
Integrating Collaboration and Activity-Oriented
Planning for Coalition Operations Support

Clauirton Siebra and Austin Tate

Centre for Intelligent Systems and their Applications
School of Informatics, The University of Edinburgh

Appleton Tower, Crichton Street, EH9 1LE, Edinburgh, UK
{c.siebra,a.tate}@ed.ac.uk

Abstract. The use of planning assistant agents is an appropriate option to
provide support for members of a coalition. Planning agents can extend the
human abilities and be customised to attend different kinds of activities.
However, the implementation of a planning framework must also consider other
important requirements for coalitions, such as the performance of collaborative
activities and human-agent interaction (HAI). This paper discusses the
integration of an activity-oriented planning with collaborative concepts using a
constraint-based ontology for that. While the use of collaborative concepts
provides a better performance to systems as a whole, a unified representation of
planning and collaboration enables an easy customisation of activity handlers
and the basis for a future incorporation of HAI mechanisms.

1 Introduction

Coalitions, from Latin coalescere (co-, together + alescere, to grow) is a type of
organisation where joint members work together to solve mutual goals. The principal
feature of any coalition is the existence of a unique global goal, which motivates the
actions of all coalition members. However, normally such members are not directly
involved in the resolution of this goal, but in sub-tasks associated to it. For example, a
search and rescue coalition that aims to evacuate an island (evacuate island is the
global goal) has several sub-tasks (e.g., refill helicopters, provide information about
weather conditions, etc.) that must be performed to reach the global goal.

The basic idea of this paper is to support coalition members via assistant agents that
provide planning facilities. In this scenario each member could have a personal agent
that supports his/her activities and delivers, for example, planning information,
coordination commands and options to carry out activities. This approach is powerful
because while human users have the ability to take decisions based on their past-
experiences (case-base reasoning), agents are able to generate and compare a
significant number of options, showing both positive and negative points of such
options. Projects as O-Plan [1] and TRAINS [2] explore this fact, providing planning
agents that interact in a mixed-initiative style with users during the development of
solutions, such as plans.

However the use of standard planning mechanisms is not sufficient to deal with the
complexity of problems associated to coalition domains, such as disaster relief
operations. In these domains, activities cannot consist merely of simultaneous and
coordinated individual actions, but the coalition must be aware of and care about the
status of the group effort as a whole [3]. The Helicopters Attack Domain [4] and the
Guararapes Battle game [5] are two experiments that corroborate with this
affirmation. The principal reason for the problems in such domains is that
“collaboration between different problem-solving components must be designed into
systems from the start. It cannot be patched on” [6]. Thus, the idea of our approach is
to develop the collaborative framework together with the planning mechanism in a
unified way, using a constraint-based ontology for that. The properties of constraint
manipulation have already been used by several planning approaches as an option to
improve their efficiency and expressiveness [7]. Constraints are especially a suitable
option to complement the abilities of HTN planning as, for example, to represent
possible resultant subproblems dependences of the decomposition process [8]. The
use of constraints will also facilitate a future expansion of our system toward a better
human support. Note that constraints are a declarative way of providing information
so that users specify what relationship must hold without specifying a computational
procedure to enforce that relationship. Consequently users only state the problem
while the computer tries to solve it [9].

The remainder of this document is structured as follows: section 2 presents some
initial aspects of our approach associated to hierarchies, planning representation and
process. Section 3 summarises the collaborative formalism that our models are based
on, explaining how we are modelling its principal concepts using the constraint-based
ontology and associated functions. Finally section 4 concludes this work.

2 Hierarchical Coalitions and Conceptualisation

This section introduces three important concepts for our work: the coalition
organisation, the planning representation and the activity-oriented planning process.

