
Linking an HTN Planner to a Universal Robot

Controller for High-Level Activity Control

Dane Alan Alexander
T

H
E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2006

Abstract

In this thesis we investigated the possibilities for developing a generic high-level robot

controller, using an architecture consisting of a HTN planner (provided by the I-X

framework) generating and sending actions to a robot via a generic controller (provided

by URBI) in order to perform some complex task that could not be executed by the

robot directly. The complex task that was chosen was to have our robot navigate from

one zone to another in a generic office environment, with zones representing rooms

and open spaces.

In order to implement a generic controller we first focused on identifying the

robot’s capabilities as represented by the commands that URBI provides. We mod-

elled these commands in such a way that I-X would be able to reason about and create

plans from them. This resulted in a library of primitive I-X actions implemented in the

I-X LISP notation such that there existed a one to one mapping to URBI commands.

These actions then provide a foundation for building higher-level methods & tasks.

The communication and monitoring of commands is handled by the robot controller

that was designed and implemented in this project. It was also the job of this controller

to update I-X’s knowledge of the state of the world.

This system gave us the opportunity to evaluate the approach, by doing some lim-

ited experiments involving the generation of plans in I-X and executing them on a par-

ticular simulated robot in environments that were tailored specifically for a complex

task.

Our first hypothesis was that I-X and URBI together can provide a generic high-

level controller for robots. However, from the results of the experiments and general

considerations of I-X and URBI as components in this architecture, the system built

during this project provided evidence only for a weaker hypothesis, namely that I-X

and URBI together provide a high-level controller for aspecific robot in aspecific

environment.

i

Acknowledgements

I would first like to express my sincere gratitude to my supervisors Dr. Gerhard

Wickler and Dr. Stephen Potter for their time, patience and guidance throughout the

course of this thesis. Without their help and expertise, this thesis would have not come

as far as it has today.

I would also like to thank my family especially my parents and my uncles for

providing me this opportunity to accomplish my dreams.

My deepest gratitude to the love of my life, Lisa, for supporting me in everything

that I do. Without your moral support and your “You Can Do It!” attitude I would not

have come this far.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Dane Alan Alexander)

iii

Table of Contents

1 Introduction 1

1.1 Motivation: Possible Applications 1

1.2 Hypothesis . 2

1.3 Thesis Structure . 3

2 Background 4

2.1 Hierarchical Task Network (HTN) Planning Overview 4

2.2 HTN Planning in Robotics . 6

2.3 I-X . 7

2.3.1 I-X Process Panels & I-Plan 8

2.3.2 I-X Activity Handlers . 8

2.3.3 I-X<I-N-C-A> Ontology 8

2.4 Generic Robotic Controllers . 9

2.4.1 URBI . 9

2.4.2 URBI Server/Client Architecture and URBI Tags 11

2.5 Robotic Simulators and WEBOTS 13

2.5.1 WEBOTS . 14

2.6 Sony AIBO ERS-7M3 . 14

2.6.1 AIBO in WEBOTS . 15

2.6.2 AIBO and URBI . 17

2.7 Chapter Summary . 17

3 Design and Implementation 18

3.1 The Project Architecture . 19

3.2 Planning Domain . 20

3.2.1 Constraint Types . 21

3.2.2 Primitive Actions . 22

iv

3.2.3 I-X Lisp Notation For the Primitive Action Domain 23

3.2.4 High Level Actions . 25

3.3 Activity Handler . 28

3.4 The Robot Controller . 29

3.4.1 Command Interpretor . 29

3.4.2 Command Monitor . 29

3.4.3 Support Functions . 30

3.5 The Test Environment . 31

3.5.1 Labelled Zones Environment 32

3.5.2 Coloured Zones Environment 32

3.6 Sensing the Environment . 34

3.6.1 Using Optical Character Recognition (OCR) 34

3.6.2 Using Colour Identification 35

3.7 Chapter Summary . 37

4 Evaluation & Analysis 38

4.1 Labelled Zones Experiment . 39

4.1.1 Analysis of the Labelled Zone Experiment Results 40

4.2 Coloured Zones Experiment . 40

4.2.1 Analysis of Coloured Zone Experiment Results 41

4.3 General Discussion . 43

4.3.1 I-X as a Robot Planner . 43

4.3.2 URBI as a Generic Robot Controller 44

4.3.3 I-X and URBI: A Generic High-Level Robotic Controller? . . 45

4.4 Chapter Summary . 46

5 Conclusion 47

Bibliography 49

v

Chapter 1

Introduction

For many years in the field of robot control, research has focused mainly on the low

level capabilities of the robot, such as basic path finding, obstacle avoidance and dif-

ferent visual techniques for identification etc. Only recently have scientists begun to

focus on robots that will be able to reason about their environment at a higher cogni-

tive level and autonomously perform complex tasks by more sophisticated means. One

area in this type of research involves planning. A planning system that would aid in the

decomposition of high-level commands into primitive actions and transmitting those

actions to a robot via some generic controller would lead to many potential applica-

tions as outlined below. When we say “high-level task” we refer to giving the robot a

set of commands one might give another person e.g. telling someone to go and retrieve

some documents from the manager’s office. Such commands would normally not cor-

respond to actions a robot can perform directly, i.e. without decomposition. Such a

system would be a large step forward from existing methods.

