ones which can cause expansions)e If

it is true a condition of type PHANTOM can be considered to "achieve" thegoal 

node.

~~~C?pl
If ag,oal node has a pattern which is true at the point required the

goal node is marked as a PHANTOM (its node type is altered)~ and an entry

is put in the GOS~ which is like a conditton on the goal node of condtype

PHANTOM. If necessary to remove an interaction, the contributors which

could establish the condit.ion can be removed. The node then reverts to a

goal node and may be expanded normallyo

38

5.8 Useful ro erties of the data structures re the network

Besides the actual plan representation available after a problem is

solved, the GOST context provides much valuable information.,

1) Plan Optimization and Execution

The GOST provides details of the contributors to any condition.

In an optimized plan it is only necessary to have one contributor

to each condition at a node. Any actions in the plan which do not

contribute to any condition can then be removed. It may also be

possible to make an action redundant by "linking in" a parallel node

to achieve some condition, thus making the previous contributor re-

dundant,

Sophisticated execution monitoring and run-time plan alteration

strategies such as those outlined in Sacerdoti (1975b) can be

supported by the representation of the network and are greatly

aided by the explicit provision of the GOST structure. Such

schemes are currently being investigated.

2) Plan Generalization and re-use
.~

The GOST also specifies conditions on nodes which were satisfied

from the ALWAYCTXT (contributor [0]) and from INITCTXT (contributor

[-1] or [1] if used from the INITCTXT and modified in the plan).

We can thus get the set of conditions which must be true of any world

model for the plan to be applicable and achieve its purpose. Symbolic

alteration of the plan using the goal structure to link variables be-

tween actions can lead to generalized or re-instantiated plans. A

complete plan can be saved as an OPSCHEMA since the expansion of an

OPSCHEMA is kept as a network of nodes and as a list of conditions.

It may thus be possible to generalize and re-use plans as was done by

Sussman (1973)0

39

6. An ExampleProblem-'" Block Stacking

Taking the block stacking domain given as three operator schemas in

section 2.3.1 (on the task formalism), I will describe the action of

NONLIN on the problem of stacking Block A on B and stacking B on C. In

the following «put x on top of y» will be abbreviated (put x on y),

«cleartop x» will be abbreviated (cl x), «on x y» will be abbreviated

(on x y).

TABLE

PLAN GOAL «ON A B»

GOAL «ON B C»;

creates the initial net below (nodes are numbered):-

Expansion 1 (Using the expansion provided by the PLAN statement)

~-

[+ (on b c)]

No interactions are introduced so we expand each node again.

F

40

Expansion 2

No interactions are introduced so we expand each node again.

Expansion 3

The expansion of node 5 (the action «put b on top of c» node)

introduces further conditions at the node:

holds «cleartop b» is superseded by the existing condition

supervised «cleartop b»

holds «cleartop c» is superseded by the existing condition

supervised «cleartop c»

holds «on b table»

and further effects -«cleartop c»

-«on b table»

+ «cleartop table» is not asserted as it
is ALWAYS true

however the expansion is treated as null since no new nodes are added.

The expansion of node 7 (the goal «cleartop b») introduces 2 newnodes,

a goal node and an action node.

Node 8 (goal «cleartop c») becomes a PHANTOM node.

41

phantom (on a b), ,

No interactions are introduced so we expand each node again.

Expansion 4

Expanding node 7 (the action «put a on top of table» node)

introduces new conditions

holds «cleartop a» superseded by the supervised
condition «cleartop a»

holds «cleartop table» is already present

holds «on a b» is already present

new effects are also introduced -«cleartop table» cannot be made
as ALWAYS «cleartop table»

-«on a b»

-«on a table»

No new nodes are introduced so the expansion is treated as null.

The -«on a b» effect at node 7 introduces an interaction with

+ «on a b» at node 4.

