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Abstract.  We introduce the notion, issues, and challenges of dynamic coalition formation (DCF) among 
rational software agents in open, heterogeneous and world widely distributed environments such as the 
Internet and Web. Selected relevant approaches coping with only parts of the DCF problem domain in 
different disciplines such as decision theory, social reasoning, and machine learning are briefly discussed. 
Finally, we sketch one novel DCF scheme, and highlight some future research work towards a general 
framework of dynamic coalition formation. 

 
 
1 Introduction 
 
Self-interested, autonomous software agents on the Internet may negotiate rationally to gain and share benefits in 
stable (temporary) coalitions. This is to save costs by co-ordinating activities with other agents. For this purpose, 
each agent determines the utility of its actions and productions in a given environment by an individual utility 
function. The value of a coalition among agents is computed by a commonly known characteristic function which 
determines the guaranteed utility the coalition is able to obtain in any case. In a characteristic function game the 
agents may use imposed individual strategies to achieve a desired type of economically rational behaviour such as 
altruistic, bounded rational, or group rational. In any case, the distribution of the coalition’s profit to its members is 
de-coupled from its obtainment but is supposed to ensure individual rational payoffs to provide a minimum of 
incentive to the agents to collaborate.  
Rational agents should also be able to form beneficial coalitions in open, distributed and heterogeneous 
environments at any and in reasonable time. That includes scenarios in which dynamically occurring events may 
interfere with the running coalition processes such as continuous change of tasks to be accomplished, information 
and computing resources available to the agents, as well as temporary disconnection of coalition partners in the 
network, and changes in their reputation and trust. 
Due to its nature dynamic coalition formation methods promise to be particularly well suited for applications of 
ubiquitous and mobile computing, including mobile commerce. M-commerce as it may be supported by 
personalised, rational information agents residing, for example, on WAP-enabled access devices such as pagers, 
organisers, (sub)notebooks, or UMTS cell phones, currently still remains to be an appealing vision for the common 
Internet user. However, the development and application of DCF methods enabling potential business partners to 
form temporary coalitions on demand, on the fly, at any time may inherently enable and even advance the 
development of effective mobile commerce and collaborative work. This includes, for example, the challenge of 
quickly forming time-constrained, profit-oriented customer coalitions for optimally negotiating, purchasing and 
sharing appropriately partitioned sets of items at multiple electronic market places world wide in reasonable time. 
First approaches into this direction include, for example, (Tsvetovat & Sycara, 2000; Lerman & Shehory, 2000; 
Preist, Byde & Bartolini, 2001; Yamamoto & Sycara, 2001; Shehory, 2001). 
The remainder of this paper is structured as follows. Section 2 summarises some static approaches of forming stable 
coalitions among rational agents. Issues and problems of dynamic coalition environments are discussed in section 3 
while selected relevant approaches to cope with parts of these problems are surveyed in section 4. We sketch a novel 
DCF scheme in section 5, and conclude the paper with a brief outlook on future work. 
 
2 Static Formation of Stable Coalitions 
 
According to (Conte and Sichman, 1995) models of coalition formation may be classified into two main approaches:  
utility-based and complementary-based models dividing the societies of actors into ones following either the 
principle of ‘bellum omnium contra omnes’ as it is largely favoured, for example, by game theory (Luce and Raiffa 
1957, Axelrod 1984), or ones which rely on the collaborative use of complementary individual skills to enhance the 
power of each agent to accomplish its goals, respectively.  
Up to now, most classic methods and protocols for a formation of stable coalitions among rational agents follow the 
utility-based approach. They rely on derived concepts from co-operative game theory, economics, and operations 
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research. Utilitarian coalition formation covers two main activities: (1) the generation of coalition structures, that is 
partitioning or covering the set of agents into coalitions, so as to maximise the monetary value depending on the 
benefit of accomplishing tasks regarding used resources and time spent; (2) the distribution of gained benefit among 
the participants of each of the coalitions. These activities may be interleaved and are not independent. A 
comprehensive discussion and classification of relevant work on coalition formation is given, for example, in 
(Kraus, 1997; Vauvert & El Fallah-Segrouhni, 2001). 

2.1 Prerequisites 
We briefly summarise the basic concepts and notions of co-operative game theory which are necessary to follow the 
discussion of coalition formation methods and the problems of dynamic coalition formation in subsequent sections. 
For a more comprehensive introduction to co-operative game theory we refer the reader to (Kahan & Rapoport, 
1984; Osborne & Rubinstein, 1994; Holler & Illing, 2001). 