1.1 Motivation: Possible Applications

Security and surveillance is an area that can be explored. For example, if you are

abroad on a vacation and your robot is at home permanently on standby and communi-

cating via WIFI to a dedicated server, you can log onto the server with the intention of

checking the surveillance plans generated by a sophisticated planner which are being

sent to your robot. After all tasks have been achieved, the robot can send back the

results of the tasks.

Such a system also has the potential for controlling more than one robot, again due

to the fact that the planner is not necessarily on-board the robot. This makes it easier

1

Chapter 1. Introduction 2

to centralise information coming from each robot so the planner has a good idea about

what coordinating plans it should produce in order to accomplish some task. This idea

could be usefully implemented on robots that search for mines for example. The more

robots are available, the more coverage of an area can be achieved. Such a system

could be employed on a multi-agent level with a centralised planner.

Another potential application involves emergency response robotic units, deployed

when earthquakes strike, for example. These robots would have the ability to go to

areas where no humans can safely venture and search for survivors. However, in this

scenario the robots themselves would need to have on-board planning capabilities just

in case something disrupts their communication. They can save the plans that were sent

by the central task-setting controller and still carry out their mission. Upon identifying

a victim a unit would attempt to get in contact with the central controller to report the

problem. If this fails then it could try to find an area where communication can be

regained.

1.2 Hypothesis

The aim of this project is to attempt to create a generic, high-level robot controller. By

“generic high-level controller” we mean:

• It will be generic in the sense that the primitive actions are not specific to one

type of robot acting in one type of environment.

• Control of the robot will be at a high-level in the sense that tasks can be set at a

level more abstract than the primitive actions provided by the robot.

A generic controller for a robot is already provided by URBI [7]. The URBI frame-

work provides a fairly low level of control and access to a robot’s joints, sensors, etc

which can be manipulated by sending URBI commands. The I-X framework [32] pro-

vides a way of modelling and reasoning with abstract activities. Higher-level tasks can

be invoked from an I-X Process Panel, which are then decomposed into primitives by

the I-X HTN planner, transformed into URBI commands, and sent to the actual robot.

(The robot that was to be used for this project is the Sony AIBO ERS-7M3 [4].)

Our hypothesis is therefore that I-X and URBI together can provide a high-level

generic controller for robots.

Chapter 1. Introduction 3

1.3 Thesis Structure

The structure of this thesis is as follows. In chapter 2 we go over the important back-

ground material that is necessary to give a clear understanding of the rest of this thesis.

In chapter 3 we describe and discuss the design and implementation of the architecture

that was created to control a generic robot on a higher level. In chapter 4 we discuss

the experiments that were used to evaluate the system as a whole and provide an anal-

ysis of the results obtained concluding with a general discussion of our findings and

how far they support our hypothesis. In chapter 5 we go over the work that was done,

highlighting the main design decisions and concluding with a discussion about the ex-

tent to which the developed system supports our research hypothesis, i.e. whether our

controller can be considered generic and high-level.

Chapter 2

Background

In this chapter we discuss related work that has been done in generic controllers and

with planning in robotics. Then we give an overview of some of the components

necessary for achieving the goals of this project. We highlight the important aspects of

the project by doing a review of known HTN systems. After which we describe other

important parts of the project such as an overview of HTN planning and its application

in robotics. We discuss what is URBI and what is I-X and its important parts. We

describe the robot that was used and why it was used.

2.1 Hierarchical Task Network (HTN) Planning Overview

This section gives a brief conceptual overview of HTN planning. We also discuss the

advantages that HTN planning has over other classical planning techniques.

Hierarchical Task Network (HTN) planning is an alternative to classical planning

[16] which uses “task decomposition” for providing plans in solving complex prob-

lems. We use the characterisation of tasks from [12] which is “activities we need to

plan i.e. things that need to be accomplished”. A task network is a set of tasks inter-

connected through the constraints within them. A hierarchical task network is a set of

task networks whose initial or root task describes the problem, which is viewed as a

very high-level description of what is to be done, for example “building a house” [16].