42

We have a node 4 with an effect + «on a b» needed at node 2 and a node

7 with an effect -«on a b» which has no purpose. Also at present

+ «on a b» at node 1 is used as a contributor to the phantom node 4.

To correct for this interaction it is necessary to ensure that there is

no point in the plan at which -«on a b» is in parallel with points at

which + «on a b» must hold.

The interaction corrector can suggest only one possibility. Remove

+ «on a b» at node 1 as a contributor to the phantom node 4 and link

7 --> 4. (7 cannot be put after 2 as a link exists in the opposite

direction).

43

ExpansionS

Node 4, now a goal node, expands out to 2 goal nodes and an action

node.

Supervised (.:1 a)
Supervised (.:1 b)

11

phantc-. (cl c,' Supervised (cl b)
S\\l'°rvised (cl c)
Holds (on b table)

No interactions are introduced so we expand each node again.

Expansion 6

Only nodes 4,11 and 12 are now expandable 0 11 and 12 are merely

converted to phantom nodes, node 4 (the action «put a on b»

node) adds further conditions:

holds «cleartop b» superseded by the supervised condition

..«cleartop c» «on a table»

extra effects are added:

«cleartop b»

«on a table»

+ «cleartop table» is ignored

Now the -«cleartop b» effect at node 4 which has no purpose interacts

with an effect +. «cleartop b» at node 7 which must be true at node 5.

44

Part of range 7 -+ 5 is in parallel with node 4. The interaction corrector

can suggest only one linearization of putting' 5 --> 4. The redundant link

5 -+ 2 is removed. The final plan is shown below without effects or con-

ditions

The trace of NONLIN on this problem is:-

: PLAN GOAL «ON A B»
GOAL «ON B ~»

LEVEL 0
LEVEL 0
LEVEL 0

+++CHOICE ADDED HOLDS
LEVEL 0

= 1 INTERACTION 1 LINEARIZATIONS
LEVEL 0
LEVEL 0

1

INTERACTION 1 LINEARIZATIONS

NONLIN 2 TERMINATED. CPO TIME = 7.342 SECS

1 PLANHEAD

2 DUMMY
3 DUMMY
4 ACTION
5 ACTION
6 DUMMY
7 ACTION
8 PHANTOM

9 PHANTOM

10 DUMMY

11 PHANTOM

12 PHANTOM

NIL
[4]
[1]
[512 11]
[8 7]
[3]
[9]
[6]
[6]
[7]
[10]
[10]

«PUT A ON TOP OF B»
«PUT B ON TOP OF C»

«PUT A ON TOP OF TABLE»
< <CLEARTOP C»
< <CLEARTOP A»

[3]
NIL
[6]
[2]
~ 4]
[8 9]
(10 5]
[5]
[7]
[12 11]
[4]
[4]

< <CLEARTOP A»
< <CLEARTOP B»

45

After the plan is completed the GOST (goal structure) is:-

(entries are « <condtype> <pattern> <value> <node condition required at> »

and the value of the entry is a list of contributors to that condition).

CONTEXT 35

« PHANTWM «CLEARTOP B» 1 12» I 7]
« PHANTOM «CLEARTOP A» 1 11» [9]
« HOLDS «ON A TABLE» 1 4» [7]
«PHANTOM «CLEARTOP A» 1 9» [1]
«SUPERVIS «CLEARTOP A» 1 4» .[11]
«SUPERVIS «CLEARTOP B» 1 4» [12]
«PHANTOM «CLEARTOP c» 1 8» [1]
«SUPERVIS «CLEARTOP A» 1 7» [9]
« HOLDS «CLEARTOP TABLE» 1 7» [0]
« HOLDS «ON A B» 1 7» [1]
« HOLDS «ON B TABLE» 1 5» [1]
«SUPERVIS «CLEARTOP B» 1 5» [7]
«SUPERVIS «CLEARTOP c» 1 5» [8]
«SUPERVIS «ON A B» 1 2» [4]
«SUPERVIS «ON B c» 1 2» [5]

~fte_.r:.~t:he pl~~~s! c~pl.eted the TOME (table of multiple effects) is:-

(entries are « <pattern> <node at which pattern is given a value> »

and the value of the entry is the value given to the pattern at the node)

CONTEXT 34

« «CLEARTOP B»
« «ON A TABLE»
«< < <CLEARTOP B»
« «CLEARTOP A»
« «ON A TABLE»
« «ON A B»
« «CLEARTOP A»
« «CLEARTOP A»
« «CLEARTOP C»
« «ON B TABLE»
« «ON B TABLE»
« «CLEARTOP C»
« «CLEARTOP C»
« «CLEARTOP B»
« «ON B C»
« «ON A B»
« «ON A B»
<~~-

4»
4»

12»
11»

7»
7»
9»
1»
5»
5»
1»
8»
1»
7»
5»
4»
1»

t}
\.
0

1
1
1
0

1
1
0
0

1
1
1
1
1
1
1

46

7. House Building

We have chosen the construction of project networks for house building

tasks as an example domain for the evaluation of our approach. An example

of a project network for a simple house building task is given in section 1.

We have only just begun experiments using the Task Formalism (TF) and the

planner NONLIN to generate project networks from a hierarchic description

of the sub-tasks in such domains. However, there are several ways in which

such domains are simpler than general robot problem solving (typically rep-

resented by our example in the block stacking domain -see section 6).

a) The expansion of any task will typically not refer to many variables.