2.1.1 Co-operative Games, Coalition Configurations 
A co-operative game (A, v) is determined by a set A of agents wherein each subset of A is called a coalition, and a 
real-valued characteristic function v: P(A)→R, assigning each coalition its maximum gain, the expected total income 
of the coalition (the so-called coalition value). It is commonly assumed that (a) the value of any coalition C is in 
money, (b) the value v(C) does not depend on the actions of agents outside the coalition, (c) any coalition C forms 
by binding agreement on the distribution of its coalition value v(C) among its members, in particular no side-
payments are allowed from C to any agents outside C within the game, and (d) the characteristic function v is known 
to all agents in A.  
The solution of a co-operative game with side payments is a coalition configuration (S,u) which consists of  
- a partition S of A, the so-called coalition structure, and 
- an efficient payoff distribution                                                                                          
 
The payoff distribution assigns each agent in A its utility out of the value of the coalition it is member of in a given 
coalition structure. It is commonly assumed that every coalition may form, including singletons or the grand 
coalition A. However, the number or size of coalitions to be formed using a coalition formation method is often 
restricted to ensure, for example, polynomial complexity of the formation process.  
Individually rational distributions are assigning each agent at least the gain it may get without collaborating within 
any coalition, i.e., })({)(: avauAa ≥∈∀ , it is assumed to hold for any coalition configuration. For group rational 
distributions it holds that                                       ,i.e., the group of all agents is assumed to maximise its joint 
payoff. 
In coalition configurations with so-called Pareto-optimal payoff distributions no agent is better off in any other valid 
payoff distribution for the given game and coalition structure. A coalition configuration (S,u) is called stable if no 
agent has an incentive to leave its coalition in S due to its assigned payoff u(a). Each notion of stability defines a 
particular solution space for co-operative games. Concepts of stability applied to coalition configurations are 
discussed in the context of coalition formation methods in the following section 2.2. 

2.1.2 Coalition Algorithm, Coalition Formation Environment and Model 
Rational agents which are involved in a co-operative game (A,v) are supposed to negotiate a stable payment 
configuration (S,u) as a solution of the game by the use of an appropriate coalition algorithm CA which should 
have the following desirable properties.  
- Local execution. Each agent is able to execute the CA locally. Negotiation according to the CA is completely 

decentralised. 
- Anytime. After any regular termination of an arbitrary co-operative game in the considered environment the CA 

outputs a stable configuration as a solution of that game. 
A coalition formation environment CE for a given set of agents A is the set of assumptions and constraints which 
are valid for any kind of coalition forming activity between agents in A including propositions on  
- The functionality of each of the agents in A, including, for example, the sets of tasks, actions, and utilities of its 

task-related productions, 
- Valid methods for computing the values of coalitions, for example, by the sum of production utilities of all 

agents in a coalition, 
- Valid methods for determining coalition configurations, including methods for searching coalition structures, 

negotiation and payoff distribution schemes. 
- Commitments, obligations of and agreements between agents in A concerning the type of collaboration and 

interaction. 
In a given coalition formation environment the agents particularly agree on (a) what kind of stable coalitions shall be 
negotiated (the considered notion of stability), and (b) what particular coalition algorithm CA shall be used for the 
negotiation. Please note that agents may, for example, use different utility functions to evaluate the utilities of task 
execution and corresponding productions. 
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A coalition environment is called super-additive or sub-additive depending on the type of all co-operative games it 
allows, and general if it allows for both, sub-additive and super-additive games. In non-super-additive environments 
at least one (all) pair(s) of potential coalitions is not better off by merging into one which could be caused by, for 
example, communication and co-ordination overhead costs, decrease of coalition value as a result of restricting 
utility constraints posed by agents joining a coalition, or anti-trust penalties for specific coalitions (Kraus & 
Shehory, 1999).   
A coalition formation model CM = (CE, CA) is defined by both, the considered environment CE and given 
coalition algorithm CA for this environment. Interesting models are those where coalition formation is concerned 
with general and sub-additive environments. In environments where published interests and utilities used for 
negotiation to form coalitions cannot be verified, most current coalition algorithms allow for fraud by different types 
of lies. Arbitration schemes for competing agents with conflicting interests may help to circumvent such situations 
(Tesch and Fankhauser, 1999). 