Hierarchies are a well-known and used structure for organising members of a team.
Military organisations, for example, are the most common examples of hierarchical
arrangements. One of the principal advantages of hierarchies is that they support the
deployment of coordination mechanisms because such mechanisms can exploit their
hierarchical organisational structure. This is because the organisation implicitly
defines the agents responsibilities, capabilities, connectivity and control flow. In
addition, hierarchies also have the following advantages:

− They are compatible with the divide-and-conquer idea so that the process of
splitting a problem into smaller sub-problems is repeated in each level;

− Hierarchical levels may deal with different granularities of knowledge so that
each of them does not need to specify all the details about the problem, and;

− It is possible to enclose problems in local subteams, instead of spreading them
along the entire organisation.

We are considering hierarchical organisations arranged into three levels of
decision-making: strategic, operational and tactical. However this is not a “must
restriction” so that hierarchies can be expanded to n levels. A last important aspect of
hierarchical coalition systems is that there is a need of customising their agents so that
they are able to support specific activities carried out into each decision-making level.

Our planning representation is based on <I-N-C-A> (Issues - Nodes - Constraints -
Annotations) [10], a general-purpose constraint-based ontology that can be used to
represent plans in the form of a set of constraints on the space of all possible plans in
the application domain. Each plan is considered to be made up of a set of Issues and
Nodes. Issues may state the outstanding questions to be handled and can represent
unsatisfied objectives, questions raised as a result of analysis, etc. Nodes represent
activities in the planning process that may have sub-nodes (sub-activities) making up a
hierarchical description of plans. Nodes are related by a set of detailed Constraints of
diverse kinds such as temporal, resource, spatial and so on. Annotations add
complementary human-centric and rationale information to the plan, and can be seen
as notes on their components.

The system architecture considers planning as a two-cycle process, which aims to
build a plan as a set of nodes (activities) according to the <I-N-C-A> representation.
In this way, the first cycle tries to create candidate nodes to be included into the
agent’s agenda, respecting its current constraints. If this process is able to create one
or more candidate nodes, one of them can be chosen and its associated constraints are
propagated, restricting the addition of future new nodes. The agents’ agenda contains
the net of activities that agents intend to perform. If an agent receives a new activity, it
must generate actions that include this new node in its agenda. Each action is a
different way to perform this inclusion so that different actions generate different
nodes configurations. We call this process of activity-oriented planning because
agents provide context sensitive actions (e.g., delegations, Standard Operating
Procedures, dynamic plan generation and specific solvers) to perform activities.

In brief, the role of agents is to provide actions to decompose nodes until there are
only executable nodes. Each action is implemented by an activity handler, which uses
one or more different constraint managers to validate its constraints. For example, the
action of applying a SOP is a handler that decomposes an activity according to the
SOP specification. For that, the handler uses specific constraint managers that check
the pre-conditions in which the SOP can be applies, signalising in case of conflicts.

3 The Collaborative Framework

Planning agents are able to support the performance and coordination of activities,
however they do not ensure collaboration between coalition members. For that,
coalition systems must also consider notions of collaboration since their phase of
conception. Considering such fact, this section summarises the collaborative
formalism that we are exploring and how we are implementing its ideas following the
<I-N-C-A> approach.

3.1 Requirements of the Teamwork Theory for Collaboration

The Teamwork Theory [11] provides a set of formal definitions that lead the design of
collaborative systems. Several works have proposed frameworks based on such
definitions. SharedPlans [12], for example, argues that each collaborative agent needs
to have mutual beliefs about the goals and actions to be performed, and about the
capabilities, intentions and commitments of others agents. STEAM [13] is an
implemented model of teamwork, where agents deliberate upon communication
necessities during the establishment of joint commitments and coordination of
responsibilities. Although these and others works have different approaches to deal
with different technical problems, an investigation on these works can distinguish the
following principal requirements: (1) agents must commit on the performance of joint
activities; (2) agents must report the status of their activities, informing on progress,
completion or failure, and; (3) agents must mutually support the activities of other
coalition members, sharing useful information or using their own resources for that.

3.2 Activities Commitment

We are implementing both ideas of activities commitment and status reporting through
the “AgentCommitment” function. This section analyses the commitment of activities,
while the next section (Section 3.3) discusses the status reporting process.