That is, tasks and sub-tasks are mainly fully instantiated.

b) Strong orderings can be given on a few related tasksu e.g. the sub-

tasks for a carpet layer to perform are strongly orderedo

c) There are very few interactions in the domain. Housebuilding is

mainly constructive and few things achieved are later undone. The

sort of interactions which will be present will relate to construction

techniques such as the use of scaffolding and to the use of negative

conditions (e.g. NOT «FLOORBOARDS LAID»). In general it may only be

necessary to specify supervised conditions for those statements on

which interactions may occur (this is not done in the example to follow).

d) There will be a large number of simple primitive jobs. So some simple

method of describing them is essential (e.g. PRIMITIVE, PRIMITIVE

WITH EFFECT; and MAINEFFECTS can be used).

e) There may be many sub-tasks which have only one method of being performed

This will apply especially to lower level tasks. Alternative selection

during planning may therefore be relatively infrequent.

f) It is becoming clear that there is much redundancy in the ACTSCHEMA

specifications 0 ORDERINGS are mostly determined by the condition

ranges, and condition types can be deduced. These observations will

be borne in mind when modifications to TF are made.

Currently we are trying to gain experience in writing simple house

building tasks to formulate a set of rules which can be used to guide someone

describing a domain in TF. We hope these rules may form the basis of an

interactive system which can be used for project network constructiono

The house building project given as a table of jobs and a project net-

work in section 1 was used as a first example. The top level description

is given by a BUILDER who controls the job. He has eight sub-tasks directly

47

under his control as a builder and specifies a strong (completely linear)

order on them since all but the last satisfies some conditions for another.

The builder sub-contracts the installation of services and the decoration.

The TF description for this simple domain is given below. There are no

interactions in the domain since there are no negative effects and there

are no alternati~e methods of performing any task. Planning is therefore

very simple on this task and reduces to a scheduling problem ~he project

network for this 22 job task, as shown in section 1, was generated in 20

seconds).

ACTSCHEMA BUILD
PATTERN «BUILD HOUSE»
EXPANSION 1 ACTION «EXCAVATE v POUR FOOTERS»

2 ACTION «POUR CONCRETE FOUNDATIONS»
3 ACTION «ERECT FRAME AND ROOF>~
4 ACTION «LAY BRICKWORK»
5 ACTION «FINISH ROOFING AND FLASHING»
6 ACTION «FASTEN GUTTERS AND DOWNSPOUTS»
7 ACTION «FINISH GRADING»
8 ACTION «POUR WALKS, LANDSCAPE»
9 ACTION «INSTALL SERVICES»

10 ACTION ~<DECORATE»
ORDERINGS SEQUENCE 1 TO 8

CONDITIONS SUPERVISED «FOOTERS POURED» AT 2 FROM 1
SUPERVISED «FOUNDATIONS LAID» AT 3 FROM 2
SUPERVISED «FRAME AND ROOF ERECTED» AT 4 FROM 3
SUPERVISED «BRICKWORK DONE» AT 5 FROM 4
SUPERVISED «ROOFING FINISHED» AT 6 FROM 5
SUPERVISED «GUTTERS ETC FASTENED» AT 7 FROM 6
UNSUPERVISED «STORM DRAINS LAID» AT 7
SUPERVISED «GRADING DONE» AT 8 FROM 7

END;

48

5 ---> 7

ACTSCHEMA SERVICE
PATTERN «INSTALL SERVICES»
EXPANSION 1 ACTION «INSTALL DRAINS»

2 ACTION «LAY STORM DRAINS»
3 ACTION «INSTALL ROUGH PLUMBING»
4 ACTION «INSTALL FINISHED PLUMBING»
5 ACTION «INSTALL ROUGH WIRING»
6 ACTION «FINISH ELECTRICAL WORK»
7 ACTION «INSTALL KITCHEN EQUIPMENT»
8 ACTION «INSTALL AIR CONDITIONING»

ORDERINGS 1 ---> 3 3 ---> 4 5 ---> 6 3 ---> 7

/ 2,-",
/

/
/3 4-

7 -

/
/

1

5 6

"""8CONDITIONS

SUPERVISED «DRAINS INSTALLED» AT 3 FROM 1
SUPERVISED «ROUGH PLUMBING INSTALLED» AT 4 FROM 3
SUPERVISED «ROUGH WIRING INSTALLED» AT 6 FROM 5
SUPERVISED «ROUGH PLUMBING INSTALLED» AT 7 FROM 3
SUPERVISED «ROUGH WIRING INSTALLED» AT 7 FROM 5
UNSUPERVISED «FOUNDATIONS LAID» AT 1
UNSUPERVISED «FOUNDATIONS LAID» AT 2
UNSUPERVISED «FRAME AND ROOF ERECTED» AT 5
UNSUPERVISED «FRAME AND ROOF ERECTED» AT 8
UNSUPERVISED «BASEMENT FLOOR LAID» AT 8
UNSUPERVISED «FLOORING FINISHED» AT 4
UNSUPERVISED «FLOORING FINISHED» AT 7
UNSUPERVISED «PAINTED» AT 6

END;

49