2.2 Selected Coalition Formation Methods 
As mentioned above, current coalition formation methods aim at building stable coalitions. The meaning of stability 
of coalitions varies dependent from the considered application domain and discipline. Many if not most of the 
coalition formation algorithms today rely on chosen game-theoretic concepts for pay-off division within coalitions 
according to, for example, the Shapley-value, the Core, the Bargaining Set, or the Kernel (Kahan & Rapoport, 
1984). We briefly discuss selected main approaches to (static) coalition formation based on co-operative game 
theory in subsequent sections1.  

2.2.1 Core-stable coalitions 
One approach to form stable coalition configurations as proposed in (Sandholm, 1999) comprises the following two 
steps: Searching for a social welfare maximising coalition structure in a corresponding coalition structure graph for 
the given game (A, v), and then compute its payoff division according to the stability concept of the core (Wu, 
1977). The core of a game with respect to a given coalition structure is the set of coalition configurations with not 
necessarily unique payoff distributions such that no subgroup of agents is motivated to depart from the given 
structure. Only coalition structures that maximise the social welfare, i.e., the sum of all coalition values of coalitions 
in the considered structure, are Core-stable. However, searching for an optimal coalition structure (given a set A of 
agents) among the exponential number of 2/|||| AA possible coalition structures is computationally hard since one has 
to try at least 1||2 −A  coalition structures (Sandholm et al., 1998). Another well-known problem with core-stable 
configurations is that the core may be empty for certain co-operative games, and is exponentially hard to compute. 
This hardly suits the needs of solution approaches for dynamic coalition formation. 

2.2.2 Shapley-value stable coalitions 
Any pay-off division scheme according to the so-called Shapley-value (Shapley, 1953) provides an agent the added 
value (marginal contribution) that it brings to the given coalition structure, averaged over all possible joining orders. 
Obviously, the Shapley-value is exponentially hard to compute. In contrast to the core the Shapley-value is proven 
to uniquely exist, to be Pareto-optimal, and individual and group rational for super-additive games.  
Algorithms for forming stable coalitions which rely on the stability concept of the Shapley-value and a variation of 
it, the so-called bilateral Shapley-value (Ketchpel, 1994) applied to arbitrary n-agent co-operative games, are 
proposed in (Klusch, 1997; Klusch & Shehory, 1996b; Contreras et al., 1997). It is shown in (Klusch, 1997) that the 
computation of proposed payoff division according to the bilateral Shapley-value with equal or history-based 
recursive share among coalition members is of polynomial complexity, and is guaranteed to be efficient and 
individual rational for super-additive games. However, since it is also shown that the latter fact does not necessarily 
hold for sub-additive games, these algorithms are not suitable to dynamic environments in their current form. 
Ongoing research is performed to devise novel methods for adapting these algorithms to such environments. 

2.2.3 Kernel-stable coalitions 
The Kernel of a co-operative game (A,v) with respect to a given coalition structure is the set of so-called K-stable 
configurations (S,u) in which all coalitions in S are in equilibrium. Coalition C is in such an equilibrium if each pair 
of agents in C is in equilibrium, i.e., any pair of agents in C is balanced, that is, none of both agents can outweigh 
the other in (S,u) by having the option to get a better payoff in coalition(s) not in S excluding the opponent agent. In 
other words, agents argument each other like “Since I could obtain more without you in alternative coalitions than 
you without me, I deserve more, but without going to harm you.” For this purpose each agent has to compare its 
surplus with those of other agents; the calculation of the surpluses bases on that of the excesses of all alternative 
coalitions. Obviously, the kernel of a game is exponentially hard to compute unless, for example, the size of the 
coalition is limited by a constant. The kernel appears to be attractive due to the following features: The kernel K is 
                                                           
1 One publicly available simulation environment for coalition formation among rational information agents based on 
selected classic coalition theories is, for example, COALA (Klusch & Vielhak, 1997). 
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unique for any 3-agent game (A,v), assigns symmetric agents of some coalition in a given coalition structure for 
(A,v) equal payoff, and is locally Pareto-optimal in K.  
Polynomial coalition algorithms for polynomial K-stable coalition configurations have been developed and applied 
to the domain of co-operative information agents in (Klusch & Shehory, 1996b; Shehory & Kraus, 1996b; Klusch, 
1997). 
2.2.4 Fuzzy coalitions 