Planning in the HTN uses task decomposition which is the refining of higher-level

tasks into an ordered set of lower level tasks. The decomposition of higher-level tasks

continues until only primitive actions remain.

Figure 2.1 gives an example of an actual HTN method. The task “Build (?house)”

describes the overall problem. This task can be decomposed into a set of other lower

4

Chapter 2. Background 5

Method Build (?house)

Precondition: (and (own land) (have money))

Effects: (built ?house)

Applicability: (single-family-home ?house)

Expansion:

S1: Build-Foundation(?house)

S2: Build-Frame(?house)

S3: Build-Roof(?house)

S4: Build-Walls(?house)

S5: Build-Interior(?house)

S6: Decorate(?house)

Orderings: S1<S2, S2<S3,S2<S4, S3<S5, S5<S6

Links:

S1 causes (foundations laid) for S2

S2 causes (frame erected for S3 and S4

S3 causes (roof built) for S5

S4 causes (walls built for S5)

S5 causes (interior done) for S6

Figure 2.1: Example HTN plan for building a house(from [31])

Chapter 2. Background 6

level tasks as shown by the “Expansion” in the figure 2.1. In this example the tasks

have an ordering which needs to be fulfilled.

Hierarchical Task Network (HTN) were originally designed in order to close the

gap between other planning techniques such as Strips-style planning, and operations-

research techniques for project management and scheduling [30]. One important dif-

ference between HTN and classical style planning is the way in which a planning

problem is defined. HTN planners attempt to perform a set of tasks, whilst classical

style planning tries to reach to some “goal state” by performing a sequence of actions.

In classical planning a search algorithm is responsible for finding the best actions to

perform in order to reach some goal state. However, if the set of goal conditions is

very large these searching algorithms take a very long time in coming up with solu-

tions. HTN has the advantage over classical planning in the sense that for it to reach

a goal state there is a predefined set of methods that achieve this on some hierarchical

level.

Some applications of HTN planning can be found in gaming, multiagent team be-

haviour [24], robot navigation [9], motion planning and search and rescue tactics etc.

Nonlin which was created by Tate in 1976 [29] is one of the first AI planners to use the

HTN planning architecture. It was also famous for its early role as a basis for NASA’s

Jet Propulsion Laboratory Deviser [35] which was their first planner used in spacecraft

mission sequencing. This illustrates the great practical relevance of HTN planning.

2.2 HTN Planning in Robotics

This section reviews some robotic systems that implement the HTN Control architec-

ture. We then conclude with a discussion on how the goals of this project differ in

comparison with these robotic systems.

In [21] Mastrogiovanni et al. expand the HTN architecture claiming that the cur-

rent state of HTN planning does not handle re-planning well for service type robots.

These service type robots are required to work in dynamic environments where static

plans have the potential to fail. This is because in a dynamic environment (for ex-

ample in a busy shopping centre), new variables such as changes to the environment

can be introduced which may have not been considered at the time of plan generation

for some service type activity. They claim that HTN planning can lead to sub-optimal

plans by not focusing on the long term plan in highly dynamic environments. To fix

this problem they created a more simple yet effective method of calling the HTN al-

Chapter 2. Background 7

gorithm to run on sub-tasks where applicable. Their system which comprises of two

interacting subsystems are made up of a 1) Knowledge representation system and 2) an

HTN planner (see [21] for details of these systems) which are handled by agents using

a multi-agent system. Basically, these two systems work together which constantly

update and repair plans. However, their system was only applied to one service type

robot. Also, the environments that they used for testing were static and changes to the

environment were directly made by the robot instead through other external sources.

However, the experiments did show that compared to non-HTN planning techniques

HTN planning performed faster in finding solutions for complex activities.

For the AAAI Mobile Robot challenge 2005, researches at the Université de Sher-

brooke proposed their own built U2S robot [5] with on-board HTN planner. The main

goal for the U2S robot was to navigate through the conference, register itself, have a

basic conversation with others and aid in human driven tasks [8]. The HTN planner

that was used was an improvement on the SHOP2 algorithm [23] with added features

such as time constraints and added post-processed planning [11] for improved flexibil-

ity which was crucial in plan repair. The planning utility was only specially designed

for the purpose of the conference and for the robot. Integrating such a system into

other environments is still under investigation.

These robotic systems apart from their HTN planning capability have a some things

in common which are:

• Planners are situated on-board the robots.

• Robots were designed for specific environments.

• Planning architecture was quite specific for the type of robots.

2.3 I-X

This section describes a brief overview of the I-X architecture highlighting the I-X

tools that were used in the design of our architecture.