ACTSCHEMA DECOR
PATTERN «DECORATE»
EXPANSION 1 ACTION «FASTEN PLASTER AND PLASTER BOARD»

2 ACTION «POUR BASEMENT FLOOR»
3 ACTION «LAY FINISHED FLOORING»
4 ACTION «FINISH CARPENTRY»
5 ACTION «SAND AND VARNISH FLOORS»
6 ACTION «PAINT» Jva,.ORDERINGS SEQUENCE 2 TO 5 1 ---> 3 6 ---> 5

-1 ~ "" D.:f
2 3

~:>s
6CONDITIONS

UNSUPERVISED «ROUGH PLUMBING INSTALLED» AT 1
UNSUPERVISED «ROUGH WIRING INSTALLED» AT 1
UNSUPERVISED «AIR CONDITIONING INSTALLED» AT I
UNSUPERVISED «DRAINS INSTALLED» AT 2
UNSUPERVISED «PLUMBING FINISHED» A';I:' 6
UNSUPERVISED «KITCHEN EQUIPMENT INSTALLED» AT 6
SUPERVISED «PLASTERING FINISHED» AT 3 FROM 1
SUPERVISED «BASEMENT FLOOR' LAID» AT 3 FROM 2.'
SUPERVISED «FLOORING FINISHED» AT 4 FROM 3
SUPERVISED «CARPENTRY FINISHED» AT 5 FROM 4
SUPERVISED «PAINTED» AT 5 FROM 6

END;

PRIMITIVE
«EXCAVATE, POUR FOOTERS»
«POUR CONCRETE FOUNDATIONS»
«ERECT FRAME AND ROOF»
«LAY BRICKWORK»
«FINISH ROOFING AND FLASHING»
«FASTEN GUTTERS AND DOWNSPOUTS»
«FINISH GRADING»
«POUR WALKS, LANDSCAPE»
«INSTALL DRAINS»

I

«LAY STORM DRAINS»
«INSTALL ROUGH PLUMBING»
«INSTALL FINISHED PLUMBING»
«INSTALL ROUGH WIRING»
«FINISH ELECTRICAL WORK»
«INSTALL KITCHEN EQUIPMENT»
«INSTALL AIR CONDITIONING»
«FASTEN PLASTER AND PLASTER BOARD»
«POUR BASEMENT FLOOR»
«LAY FINISHED FLOORING»
«FINISH CARPENTRY»
«SAND AND VARNISH FLOORS»
«PAINT»

WITH EFFECT + «FOOTERS POURED»
WITH EFFECT + «FOUNDATIONS LAID»
WITH EFFECT + «FRAME AND ROOF ERECTED»
WITH EFFECT + «BRICKWORK DONE» .
WITH EFFECT + «ROOFING. FINISHED»
WITH EFFECT + «GUTTERS ETC FASTENED»
WITH EFFECT + «GRADING DONE»
WITH EFFECT + «LANDSCAPING DONE»
WITH EFFECT + «DRAINS INSTALLED»
WITH EFFECT + «STORM DRAINS LAID»
WITH EFFECT + «ROUGH PLUMBING INSTALLED»
WITH EFFECT + «PLUMBING FINISHED»
WITH EFFECT + «ROUGH WIRING INSTALLED»
WITH EFFECT + «ELECTRICAL WORK FINISHED»
WITH EFFECT + «KITCHEN EQUIPMENT INSTALLED»
WITH EFFECT + «AIR CONDITIONING INSTALLED»
WITH EFFECT + «PLASTERING FINISHED»
WITH EFFECT + «BASEMENT FLOOR LAID»
WITH EFFECT + «FLOORING FINISHED»
WITH EFFECT + «CARPENTRY FINISHED»
WITH EFFECT + «FLOORS VARNISHED»
WITH EFFECT + «PAINTED»

i'\'"

,ok

~;i

50

8.S~ary and relation tONOA_~

NOAH (Sacerdoti, 1975a) was the first attempt to produce a non-linear

planner which took a hierarchic specification of a domain. It was designed

as part of the Computer Based Consultant project at the Stanford Research

Institute (Hart, 1975). The present NONLIN system is a development of that

work 0 However, we have sought to improve over NOAH in several ways.

~]t Fo%1Ilalism (TF)

TF is intended to give a powerful and flexible language to a user to

describe a domain but is also the basis of what we hope will become a simple

and clear formalism to enable a group of people to co-operatively describe

a task to the system with the planneros aid. We feel TF has advantages

over the relatively unstructured (though still powerful) SOUP code which

NOAH requires as input. We hope to gain clarity and efficiency through

the use of different condition types.
: '.

All alternatives ke~~

The planner NONLIN generates and keeps for future use any alternatives

at choice points. Alternative operator choices, instantiation choices and

linearizations are kept. These may be used either on the failUre of some

approach the planner tries or to generate more than one solution. Alter-

natives were not kept in NOAH.

Goal Structure

We have provided a powerful aid toC~lanning and subsequent plan execu-
","

tion by giving a summary of the "goal sttucture" of the plan in a simple

forma A GOST is kept which remembers the conditions on any node and the

set of possible contributors to those conditions. The explicit provision

of the goal structure independently of the chronological links in the plan

allows simple schemes to be used to detect and correct for any interactions

introduced and, as mentioned elsewhez'eg to allow plan monitoring during

execution. Fine detail of the purposes of individual effects of nodes can

be discriminated in a GOST. This is preferable to saying that the whole

node (hence all its effects) achieves some purpose of a succeeding node.

Unimportant (from the goal structure point of view) interactions can be