Negotiation during the coalition forming process may be connected with various forms of uncertainty. Such 
uncertainties could be induced by the possibility of dynamically occurring events which, for example, may hamper 
the negotiation process and produce vague or incomplete knowledge on expected profits or the share of the income 
of coalitions in which they intend to participate. This in turn implies so-called fuzzy co-operative games with vague 
profits and has been dealt with in numerous works, for example, in (Mares, 2001; Aubin, 1981). A fuzzy co-
operative game with side payments is consisting of a set of agents and a fuzzy characteristic function v, and the 
membership function m of the fuzzy quantities v(C) which may be interpreted as vague expectation of the common 
coalition profit that is to be distributed among its members. That is, the worth v(C) of a coalition C is a fuzzy set of 
its (possible) real-valued coalitional profits. This set of fuzzy quantity v(C) has at least one modal value, i.e., 
m(v(C))=1, determined by the membership function m. If for a given fuzzy co-operative game the coalition value 
v(C) is equal to one modal value of C for all possible coalitions C, it is equivalent to a (deterministic) co-operative 
game. The vagueness of the distributed profit v(C) means that particular payoff distributions can be realised with 
certain possibility only, which in turn is derived from the membership function m. Concepts of fuzzy super-additive 
co-operative games and “stable” fuzzy payoff distribution according to the fuzzy extension of the core and the 
Shapley-value are introduced and investigated in detail in (Mares, 2001). However, additional basic research on, for 
example, fuzzy sub-additive games and other concepts of “vague” stability remains to be performed, in particular 
appropriate coalition algorithms for fuzzy co-operative games have to be developed. This is topic of current 
research, for example, at DFKI.   

2.2.5 Stochastic coalitions 
Another class of co-operative games arises from co-operative decision making problems in stochastic environments. 
The notion of so-called stochastic co-operative games or co-operative games with stochastic payoffs, is introduced 
and investigated in (Suijs 1998; Suijs et al., 1999). A game with stochastic payoffs is defined by a set of agents, a set 
of possible actions coalitions may take, and a function assigning to each action of a coalition a real valued stochastic 
variable with finite expectation, representing the payoff to a coalition when this particular action is taken. Thus, in 
contrast to a deterministic co-operative game, the payoffs can be random variables, and the actions a coalition can 
choose from are explicitly modelled since the payoffs are not uniquely determined. It has been proven in (Suijs & 
Borm, 1999) that convex stochastic co-operative games are super-additive and have a non-empty core. Efficient 
coalition algorithms using these concepts are currently under development at DFKI.   
 
However, all of the above mentioned as well as the vast majority of known other mechanisms for building utilitarian 
coalitions among agents remain static in the sense that they do not allow for any type of dynamic interference of 
running coalition formation processes. We will discuss types of dynamic events, corresponding problems and 
relevant approaches in the following sections. 
 
3 Towards Dynamic Coalition Forming 
 
The domain of dynamic coalition formation (DCF) among rational agents can be defined by the set of co-operation 
methods, schemes, and key enabling technologies to cope with the problem of dynamically building beneficial 
coalitions among agents in open, distributed, and heterogeneous environments such as the Internet. 

3.1 The DCF Problem 
The DCF problem rises in any collaboration environment and scenario in which at any time  
 
(1) agents may enter or leave coalition formation processes,  
(2) the set of tasks to be accomplished and the (computational) resources used, as well as  
(3) the information, network, and user environment of each of the agents and the system as a whole may 

dynamically change.  
 
Classical game-theoretic notions of coalition stability and respective negotiation algorithms are not applicable to 
such dynamic settings. Scenarios inducing uncertain, time-limited, context-based utilities and coalition values 
exacerbate the DCF problem. For example, an agent may determine the degree of membership to potential coalitions 
based on bargaining and the possible level of its commitment indicating the degree of collaboration that it desires.  
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3.2 Dynamic Coalition Formation Environments 
As mentioned above, environments and settings in which rational agents have to be able to dynamically build 
coalitions can be characterised by the following classes of events and induced problems. 
 
- Tasks:  The set of tasks, goals and corresponding plans to accomplish may change for each individual agent at 

any time. Such changes concern, for example, the volume of tasks, utilities and costs of task execution as well 
as the frequency of such changes. This requires an agent to be able to perform, for example, fast dynamic re-
planning of task execution to achieve its individual and/or common goals of the coalition. Re-planning concerns 
the granularity, re-usability and partiality or completeness of each of the considered plans. General task 
allocation problems are known as at least NP-hard problems. Real-time issues and requirements to perform 
planning under time-dependent uncertainty (Wellman, Ford & Larson, 1995) may even exacerbate these kinds 
of problems.  