According to <I-N-C-A>, each plan p is composed by a set of plan nodes ni. If a
superior agent, that has p as goal, sends such nodes ni to its subordinate agents, then a
commitment between the superior and each subordinate must be done. For that end,
the function “AgentCommitment”, implemented by each agent of the hierarchy,
receives as input parameter the node ni ∈ p and the sender identifier.

01. function AgentCommitment(sender,ni)
02. subplan ← GenerateNodes(ni)
03. if(∃(subplan))
04. if(HasNodesToBeDelegated(subplan)) then
05. Delegate(subplan,subord) ∧ WaitCommits()
06. if ∃s (s ∈ subord)∧(¬Commit(s)) then
07. go to step 04
08. Report(sender,ni,COMMITED)
09. while(¬Complete(subplan))
10. if(JustReady(subplan)∨Changed(subplan))then
11. Report(sender,ni,EXECUTING)
12. if(Violated(subplan)∨Receive(FAILURE)) then
13. go to step 04
14. end while
15. Report(sender,ni,COMPLETION)
16. else
17. Report(sender,ni,FAILURE)
18. ∀s (s ∈ subord) ∧ HasCommitment(s,subplans),
19. Report(s,subplans,FAILURE)
20. end

 At this point we can discuss some implications and features of this function. First,
ni has a set of constraints associated to it so that the “GenerateNodes” function (step
02) considers such set to return an option (nodes list or subplan) to perform ni. If a
subplan is possible (step 03) and it does not depend of anyone more (step 04) then the
agent can commit on ni (step 08). However, if subplan depends on the commitments
of subordinates, then the agent must delegate the necessary nodes to its subordinates
and wait their commitments (step 05). This implies that commitments are done
between a superior agent and their subordinates and, starting from the bottom, a
“upper-commitment” only can be done if all the “down-commitments” are already
stabilised. Note that a delegation on the same subplan cancels previous commitments.

Second, an interesting implication is that if some subordinate agent is not able to
commit (step 06), the agent returns (step 07) to generate other subplan option rather
than sending a failure report to its superior. This approach implements the idea of
enclosing problems inside the sub-coalition where they were generated.

Finally if the agent is not able to generate a subplan for ni, it reports a failure to its
superior (step 17). In addition, it must also alert their subordinates that ni has failed
and consequently its subnodes can be abandoned (step 18-19).

We can note that the principal advantage of this approach is that commitments are
naturally manipulated during the constraint processing as any other constraint. In other
words, the failure in a commitment is interpreted as a problem of constraint
satisfaction, which can trigger a common process of recovery, such as a replanning.

3.3 Status Reporting

After reporting a commitment (step 08), an agent ai must monitor and report execution
status until the completion/failure of ni. The principal questions here are when to send
a report and which information should be reported. There are two obvious cases in
which ai performing ni must report: first when ai completes ni, and second when
happens an execution failure and ai is not able to deal with the failure by itself. In the
first case ai only needs to send a completion report, while in the second case a failure
report must be sent optionally with the failure reasons (constraints unsatisfied).

Reports associated to progress are a more complex case. In order agents do not
have to communicate each step of their execution. Previous works have already
identified communication as a significant overhead of risk in hostile environments
[13]. Furthermore, in case of progress reports, the information associated with them
should be useful to the monitoring process.

Considering these facts, we start from the principle that relevant information, once
sent, becomes common knowledge and hence unnecessary to updates. For example, if
ai informs that it has just started the execution of ni, ai does not need to send other
messages informing that it still executing ni. From this point we must think on which
could be the information generated during activities execution and that is likely to help
superior agents during the process of monitoring. For that end, consider the following
scenario: when ai commits on the performance of ni, it informs which subplan it is
going to use. The constraints of such subplan can have the following classes of values:
concrete, which expresses known values or estimated values if ai has a good idea

about the process; and variables to be used during unpredicted situations, indicating
that ai does not have idea about some specific information.