ignored with the scheme presented here.

Interactions and Linking

The limitations in NOAH on the linearizations which could be suggested

when a~ interaction was introduced (see Tatef 1975b) have been removed.

When goal structure is available it is very easy to see which linearizations

may be suggested. Two other particular difficulties of NOAH mentioned in

51

Tate (l975b), that of the inability to deal with some "double interactions"

and beneficial side effects on parallel branches~ are also removed in NONLIN

(the latter because of the ability to "link-to'-make-true" in the QA system).

A general interaction correction procedure has been described to perform the

above tasks.

QA in a partially ordered~etwor~

A scheme is presented for answering questions in a partially ordered

network where nodes contain statements about a world situation. This scheme

could be of use to other AI workers who find that they cannot represent the

context structure of a data base as a simple tree~

Work in Pr~ress

The main ~rk in progress is the writing of small house building domains

in TF. Section 7 gives an example and outlines the aims we have in these

experiments. These aims can be summarized as

1) To find some simple rules for describing domains hierarchically in

order to enable the system to guide someone writing in TF.

2) To aid in the development of error messages and debugging aids for TF.

3) To use the planner to generate project networks from a TF description

of a task and to provide the necessary planning techniques to ensure

this can be done efficiently.

At present, choices of schema to expand a pattern are made automatically

and in ac;simple way by the planner. Eventually we wish to make choices using

three sources of information.

1) The user will interact with the system to make certain choices.

2) Critical path information will be used to constrain choices.

3) A "decision graph" will be constructed by the system (Daniel, 1976)

which will record the logical dependancies of links inserted in the

network, or added to the networko As mentioned earlier this will

be based on some work on a journey planning system which could replan

on execution failure (Hayes, 1975)0

Work has been performed by Eder (1976) on a non-linear planner which

uses program computed priorities to select the order in which nodes in the

network are expandedo This work has also begun the investigation of the use

of Generalized Networks to represent a non-linear plan. These networks are

not constrained to being described solely in terms of binary links between

nodes. Statements such as not between (x,y,z) and don't mix (w,x,y,z), as

well as general evaluable constraints can be stated fo~ a network. This

can reduce the number of linearizations generated as interactions are found

and corrected for,

S2

.,\Or

Effort is still needed to provide a smooth user interface to TF. The

house building work should enable us to get a better idea of the forms needed

for such taskso In particular we wish to provide graphic input of the order-

ings on nodes in the expansion of a schema. Graphic output of the project

network produced will be vital for any but the smallest networkso

Currently, we are also using TF and NONLIN for description of very

simple robot assembly taskso The COMPUTE conditions described in section

2.301 were provided as a necessary facility for this domaino We hope to

have the opportunity to pursue the assembly planning in the near futureo

This work will involve the provision of conditional planning facilities in

order that sensory information from the execution of some task can be used

to guide assembly.

Recently, it has become clear that a formalism for hierarchically

specifying a domain and a planner able to generate plans for tasks in that

domain may have wider application than the sort of planning tasks considered

in this paper. In particular, the formalism may provide the basis for a

hierarchical language to communicate algorithms based upon parallel processes,

and the planner may form the basis of a scheduler to decide on lower level

processor allocation in such a system.

53