According to [3] “I-X provides a new systems integration architecture which can

be used to create agents or non-agent systems whose design is based on the O-Plan

[31] agent architecture”. Within I-X the tools that we used are the I-X HTN planner I-

Plan, I-X Process Panels and the ability to define our own I-X activity handlers, whose

defintions are discussed more in detail below.

Chapter 2. Background 8

2.3.1 I-X Process Panels & I-Plan

I-X process panels are one of many tools used in the I-X architecture [32]. According

to [32] ”I-X Process Panels are used to support users who are carrying out processes

and responding to events in a cooperative working environment”. I-X Process Panels

also are the principal interface by which users access I-X’s tools. These panels are

flexible in that they can be made to communicate with other panels and a wide variety

of other services. I-Plan [32] is one of the core tools available in I-X and which

provides HTN planning for task decomposition. I-X has been applied to:

• Search & Rescue Coordination

• Help Desk Support

• Unmanned Autonomous Vehicle Command

• Responding to Simulated Oil Spill Emergency

The I-X Process Panels provide an interface to I-Plan; therefore, to exploit the I-X

planning facilities in this project, the task becomes one of communicating the appropri-

ate commands between I-X panels and the robot. This will form the basis/foundation

of our generic robotic controller.

2.3.2 I-X Activity Handlers

An activity handler in terms of the I-X architecture and this project can be seen as

a dispatcher. This dispatcher assigns activities to different agents and these agents

handle the activities which report to the I-X-Process Panel whether or not the activities

were carried out successfully. The agents also have the option of sending back extra

information to the I-X Process Panel about the completion or failure of that activity.

2.3.3 I-X <I-N-C-A> Ontology

<I-N-C-A> stands forIssues,Nodes, ConstraintsandAnnotationswhich is the ontol-

ogy used in the I-X architecture that describes the product of a synthesis task [32].

The synthesis task pertaining to this project can be seen as synthesizing a course of

action. However, this project focuses only on Nodes and Constraints because there is

no utility for Issues and Annotations at the moment.

Chapter 2. Background 9

• Nodes: This high-level task that needs to be decomposed into primitive actions

or the primitive actions themselves that are used in instructing the robot.

• Constraints: This represents the I-X agent’s knowledge of the world1.

2.4 Generic Robotic Controllers

In this section we discuss the concept for generic controllers and then later on describe

the Universal Robotic Body Interface (URBI).

The area of generic robotic controllers is considered a relatively new field in robotics.

For years robotics scientists have depended on control architectures very specific to the

type of robot that they were doing research on. However maintaining different control

architectures for unique robots became an extremely challenging task. Therefore hav-

ing one control architecture for a multitude of different robots became an attractive

area of research.

When we think about a generic controller we think about controllers that are ca-

pable of controlling any type of robot, or one that would provide an interface that

would be able to easily program control in these robots. One such robotic generic

controller is the Universal Robotic Body Interface (URBI) [7], the brain child of Dr.

Jean-Christophe Baille. URBI provides us with the functionality and the interface to

help achieve the main objectives of this project.

2.4.1 URBI

URBI is a piece of ongoing research which attempts to make a standard for controlling

robots of any type. The number of robots (be they for entertainment or commercial

purposes) that are developed each month is rising. The control architectures for such

robots are unique and complex. For a robotics scientists it is hard trying to keep up

with such developments. URBI is trying to address this problem.

URBI was developed with simplicity in mind which addresses the complexity prob-

lem faced by other control architectures. Compared to other generic controllers such as

Tekkotsu [33] and Player/Stage [34] [7] raise the argument that URBI is a lot easier

to use. This is an attractive quality to URBI as this would help decrease development

time in robotic programming and control.

1Information about the world is sent by the robot for this project.

Chapter 2. Background 10

For this project URBI provides us with the three main things that are crucial and

these are:

1. A scripting language for programming robotic control.

2. A TCP/IP client/server control architecture so we can communicate actions to

our robot via some medium that supports TCP/IP.

3. An URBI library called libUrbi so we can extend the capabilities of our robot.

URBI also provides libraries collectively called “libUrbi” for different languages

such as Java, Matlab and C++. Here Java is used as the main programming language

to extend the robots capabilities. This is chosen because the I-X architecture is also

written in Java2, therefore this eases the problem of having to switch between different

languages.

URBI is also based on a client/server side type architecture. The server side handles

the low level control of the robot such as the robots joints and sensors while the client

side is used to control the robot from a higher-level, that is, the sending of higher-level

actions such as a walk method etc. “Devices” are essentially what make up the robot

[7]. These devices in terms of URBI is anything that can be controlled, such as the

robot’s motors and sensors. At a higher-level we can control these devices by using the

URBI scripting language that URBI provides. The client/server architecture allows for

communication of commands in two ways:

1. The server can be accessed remotely for commands to be sent on port 54000.

2. The server can be activated on the robot thereby allowing an IPC style of com-

munication between the server and the client.