- Agents: Agents may leave or enter the agent society at any time, some agents may even temporarily hide their 
existence to parts of the society for different reasons.  

-  
- Optimisation:  
- Negotiation: 
 
We may distinguish between external and internal dynamic events. External events include, for example, a change 
in the specification of the problem to be solved by the agents, or any other change in the environment which are not 
caused by and cannot be influenced by the agents per se. Whereas internal events may be caused by the agents itself 
such as, for example, the entering or leaving of a coalition. 
In dynamically changing environments rational agents may have to compute their individual utilities based on a pure 
sequence of local decisions. The problem of calculating an optimal complete mapping from states to actions (a so-
called policy) in an accessible, stochastic environment with a known transition model is called a Markov decision 
problem. A transition model refers to a set of probabilities associated with the possible transition between states 
after any given action. Thus the agent is concerned with computing a sequence of values of stochastic variables Xt 
each of them is determined solely by the previous one. The resulting chain of probabilities P(Xt|Xt-1) yields a so-
called Markov chain, a state evolution model. However, Markov chains and underlying decision support policies 
appear to be hardly feasible in open and dynamic environments for coalition formation. (Choi & Liu, 2001) propose 
one approach to mitigate the problem of prior knowledge on probabilities by using additional statistical information 
for the agents including the probability distributions of specific events to maximise their expected utilities without 
the need to of speculating others’ actions. It remains to be investigated to what extent this approach can be 
generalised to coalition formation environments. 
 
4 Selected Relevant Work 
 
Relevant work on fuzzy coalition forming and co-operative games with stochastic payoffs (section 2.2), as well as 
rational revision of preferences, and other qualitative approaches to decision making based on partial, uncertain, and 
tentative information hold promise to be useful for coping with some of the issues of the DCF problem. We briefly 
discuss only some of the most relevant approaches and systems which are relevant for coping with parts of this 
problem. Other relevant work includes, for example, utility-based schemes for dynamically re-organising 
organisational structures (Barber & Martin, 2001), and exception tolerant reasoning and multi-criteria decision 
making under uncertainty (Benferhat et al., 2001; Dubois et al., 2000). These works may be properly extended for 
application to different dynamic coalition formation settings. The same hold with applying work on dynamic 
constraint satisfaction problems (Schiex & Verfaillie, 1993) since many of the above mentioned problems can be 
viewed naturally as CSPs (Eaton, Freuder & Wallace, 1998). 

4.1 Game-Theory Based Approaches 

4.1.1 Fuzzy and Stochastic Coalitions 
Work on fuzzy and stochastic co-operative games as briefly described sections 2.2.4 and 2.2.5, respectively, is 
assumed to play an important role for the development of DCF schemes. Reasonable solutions for such types of 
games may lied to co-operation schemes which enable the agents to cope with issues of uncertainty, including, for 
example, vagueness of expected coalition values and corresponding payoffs. Such uncertainties may be induced by 
dynamic events such as network faults, changes of trust or reputation ratings of possible coalition partners, and 
receiving vague or even incomplete information and data during task execution or negotiation.  
Both, the field of fuzzy and stochastic co-operative games still are in its very infancies and require further basic 
research efforts. This is even more valid for the application of principles and methods for such non-classical but still 
static coalition forming to dynamic settings. The development of algorithms for dynamic fuzzy or probabilistic 
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coalition forming appears to be most promising and challenging at the same time. We are currently working on the 
development of such DCF algorithms. 

4.1.2 Overlapping Coalitions 
A method for building overlapping coalitions for precedence-ordered task-execution has been proposed in (Shehory 
& Kraus, 1996c). The suggested any-time algorithm is of polynomial complexity and yields sub-optimal results. 
Goal satisfaction by agents is approached as a problem of assigning goals to coalitions of agents. Thus the 
distributed algorithm tries to compute appropriate partitions of the considered set of agents adopting solution 
methods (Chvatal, 1979) for the similar set covering problem which is known to be NP-complete (Cormen, Leierson 
& Rivest, 1990). The algorithm is relevant for dynamic environments, wherein the time period for negotiation and 
coalition formation may be changed during the process. 