~~~~!2IX 1 ~ The Da t_~.~~~e_EX~~~ ~se2 by NONLIN

NONLIN uses the HBASE data base system (Barrow, 1975) which is a POp-2

package providing a semantic net like data base of patterns (e"g"

«AT BALL HERE») each of which may be given values in some context.

Retrieval functions are provided to access the data base. A retrieval

may specify a class of patterns using a "wild card" (==) or an "actor"

(e"g", <~NON TABLE~». For the facilities needed in NONLIN and other

work we have found it desirable to provide a few additional features in

HBASEo These are described below.

Bobrow and Raphael (1974) list the types of variables available in

recent programming languages for Artificial Intelligence aSg-

1) Open~ an open variable will match any item assigning
item to the variable.

2) Closedg a closed variable will match only an item equal
to the previously assigned value of the variable.

3) Semiopeng a semiopen variable will match any item if it has
not previously been given a value; it will match
the previously assigned value when it has oneo
Thus 9 it acts as an open variable the first time
it is encountered, and a closed variable after
that. Again, assignment to the variable takes
place when the variable first matches an item.

4) Restricted~ a restricted variable will mat~h items that
satisfy a set of restrictions which may be
specified for that variable, e.gof only match
elements of a particular domaino A matching
item is assigned to the variableo

5) Macrog a macro variable has its value substituted in the
pattern before a match takes place, thus allowing
indirect reference to variables, etc.

This note describes how variables of type 3 (semiopen) and type 4

(restricted) are provided.

1.1 $* -as~~i~~e~ variab~_~~

HBASE provides 2 variable actors~ one to assign to a variable ($» and

another to read or use a variable ($$). We have provided a semiopen variable

with prefix $* (actor <gGlVEN <variable>:».



54

Implementation

Obviously the success of ~*X match is assured with VALOF("X")=UNDEF.

However, if this occurs in a more global match, e.g., MATCH«<AT ~*X ~*Y».

«AT ROBOT HERE») we must take care. Matches are left to right in HBASE.

"AT" matches "AT"

~*X matches "ROBOT" and assigns "ROBOT" to VALOF("X") if VALOF("X")=UNDEF

But, ~*Y may have a value "THERE", so ~*Y will not match "HERE".

The whole match fails. We must reset the changed VALOF("X") back to

UNDEF. A mechanism is needed to remember which variables are altered so

that they can be reset if the whole match fails. For efficiency, we just

remember these on a single top level list of "set" variables (SETVARS) at

the outer call of MATCH and not in local list for each recursive call ofMATCH. 

The normal MATCH routine is saved as SMATCH and the top level

MATCH function is redefined.

VARVAL is used as a lookup function for the value of a variable,

rather than VALOF, so that a user may redefine the lookup to search for a

value of a variable in a local ALIST etc. By default, VARVAL would beVALOF. 

A version of ~* which looks up the value of a variable in a local

ALIST has been in use since early 1974 in INTERPLAN (Tate, 1974) and is

used in NONLIN.
Preset Values for ---

Variables

Variables used in $* ~ode must be preset before a match either to

UNDEF or to some definitti valueD

Caution~ POp-2 keeps the old value of any global variable when

using a variable local to a function.

1.2 

Restricted Variables

Variables can be in one of 3 states.

Open: with value UNDEFo can receive any value.

Restricted: with value an actor. can receive any value which

matches the actor restriction.