Using constraints with concrete values, the superior agent of ai can perform more
confident reasoning on the ongoing activities. For example, if it knows that the activity
of ai will take 30 minutes, it can allocate ai to a new activity after 30 minutes. Thus, if
during the execution of subplan one of its concrete values is changed or its variables
are instantiated, a progress report must be sent.

Returning to the function, while the planning is not complete (step 09), the changes
in subplan (step 10) are monitored and sent to superiors as a ongoing execution report
(step 11). Constraint violations and failure reports are also monitored (step 12) so that
the agent firstly tries to repair the problem by itself (step 13) before sending a failure
report. Note that this discussion expands the plan (or subplan) status from the three
early discussed (possible, no-ready, impossible) to five (complete and executing
additionally). The <I-N-C-A> definition for activities contains a status attribute that
can be filled with one of these options.

At last, the principal point of this function is that the reasoning associated to
commitments and reports are based on results of constraint processing. This fact is
illustrated by the functions “Complete” (step 09), “JustReady” (step 10), “Changed”
(step 10) or Violated (step 12), which are all applied on constraints. Thus, we still
having the same basis for working, which is also used by the planning mechanisms.

3.4 Mutual Support

The principal idea behind mutual support is to enable that one agent has knowledge
about the needs of other agents. For example, an agent a1 knows that a specific road is
clean so that it uses this constraint in its plan. However, as the world is dynamic, the
road can be blocked. If any other agent finds out that such road is no more clean, it
must inform this fact to a1. Thus this informer agent is supporting the performance of
a1. The easier option to implement this feature is to force agents to broadcast any new
fact to all coalition. Consequently all agents will have their world state updated and
problems like that can be avoided. However, this is not an appropriate approach in
terms of communication and agents will also receive several useless information.

Consider now that Θx is a coalition and that each agent ai ∈ Θx has a plan pi with a
set of conditional constraints C, which ai desires that hold so that pi still valid. In this
case each ci ∈ C is a constraint that ai believes that is true and hopes that still being
true. Then ai broadcasts C for Θx so that other agents of its subgroup know what it
needs. Such agents must deal with C according to the function below:

01. function MutualSupport(ai,C,myBel)
02. while(∃ci ci∈C)
03. if(∃cick ci∈C ∧ ck∈myBel ∧ Contrast(ci,ck)) then
04. newActivity ← CreateActivity(Goal(ci))
05. if(¬∃newActivity) then Inform(ai,ck)
06. Retire(ci,C)
07. if(∃ci ci∈C ∧ ¬Valid(ci)) then Retire(ci,C)
08. end

According to this function, which is applied by agents that receive C from ai, agents
must compare their believes myBel, which are also a set of constraints, with C. If they
find some “contrast” (step 03), they must try to create a new activity whose goal is to
turn ci true (step 04). If this is not possible, they must inform ai that ci is no more
holding and its new value is ck (step 05).

The Contrast function (step 03) says that two constraints, which are supposed to be
equal, are not equal. However we are also considering as contrast the situation where
two constraints have the potential to be equal. For example, ((color Car) = ?x) and
((color Car) = blue). In this case the two constraints are in contrast because they have
the potential to be equal if the variable ?x assume the value “blue”. This second type
of contrast is very useful in the following class of situations. Suppose that one of the
activities of ai is “rescue injured civilians”. For that end, ai firstly needs to find such
civilians so that they have the following conditional constraints: ((position ?a) = ?b),
((role ?a) = civilian) and (status ?a) = injured). This set of constraints implies that the
variable ?b is the location of an injured civilian ?a. Then if other agents that have or
discover a set of constraints that contrast with the set sent by ai, they must inform ai
(note that in this case no make sense to create a new activity).

The Valid function (step 07) accounts for eliminating the constraints that no more
represent conditions to sender agents. This is important to avoid that agents still
sending useless information and also to decrease the number of messages in the
coalition. A practical way to do that is to consider that all ci∈C has a timestamp that
indicates the interval that such constraint is valid. Using a timestamp as (tinitial,tfinal)
and considering that tinitial and tfinal are ground values, the Valid function only needs to
compare if the condition (tfinal < current-time) is true to eliminate the respective
constraint. However, the use of timestamps fails if sender agents does not know the
interval that their conditional constraints must hold. Note that the use of timestamps
tries to avoid that agents need to broadcast messages saying that they no more need
that a group of constraints hold. Rather, timestamps enable that agents reason by
themselves on the elimination of such constraints.