4.2 Social Reasoning 
Social reasoning mechanisms are considered as essential building blocks suitable to situations where agents may 
dynamically enter or leave the society, without any global control. Such mechanisms are often based on the notion 
of social dependence (Castelfranchi et al., 1992), or aim at reputation and trust management.  

4.2.1 Social Dependence Networks 
In order to acquire and use dependence knowledge on the considered agent society each agent has to (a) explicitly 
represent some properties of the other agents, which may change dynamically, (b) exploit this representation thereby 
optimising its behaviour according to the evolution of the society, and (c) to monitor and revise its representation to 
avoid inconsistencies to an acceptable degree, without any pre-established global control. 
For example, the multi-agent system DEPINT (Sichman, 1995) illustrates some essential aspects of an agent's social 
reasoning mechanism in particular concerning the (a) adaptation of an agent to changes in goals and plans, (b) 
formation of coalitions for plan achievement, and (c) revision of inconsistent belief. Each DEPINT agent 
dynamically builds and maintains its individual network of dependency relations with respect to the accomplishment 
of goals based on the skills of its own and that of other agents in the agent society2. It may adapt to changes in goals 
to pursue and corresponding feasibility of plans to perform by using this dependency knowledge to select at any 
moment the goals and plans which it actually is able to execute by itself and/or with the help of the society. The 
agent evaluates the susceptibility of other agents to adopt its goals which in turn enables it to dynamically form 
respective coalitions for accomplishing its tasks. 
However, DEPINT agents are assumed (a) to show benevolent behaviour in the sense that they do not try to exploit 
each other, never offer erroneous information deliberately and always communicate information in which they 
believe;  (b) posses complete and correct knowledge of their own goals, expertise, etc., and (c) to perform belief 
revision once inconsistent or contradictory belief about others is detected. These assumptions appear unrealistic in 
open, dynamic coalition environments as described above. 

4.2.2 Reputation and Trust Management 
Social mechanisms of reputation management aim at avoiding interaction with undesirable participants and may 
complement other security technologies for authentication and authorisation. Mechanisms for building, propagating, 
measuring and maintaining reputation and trust (Yu & Singh, 2000; Manchala, 2000) are useful to apply, for 
example, to settings for coalition formation among self-interested agents in e-commerce applications where trusted 
third parties are required but not available. Negotiation schemes for uncertain games with trusted third party are 
proposed, for example, in (Wu & Soo, 1999; Soo, 2000). The merging of several individual trust matrices which are 
commonly used as a means for assessing trust relationships is not necessarily transitive and certainly requires further 
research.  
In general, mechanisms which allow agents to efficiently react on frequent changes of reputation ratings and 
assessment of trustworthiness of potential coalition partners with respect to, for example, the expected share of 
profits, reliability of membership, and benevolence are, to our knowledge, more than rare up to date. First 
approaches into this direction include, for example, fuzzy models of reputation in multi-agent systems (Rubiera, 
Lopez & Muro, 2001).  
 

4.2.3 Time-Constrained Reasoning 
Rational agents may face many potentially beneficial choices related to the timing of events which may occur during 
(a) the individual decision process, and/or (b) the negotiation process with other potential coalition partners.  

                                                           
2 A DEPINT agent is said to be dependent on another if the latter may facilitate or prevent it from achieving one of 
its goals. Both agents are mutually or reciprocally dependent on each other with respect to the same or different 
goals, respectively 
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Regarding the use of social reasoning mechanisms in continuously changing environments temporal dependence 
networks and adequate temporal social reasoning mechanisms are proposed, for example, in (Allouche, Boissier & 
Sayettat, 2000). These mechanisms may be applied to DCF schemes which rely in part on social reasoning. 
Relevant work on real-time issues in the context of agent-based online auctions (on a single auction server) 
suggesting a design for maximal asychrony and robustness to network delay includes, for example, (Wellman & 
Wurman, 2000). (Choi & Liu, 2001) propose a dynamic mechanism for simple but time-constrained trading. The 
preliminary results and experiences reported in these and other relevant work may be taken into account for a design 
of more complex dynamic customer coalition formation schemes. 
 