Closed: has some value (not UNDEF or an actor)" only

matches the actual value

The point made in sectionl~fabout having to remember set variables

in case the top level match fails applies here. However, in the previous

case only the variable set had to be remembered as after failure all var-

iables set (~) are returned to value UNDEF. In the case of variables

with actor restrictions, these must also be remembered to enable the re-

setting to take place. The list SETVARS thus holds the UNDEF or value



55

of the actor restriction as well as the actual variable name (ioeo,

[ (value) (variable name) (value) (variable name) .0.]). The $> variable

checks any actor restriction before assignment of a suitable value, but is

not reset on failure. This corresponds to the use of $> without restric-

tion where top level match failures do not reset any $> variables set earlier.

Note~ ~* variables must be initialized to UNDEF or an actor restriction

before use. A macro RESTRICT is provided to aid in this pre~

setting.

eog'f RESTRICT W <gNON FLOOR:> X <~ONEOF A B C~>

Y <;NON $*X:> Z UNDEF;

1.3 

Instantiable Actors

Since we allow actors to be given as restrictions to variables, it may

be that we try to instantiate some variable (eog~, for HBASE retrieval

functions) while it has such an actor restriction. In HBASE most actors

cannot respond to an attempt to be instantiated. However, some can (e.g.,

$$ the closed variable and $*)0 We have thus provided a facility to mark

actors as instantiable. An attempt to instantiate an actor which is not

so marked will produce a copy of the actor with each of its components

instantiated (e.g., if X=3 then an attempt to instantiate <:NON $*X~> will

produce <;NON ;3:>:which will then behave correctly in any HBASE searchfunction)"

I.4 Nice Macros

Several macros have been provided to enable initial data bases to be

constructedf data bases printedf etcc These include:

ASSERT <pI> <p2> c.. ; gives value "true" to <PI>, <p2>, etc.

DENY <pI> <p2> coo" II "" false" "" II "

UNBIND <pI> <p2> 0.0; " " "undef" " " " "

PRCONTEXT prints all patterns which have been assigned values in CUCTXT

together with their values



56

APPENDIX II: ErrO:!~~~s_~g~-~:~~~ Warnin[s

Erro!si~ TF descrip,!i2n,s

< i tern> INCORRECT FORM FOR OPSCHEMA

an unrecognized keyword is given or form does not have correct

syntax (especially note that VARS ends with ;)

AT CLAUSE OF CONDITION NOT SPECIFIED

FROM CLAUSE NOT SPECIFIED FOR A SUPERVISED CONDITION

FROM CLAUSE CANNOT BE GIVEN FOR A CONDITION OTHER THAN SUPERVISED

< i tern> INCORRECT FORM FOR MAINEFFECTS

again, 

as for OPSCHEMAg an unrecognized keyword is given or a form

does not have correct syntax.

Plan-time Errors -
<type> NULL EXPANSION ON ILLEGAL TYPE

an expansion must be given for a goal nodeQ A null expansion is

only allowed (it is the default value) for an ~c_~ion node.

<condtype> REPLACED BY <condtype>

This is a warning that a <condtype> is being replaced by one of

higher priority. This is unusual in a hierarchical description

where <condtype> normally gets weaker lower in the hierarchy.

Check the task description.

<variable name> VARIABLE NON EXISTANT

Access attempted to a variable not declared in the OPSCHEMA in use.

Check that VARS statement of an OPSCHEMA contains <variable name>.

[<pattern> = <compute clause>] COMPUTATION UNDEFINED

A computation should always return an answer -not UNDEF.

NO WAY TO PROCEED

An exhaustive search on the problem has failed ~o generate any
c'

solution (or further solutions if REPLAN was called).



57

APPENDIX III: ation routines and network 0 tions

PRINTNET(

PRTOME

print the current il'etwork byipriiltfng £9.;;

each node its nodenum, nodetype, patternf

prenodes and succnodes. We intend to

write some graphics routines to display

and read in nets in future versions of

the system.

prints the table of multiple effects.

PRGOST

PRCON«context»;

NODE«nodenum»i

prints the goal structure statementso

prints any HBASE context using PRCONTEXT

(see Appendix I).

returns the node held in the <nodenum>

PRNODECTXT«nodenum»1

nodenum>;

<nodenum> -->

subscript of ALLNODES.

prints all statements with either a true

(1) or false (0) value which can be found

from NODE «nodenum» -using QAALL.

inserts a link from the 1st node to the

second in t~e network. Redundant links

are removed.