This form of remote-operation is advantageous to us which is the reason why URBI

is critical to the project. It provides a communication channel to the robot through

a medium which is already available to us. With other generic controllers such as

Tekkotsu [33] it is more complex to implement this form of communication.

So far, URBI has been tested on fairly small robots such as the Sony AIBO ERS-7

[4], HRP-2 Humanoid [20] and also in game controllers. URBI has not been imple-

mented in any industrial scale robots. This may be due to the fact that these robots cost

2The current version of the Java libUrbi is 0.9.1 which has not yet caught up with the functionality
of its C++ counterpart (1.0 beta). However, this version of the Java libUrbi still possesses the main
functionality that would help us achieve our objectives.

Chapter 2. Background 11

millions of dollars to run, and since URBI is still relatively new, it still has a long way

to go before it can be operated on this level where reliability, efficiency and safety is

of major concern.

We now give a brief overview of the general URBI/Client server architecture and

“URBI Tags”, which, when used together provide the foundations of the robot con-

troller that will be described in the next chapter.

2.4.2 URBI Server/Client Architecture and URBI Tags

Figure 2.2: The URBI Client/Server Architecture

As you can see from figure 2.2 an URBI server is situated on the robot itself. The

URBI server is in charge of all the sensors and motors which have been translated into

the form of URBI devices. Due to the client/server architecture it is possible for a

client to log onto the URBI server by specifying an IP address and the port number of

the URBI server. Upon connecting to an URBI server it then becomes possible to send

to the robot URBI commands.

There are different ways of structuring an action that is to be sent by the client.

URBI provides the option of tagging URBI commands. An URBI tag is a user-defined

word which is attached to an URBI action or a set of actions that are to be monitored

Chapter 2. Background 12

by the URBI server. When a user sends an untagged URBI action to the server, that

action is executed by the server but the server does not respond to the user with the

result of that action, i.e. whether it started or finished. With tagging it is possible to

receive such information. Tagging also comes with parameters that allow the client to

get different forms of reports. These options are:

• begin: The server alerts the client that the tagged commands have started.

• report: The server alerts the client that the tagged commands have not only

started but also when they finish.

• end: The server alerts the client that the tagged commands have finished.

The structure of a tag follows the form:

<URBI TAG>+<Reporting Options>:[URBI_Commands]

Figure 2.3: Using the Listener with URBI Tags. The dotted lines shows and indirect

relationship between the tag and a registered URBI listener. The solid line indicates

that the Listener is part of the URBI Client while the arrows represent the flow of data

between the client and the server.

URBI tags are important because they provide us with a way of using event-style

programming. Depending on the tag and the type of tagging option that we choose,

when we send tagged actions it is possible for the client to then see the result of that

tagged action. This concept is expanded further by doing something about tags that

Chapter 2. Background 13

are reported back to the client. URBI provides a package “libUrbi” which essentially

provides the interface for creating listeners for a tag. A listener in this sense is a type

of interface which looks out for certain tags that appear on the client. Within these

listeners we can embed our own code which can react appropriately when encountering

a particular tag. Figure 2.3 shows this use of tags.

2.5 Robotic Simulators and WEBOTS

In this section we discuss robotic simulators in general and discuss why these robotic

simulators came about. We discuss the WEBOTS robotic simulator environment espe-

cially why it was used for this project. We also highlight the advantages and disadvan-

tages to using WEBOTS as a robotic simulator.

Robotic simulators are used by robotics scientist to either test a robot in an en-

vironment which is not readily available or to test some important component of a

robot whose physical parts are hard or expensive to develop. Therefore, simulators

are a good research tool for trying out different things without using up the physical

resources of the real world. Before robotic simulators robotics scientists would have

spent long hours trying to test an important component of a system and or recording

the results of how that component acted in a real environment3. Not only would they

want to test the components themselves but also the intelligent controllers that oper-

ated these components. To fix the problem of wasting development time and money

they started to develop simulators for testing out virtual components which mimicked

the functionality of the real robots and ran their experiments in these virtual worlds.

However, it is important to state that simulations can never replace the real testing and

only gave an approximate level of performance when testing out these robots.