One of the principal advantages of the MutualSupport function is that it improves
the information sharing because the sending of information is guided by the
constraint-based knowledge that each agent has on the activities of its partners. In
addition, the function also decreases the number of messages changed among agents.

4. Conclusion and Directions

This work shows the integration of an activity-oriented planning with notions of
collaboration via a unified constraint-based framework. This framework enables an
easy development of activity handlers, which can be customised according to the tasks
of each decision-making level. Ongoing experiments of this proposal are using the
RoboCup Rescue simulator as principal domain of evaluation. The first idea is to
demonstrate the importance of coordination and collaboration during coalition
operations. However, the principal purpose is to show that the development of
planning mechanisms can be maintained independent of the collaborative framework.

Acknowledgement

Clauirton Siebra’ scholarship is sponsored by CAPES Foundation under process
number BEX2092/00-0. This material is based on research within the I-X project
sponsored by the Defense Advanced Research Projects Agency (DARPA) and US Air
Force Research Laboratory under agreement number F30602-03-2-0014 and other
sources.

The University of Edinburgh and research sponsors are authorised to reproduce and
distribute reprints and on-line copies for their purposes not withstanding any copyright
annotation here on. The views and conclusions contained here in are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of other parties.

References

1. Tate, A.: Mixed-Initiative Interaction in O-Plan. Proceedings of the AAAI Spring
Symposium on Computational Models for Mixed-Initiative Interaction, Stanford, California,
USA (1997)

2. Fergunson, G., Allen, J., Miller, B.: TRAINS-95: Towards a Mixed-Initiative Planning
Assistant. Proceedings of the Third Conference in AI Planning Systems, AAAI Press, Menlo
Park, California, USA (1996) 70-77

3. Levesque, J. Cohen, P., Nunes, J.: On Acting Together. Proceedings of the Eighth National
conference on Artificial Intelligence, Los Altos, California, USA (1990) 94-99

4. Tambem, M.: Towards Flexible Teamwork. Journal of Artificial Intelligence Research, Vol.
7 (1997) 83-124

5. Siebra, C., Ramalho, G.: An Architecture to Support Synthetic Actors in Virtual
Environments, Second Brazilian Workshop on Artificial Intelligence, Rio de Janeiro, Brazil
(1999)

6. Grosz, B.: Collaborative Systems, AI Magazine, Vol. 17-2 (1996) 67-85
7. Nareyek, A., Fourer, R., Freuder,, E., Giunchiglia, E., Goldman, R., Kautz, H., Rintanen, J.,

Tate, A.: Constraints and AI Planning, Notes from the AAAI Workshop on Constraints and
AI Planning, Austin, Texas, USA (2000)

8. Stefik, M.: Planning with Constraints (MOLGEN: Part 1). Artificial Intelligence, Vol. 16-2
(1981) 111-140

9. Freuder, E.: Synthesizing Constraint Expressions. Communications ACM, Vol 21-11 (1978)
958-966

10. Tate, A.: <I-N-C-A>: an Ontology for Mixed-Initiative Synthesis Tasks. Proceedings of the
IJCAI Workshop on Mixed-Initiative Intelligent Systems, Acapulco, Mexico (2003)

11. Cohen, P., Levesque, H.: Teamwork, Special Issue on Cognitive Science and Artificial
Intelligence, Vol. 25 (1991) 487-512

12. Grosz, B., Hunsberger, L., Kraus, S.: Planning and Acting Together, AI Magazine, Vol. 20-
4 (1999) 23-34

13. Tambe, M.: Towards Flexible Teamwork, Journal of Artificial Intelligence Research, Vol. 7
(1997) 83-124