BEFORE «nodenum>, <nodenum» returns true if the 1st node is before

the second.

There are also several tracing and interrupt switches

BUGEXPAND causes a message to be printed out as

each node is expanded EXPAND <node type>
<pattern> ; "",

""""~"""-,I"C
INTERINT causes an interrupt on each en~ry to the

interaction correction function.

CONDINT causes an interrupt whenever new conditions

are added to a node.

After 

an interrupt, typing "GOON" resumes the planning. The system may be

interrogated and the net altered if desired during an interrupt.

While COMPUTE conditions are being evaluated a variable CURRNODE holds the

node being expanded. This may be useful for the interrogation of the

network by a COMPUTE function.



58

ACKNOWLEDGEMENTS

This work has formed part of the project "Planning~ a Joint..AI/ORApproach" 

supervised by Professor B. Meltzer at the Department of

Artificial Intelligence at the University of Edinburgho The work was

supported by the Science Research Council (Grant NOG B/RG/94455) 0

The work has progressed rapidly and developed through discussions

with my co-worker on the project, Lesley Danielo Gottfried Eder was

responsible for some of the terminology used in the network question

answerer, Jerry Schwarz read my first descriptions of the task formalism

andlh'1s comments helped me form the present version of TF. I would like

to thank Peggy Avison for transforming my handwritten scrawl into a memo.



59

References

Barrow, 

H.G. (1975)0 HBASE POp-2 library documentation, Department of
Artificial Intelligence, University of Edinburgh.

Bobrow, 

DoGo and Raphae1u Bo (1974). New programming languages for
Artificial Inte1ligenc~, Somputingsurveys, Vol. 6, No.3.

p!:ogramming

Bursta11 

, R.M., Collins, J.S~ and popp1estone, R.J. (1971).
in POP-2, Edinburgh University Press, Edinburgh.

modifying non-linear planso

Daniel, 

Lo (1976). Project planning:
Forthcoming in DAI Memo 0

A joint AI/OR approach,

Daniel, 

Lo and Tate, A. (1976).
AISB Newsletter, No. 230

Planning:

Forthcoming ~I Memo.A system for cautious planning.Eder, Go <\976).

Fikes, 

R.E., and Nilsson, N.Jo (1971)0 STRIPS:
application of theorem proving to problem solving.
3..0 pp. 189-2080

a 

new approach to the
Artificial Intelligence,

Hart, 

P.E. (1975)0 Progress on a Computer Based Consu1tanto Advance
papers of 4th International Joint Conference on Artificial Intelligence
(IJCAI4), Tbi1isi, USSR. pp. 831-841.

Hayes, 

P.Jo (1975)0 A representation for robot plans. Advance papers
of 4th International Joint Conference on Artificial Intelligence (IJCAI4),Tbilisi, 

USSRo pp. 181-188.

The CONNIVER Reference Manual,

McDermott, 

D.Vo & Sussman, G.J. (1972).
MIT AI Lab.f Memo No. 259.

Sacerdoti, E.D., (1975a) 0 The non-linear nature of plans. Advance
papers of 4th International Joint Conference on Artificial Intelligence
(IJCAI4), Tbilisi, USSR, pp. 206-214.

A structure for plans and behaviour, SRI AI

Sacerdoti, 

E.Do (1975b).Center, 
Technical Note 109,

Siklossy, L. and Dreussi, J. (1973)0 An efficient robot planner which
generates its own procedures. Advance papers on 3rd International Joint
Conference on Artificial Intelligence, (IJCAI3), Stanford, U.S.A.

Sussman, 

G. J. (1973). A computational model of skill acquisition.
MIT AI Lab. Technical Report AI TR-297.

Tate, 

Ao (1974). INTERPLAN~ a plan generation system which can deal
with interactions between goalso MIRU research memo MIP-R-1O9, University

of Eainbur~h~'
"

Tate, 

A. (1975a) 0 Using goal structure to direct search in a problemsolver. 
Ph.D. thesis, Machine Intelligence Research Unit, University ofEdinburgh.



60

Tate, 

A. (1975b). Interacting goals and their use. Advance papers of
4th International Joint Conference on Artificial Intelligence (IJCAI4)!
Tbilisi, USSR. pp. 215-218.

Wiest, 

J.D. and Levy, F.K. (1969).Prentice-Hall, 
New Jersey, USA.

A management guide to PERT/CPM,