5 One DCF Scheme: DCF-A 
 
In this section we propose a DCF scheme, called DCF-A, to enable rational agents to react on events which occur 
dynamically during the coalition forming process. In this paper we do not focus on the details of the coalition 
forming according to some given coalition model but on the simulation of the  
Due to the dynamic nature of the environment in which the agents are situated in their behaviour may change over 
time. We include appropriate learning components into the DCF scheme DCF-A to adapt the individual pay-off 
matrix of each agent to the current situation using reinforcement learning (Sutton & Barto, 1998), especially Q-
learning (Mitchell, 1997). The main idea is to approximate the function assigning each state-action pair the highest 
possible pay-off. Regarding the adaptation of each agent’s world model to frequent changes in the agent society we 
adopt the concept of levelled reasoning on the behaviour of other agents as it is described in (Weiss, 1999).  
In the DCF-A scheme each coalition built is represented by one distinguished agent acting as the so-called coalition 
leader. The coalition leader continuously attempts to improve the value of its coalition. In order to prevent the 
implied communication overhead between the leader and other members of the coalition, the leader simulates 
possible adjustments of the actual coalition configuration by building hypothetical re-configurations and rating them 
based on the members’ capabilities, resources, desirability, communication stability, task description, and 
suggestibility from the current environment. As soon as the coalition leader achieves a significant improvement of 
the coalition value by simulation, it informs all its coalition members about proper alternatives. In turn, the agents 
have to send their estimation about the quality of relevant services and agents in regular time periods to the coalition 
leader or some so-called world utility agents. This is quite similar to the co-ordination and collaboration within so-
called holonic multi-agent systems (Gerber, Siekmann & Vierke, 1999). 
 
The coalition leader is assumed to be able to obtain up to date information about the agent society, for example, by 
request from some distinguished so-called ‘world utility agent’. Such world utility information include public 
rankings about the quality of services offered by individual agents. Each agent may get a vague idea of the utilities 
and estimated payoffs of other agents, services, etc. When a new agent initialises itself and has no or less 
information on the world’s entities, a global world utility function can give him a first hint while deciding what is a 
good choice to do next. The world utility on the one hand (in a benevolent agent society) can be used to give a 
global guideline for later evolution of the society. On the other hand (in a non-benevolent society) a group of agents 
may try to manipulation the world utility of some items for their own interests. But as more agents report their own 
estimation about entities listed at the world utility agent, the harder it will be to manipulate these utilities. Therefore 
we extend the world utility function by collecting the number of remarks from different agents for one ranked entity. 
Only the newest remark from an agent about an entity is stored. In addition, to avoid the world utility value from 
jumping from low to high, we extend the world utility function with proper learning mechanism. The world utility 
function provides a median of the incoming remarks and may provide common utility estimations of relevant items, 
entities and relationships of the society. 
 
The DCF-A Scheme (Dynamic Coalition Formation Based on Simulation) 
 
Variables and functions used by the DCF-A: 
C  configuration of a coalition (members, payoffs) 
CPL  list containing the changes (new partners) in of the coalition structure in relation to the current structure  
AAL  list containing the agents’ abilities (capabilities, capacity, desirability, communication stability, stability of 

task description, suggestibility from the environment) 
tp    trust penalty for removing an agent from coalition C 
cv   current value of coalition C based on the Shapley-value 
rvf () function to determine the risk value when adding an agent ai to coalition C  (Linsmeier & Pearson, 1996; 

Alexander, 1998) 
Individual agent’s preferences characterising its behaviour: 
wr  worst acceptable risk to remove a single agent ai from C and getting punished from the agent society by 

loosing reputation  
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wtp   worst acceptable trust penalty for which the coalition head is willing to change the coalition structure with 
regards to all agents of the current CPL 

k   number of simulation cycles as an upper bound for the number of agents that have to be requested during the 
negotiation phase (|C| ≤ k). A higher k-value denotes a higher risk in not getting all the changes of the 
coalition structure realised, but the chance to obtain a higher performance of the coalition is also higher. 