The first robotic simulators back in the early 1980s had the look and feel of a two-

dimensional world. With the advent of better graphics and faster computers during

the 1990s up until the 21st century, robotics scientists took the opportunity to expand

their simplistic two-dimensional world and made it into a full blown three-dimensional

world equipped with better physics4. This gave scientists the opportunity to develop

robotic simulators which were crisp and clear in graphics and gave the user a more

realistic experience when working with these virtual worlds. Some simulators even

3Not to mention actually getting the materials to make the components and then adding them to the
robot.

4The extra dimension gave the scientists the opportunity to expand the physical environments and
hence the physics of that environment.

Chapter 2. Background 14

have the important task of aiding before and after medical surgery such as [19] and

[10].

2.5.1 WEBOTS

WEBOTS is the result of an ambitious project by Cyberbotics Ltd. At first their goal

was to expand the Kephera Simulation environment [22] but then they came to realise

that the architecture that they were using was almost good enough to be expand past

their original objectives and designed WEBOTS to provide functionality for building

and controlling components and even for designing environments for the robot.

With development time in mind the scientists at Cyberbotics also made it easy for

transporting code from the virtual robot to the real robot5. When developing environ-

ments provided is a Virtual Reality Modelling Language (VRML 2.0) that comes with

the package. This is a useful feature as one can use any other three-dimensional mod-

elling tool and export VRML component to the WEBOTS environment. This gives

one the ability to design complex environments in other programs and exporting them

into WEBOTS.

The WEBOTS simulation environment is used in this project primarily because this

is the only robotic simulation environment that access was provided to. After some

considerable use of the program the only disadvantage that was found in WEBOTS

was that it was a bit buggy and even hindered the performance of the robots as well.

However the advantage to this system was that it was fairly easy to manipulate (for

example the ‘environment’) making changes on the fly.

2.6 Sony AIBO ERS-7M3

In this section we introduce the Sony AIBO ERS-7M3 (as seen in figure 2.4, the robot

that was to be used for this project. We give a technical specification of the AIBO robot

and what features URBI provides for the AIBO.

The Sony AIBO ERS-7M3 is an entertainment pet-style robot which is part of

a generation of robots created by Sony whose robotic origins started in the late 1990s

[14]. The reason for creating these robots was basically to explore a new form of robot.

Robots until then were primarily for conventional purposes and had to be reliable with

zero tolerance for error. These entertainment style robots did not have to have zero-

5This naturally would decrease the development time in production.

Chapter 2. Background 15

Figure 2.4: AIBO ERS-7M3 (Picture from [14])

tolerance and did not need to be efficient 100% of the time, instead, they needed to

display human-like action, so mistakes by the robot were allowed to happen . However,

this does not mean that the AIBO lacks sophistication, as a matter of fact the AIBO

robot is at that level which allows it to be as human-like as possible, which makes it a

very complicated system.

The AIBO with its special Sony software on-board is capable of:

• Recognising Faces

• Listening for and understanding certain pre-built commands

• Learning new commands.

• Performing complex movements such as dancing

• Evolving into “mature” stages depending on the level of interactivity that hu-

mans have with the AIBO.

• Recognising its “toys” such as its bone and its pink ball.

This list is nowhere near exhaustive.

2.6.1 AIBO in WEBOTS

A picture of the AIBO in WEBOTS is given in fig 2.5.

There were a couple of difference between the AIBO in the real world and the

AIBO in the WEBOTS simulation environment. The AIBO’s battery power in the real

world depleted after extensive use of the robot. In the simulation world this was not

Chapter 2. Background 16

Figure 2.5: AIBO ERS-7M3

Chapter 2. Background 17

much of a problem as the battery power was always 100 %. The other difference is

due to the fact that the AIBO robot in the real world used WIFI communication while

the AIBO simulator was on the same localhost and was able to receive commands.

However, these were very small differences and would not hinder the development

aspect of the project.

2.6.2 AIBO and URBI

As previously discussed in subsection 2.4.1 URBI was implemented for the AIBO.

With URBI as its robotic controller the AIBO lacks the autonomous intelligence and

control sophistication provided by the on-board Sony program. The AIBO is now a

drone which cannot really do anything complex besides basic movement as provided

by the URBI system. This therefore limits the AIBO’s capabilities. The AIBO can no

longer use its sophisticated face recognition and it cannot hear and recognise voices.

URBI AIBO only has the ability to recognise pink objects, and perform basic move-

ment! However with libUrbi 0.9.1 and the URBI specification language it is possible

to give the robot basic perceptions, such as the ability to recognise other objects.

URBI also provides a walk device which handles the movement for the AIBO. The

AIBO, when given certain URBI commands, can therefore move left, right, and walk

forwards or backwards. It is also possible to manipulate other joint devices through

the URBI scripting language such as getting a picture from the camera6.