 
Coalition formation and adjusting protocol used by each of the coalition leaders: 
 
1. Initialisation Phase  
 CPL = null 
 halt = false 
  
2. Simulation Phase 
 
To prevent to get stuck in a local maximum and to avoid cyclic changes of the coalition structure, we use a 
randomised version of the algorithm for the simulation phase. The algorithm for the simulation phase is intended to 
run as long as it is not necessary to make changes of the coalition structure. In case of the occurrence of dynamic 
events it stops and presents a valid configuration which does not decrease the coalition value compared to that in the 
previous configuration. Therefore the agent does not change the current configuration, instead it builds hypothetical 
coalition structures and configurations, and simulates possible changes of them. During these iterations the actually 
best solution is stored in BestCPL such that the algorithm can be halted at any time and outputs a valid solution. The 
solution is not a degeneration of a previous solution since the simulation phase is stopped if and only if the value of 
the hypothetical configuration appears to be much better then that of the current configuration. The argument ‘much 
better’ is necessary to prevent too many changes in the coalition structure. The simulation phase is an any time 
algorithm.  
 
 while not (halt) do 
  requesting newAAL from distinguished world utility agent 

merging newAAL with local AAL: For this purpose we adopt learning mechanisms (Watkins, 1989; Sutton & 
Barto, 1998) and stochastic methods for agent ratings; 
CPL := null 

  for (c=1 to k) 
   choose randomly one operation for cycle c (noop, add_member, remove_member) 
   if add_member then 
    choose agent ai from AAL with [min1 ≤  i ≤  |AAL| rvf(ai) and max1≤  i ≤  |AAL| value{C+ai}]  
    insert tupel [ai , add] to CPL 
   if remove_member then 
    choose agent ai from AAL with [max1 ≤  i ≤  |C| rvf(ai) and max1≤  i ≤  |AAL| value{C-ai}] 
    if  rvf(ai) > wr then   
     insert tupel [ai , remove] to CPL 
     tp := tp + 1/ rvf( ai) 
  next   
  if value(CPL) > value (LastCPL) then   

// following types of dynamic events are considered: changes of the current coalition configuration, or 
changes in the environment or task requirements.  

   BestCPL=CPL 
  If value(BestCPL) >> cv and tp<wtp then   

// if a new coalition structure is found that is much better then the old one, then the simulation is stopped 
and the negotiation phase for realising the hypothetical coalition re-configuration begins 

   halt = true 
 while end 
 
3. Negotiation Phase 
 
Concerning the fact of a dynamic environment the term of stability of a coalition has to be properly modified. In our 
case of a dynamic scenario it is not possible to build stable coalitions in the classical game-theoretic sense. This is 
because at any time dynamic events may happen and the coalition configuration has to be adjusted in real-time. 
However, in situation where no dynamic events occur, the rankings of the agents are stable, the simulated coalition 
protocol finds the approximately best configuration (if it exists) and hold it until a change in the environment 
happens. After the simulation phase has stopped the BestCPL is used in the following negotiation phase, where the 
coalition leader tries to realise the corresponding hypothetically “best” configuration. It sequentially gets into a 
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negotiation process with each agent of the BestCPL list based on a mechanism for ‘multi-attribute negotiations’ 
(Jonker & Treur, 2001). The agents have to negotiate about multiple attribute values, for example, the remaining 
time to fulfil a particular service, the costs of the service, etc. It is not guaranteed that all negotiations will end 
successfully. Thus, we adopt a ‘levelled commitment protocol’ (Andersson & Sandholm, 2001).  
 
 halt := false 
 for (i=1 to |BestCPL|)  
  [ai , operationi ]:= i-th tupel of BestCPL 
  try 
   if operationi = add_member then 

bilateral negotiation with agent ai based on protocols for multi-attribute negotiation and ‘levelled 
commitment contracts’ [1] (if not all agents of the BestCPL can be added to this coalition). 
if negotiation was successful then 
 add ai to C 

   else 
    remove ai from C   

catch (if any dynamic event occurs during the execution of the negotiation phase) 
   stop Negotiation Phase 
 next 
 
4. Evaluation Phase  
 

Send AAL to the known world utility agent, which merges this list with its local AAL (using learning mechanisms 
and stochastic methods for the agent rankings). Restart the simulation phase (Go to 2.) 

 
 
6 Conclusions  
 
We introduced the notion, selected issues, and challenges of dynamic coalition formation (DCF) among rational 
software agents. In addition, we briefly discussed selected relevant work in different disciplines and proposed a 
novel DCF scheme. It has to be emphasised that one of the main challenges of the domain of dynamic coalition 
formation is the development of efficient DCF algorithms which enable rational agents to efficiently cope with 
different hard issues and problems they are facing in continuously changing, open, distributed and heterogeneous 
environments such as the Internet and Web. This is one focus of ongoing and future research, for example, at DFKI.  
For this purpose, many relevant approaches and theoretical work stemming from different disciplines are available 
to date including work on temporal social reasoning, and fuzzy and stochastic co-operative games.  
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