2.7 Chapter Summary

This chapter looked at the HTN Planning Architecture and its involvement in other

systems. We also looked at the different important components of the project such as

URBI, I-X and WEBOTS and discussed its strengths and its weaknesses. The next

chapter focuses on the design and implementation of the project including more in

depth detail on how the previously mentioned topics came together.

6Full colour pictures.

Chapter 3

Design and Implementation

The motivation behind the design and implementation was to develop a working model

of a generic high-level controller which provides generic HTN planning capability.

This was carried out based on an understanding of the I-X architecture, with its under-

lying <I-N-C-A> ontology and the URBI framework, as was described in chapter 2.

What will follow in this chapter is a description of the major design and implementa-

tion decisions that took place throughout the design and implementation phase.

In section 3.1 we introduce the design of the overall system and discuss in brief the

major components and the communication between them. In section 3.2 we discuss

the process of modelling the predicates, primitive actions and higher-level actions. In

section 3.3 we discuss the job of our activity handler. In section 3.4 we go through

in detail the design of the generic controller and its vital functions. In section 3.5

we discuss the simulation environment used for testing the planning capabilities of our

system executed by our robot. And lastly in section 3.6 we discuss in detail the sensing

capabilities of the robot within its environment and the methods we used to enhance

the robot’s capabilities. As a result of this work we will have the working model of

a generic high-level controller that allows us to conduct our experiments and evaluate

our hypothesis.

18

Chapter 3. Design and Implementation 19

3.1 The Project Architecture

We describe in brief the overall view of the design architecture, discussing in summary

its major components and their relationship with each other.

Figure 3.1: The Architectural Design of the project.

From figure 3.1 the green boxes signify the components that were created for this

project while the grey boxes represent those components that were already developed.

The arrows represent the flow of data between the components and they are of two

types. For each activity that is sent from the panel to the controller the dotted line

arrows represent one and only one occurrence of data flow between the components

while the solid line has more than one occurrence in the direction of the arrow between

components.

It is important to have an understanding of this architecture as the different compo-

nent parts are discussed in detail throughout the rest of this chapter. This architecture

is shown in figure 3.1. Here is a brief overview of these components.

We use the I-X Process Panel as an agent which essentially keeps information about

the world in the form of a set of world-state constraints. We set an activity by adding

Chapter 3. Design and Implementation 20

it as a node onto the I-X Process Panel. The planner (which continually monitors

changes to the panel) compares the activity against the available refinements defined

in the domain. If a matching refinement is found, and its conditions are met by the

current world state constraints, then an appropriate activity handler is made available

to the user. If the refinement corresponds to a high-level action (see section 3.2.4) then

the activity is handled by decomposition into lower level activities (which are then

added to the panel). If the refinement corresponds to a primitive action (see section

3.2.2), then the activity is handled by sending it to the “Command Interpretor”. The

“Command Interpretor” decodes the I-X activity into an URBI formatted command

which is then sent to the “Command Monitor”. The “Command Monitor” will set the

status of the corresponding I-X activity to “executing” and then send the command

to the URBI server. The URBI server will then execute that command and respond

to the “Command Monitor” that it has finished executing. The “Command Monitor”

will then update the status of that I-X command reporting the result of the execution
1. Depending on the command that is being sent, the URBI server will invoke certain

support functions that also may change or update the world constraints within the I-X

Process Panel.

3.2 Planning Domain

This section details the planning domain aspect of our project and in particular, the

constraint types used to describe our world states, and the refinements of our high-

level actions.

Definitions for the terms used here are:

• Constraint Type: A predicate which describes the relationship between its arguments[16].

• Primitive Actions: Actions which need not be decomposed into lower sets of

atomic actions and can be directly performed by the robot.

• High Level Actions (Complex Tasks): Higher-level, more abstract tasks that

must be broken down into a set of primitive or lower-level (complex) actions.

Higher level actions are abstract in the sense that they refer to the overall task, or

some abstract part of it. For example, the complex task “robot-gotoZoneD” (see

1We only test in this case whether the execution of the command was finished and if it has, then that
command execution was a success

Chapter 3. Design and Implementation 21

section 3.2.4) decomposes into first finding a way of getting to Zone D then and

navigating to Zone D.

The planning that has been done throughout the project is relatively simple from

a conceptual point of view but was difficult to implement. It was difficult primarily

due to the fact that our robot’s abilities/interface are limited. For instance there is

no way of getting odometer readings through the URBI interface which would have

helped in calculating the distance travelled by the robot. Another option was the use

of a map model, i.e a topographic map of the area, which would have also needed to

have been designed, but without any way of telling how far the robot travelled, keeping

track of the robot would seem a daunting task and the focus would have shifted away

from the motivation of the project. We wanted to focus primarily on planning and

communicating these plans to the robots, so programming new abilities in the robot

was a secondary concern. When it did come to enhancing the robot’s capability the

focus was more on sensing the environment which is detailed in section 3.6.

3.2.1 Constraint Types

In the I-X formalism, world state constraints take the form ofpredicate-term=value,

for exampleon(block1 block2) = truedescribes the fact that “block1” is on “block2”

is true. Values can either be boolean, longs or symbols. Values that are symbols are

case sensitive, therefore a symbol value such as “Banana” is different from “banana”.

For our purposes, the constraint types that we work with are:

• Posture ?robot2: There are two types of values constituting the range for this

constraint type: 1). standing 2). sitting.

• Obstructed ?robot: This simple predicate is constantly updated by URBI de-

scribing whether the robot has been obstructed by a wall or another object, and

its range is a boolean value. Most of our motion actions have this as their pre-

condition, which indicates that the robot needs open space to navigate.

• Inzone ?robot: This predicate describes which zone the robot is currently in.

Zones are written for example “ZoneA”, “ZoneB” ... up to “ZoneE”. Zones are

described more in detail in section 3.5
2?robot is a variable which can be bound to some value. In this case you would expect a robot name

to be bound to the variable.

Chapter 3. Design and Implementation 22

• Battery ?robot: This predicate describes the battery level of the robot. In our

case the battery level is always 100% in the simulation.

Following an investigation of the capabilities of URBI on AIBO, it became ap-

parent that the robot’s behaviour is governed to a large extent by its current state and

immediate environment. However, it has only a very limited perception of its state and

environment. The representation of this perception is modelled as world-state con-

straints so that our I-X agent will essentially contain some knowledge of the robot’s

world. Essentially the I-X Process Panel would know what are the available actions

to be sent to the robot at that particular time with the help of the planner. For a sim-

ple example let’s look at the case where the robot is standing up and we want it to

sit down. The robot itself does not know that it is standing up but the I-X Process

Panel knows that it is. This is because, on starting the I-X application the predicate

term “Posture Robot13” is set to the value “standing”. This is a constraint at start up

time for the robot: it is assumed that the robot is initially standing. This constraint is

a precondition to an action which makes the robot sit. This sit action would have not

been available if the value of the “Posture Robot1” was set to “sitting”.

For this project the usage of ‘effect’ predicates differs from the way one might

typically use them within I-X. In I-X, if you want to build an action that has an effect

on the world then typically you specify the effect in the I-X description of that action.

Then, whenever you execute that action from the I-X Process Panel the effect of that

action is asserted and seen in the constraints area of the I-X Process Panel. However,

for an action that is to be executed on a robot, it is not always satisfactory to simply

assert the effects of that action; rather, some feedback is required from the robot to

confirm that the action has been successfully completed and to state what its effects

were. For a case such as this we have to program into the robot the ability to tell the

I-X Process Panel that there was an effect of this action. Details of how this is done is

described in section 3.4. A failed action would obviously result in the process panel

not being updated.

3.2.2 Primitive Actions

For us to have basic control over our robot we need to first look at all available primitive

URBI actions. Most of these URBI actions are basic motion commands such as:
3In this case, Robot1 is bounded to the variable ?robot.

Chapter 3. Design and Implementation 23

• robot.turn(seconds)4. This is a function which takes time as an argument, i.e. the

robot turns for that number of seconds, a positive number for clockwise rotation

or a negative number for an anti-clockwise rotation.

• robot.swalk(steps): This is a walk function which takes the number of steps as

its argument i.e., the robot walks forward for that number of steps.

• robot.stand(): Makes the robot stand.

• robot.sit(): Makes the robot sit.

We modelled these actions as possible activity refinements in the I-X formalism.

One example of a primitive URBI action modelled in the I-X formalism is therobot.swalk(steps)

and therobot.stand()functions which are shown figures 3.2 and 3.3 in the I-X LISP

formalism. The majority of our URBI primitive actions are encoded in this way.

(refinement robot-move-by-walking (robot-move ?robot ?steps)

(variables ?robot ?steps)

(constraints

(world-state condition (Posture ?robot) = standing)

(world-state condition (Obstructed ?robot) = false))

(annotations

(comments = "Primitive robot Movement in Steps")))

Figure 3.2: robot.swalk(steps) which was designed in the I-X LISP formalism

As you can see in fig 3.2 the LISP style notation is pretty straightforward. Let us

look at a brief description of the parts that make up this primitive action refinement.

URBI actions in the I-X formalism are the basic components that make up a plan.

3.2.3 I-X Lisp Notation For the Primitive Action Domain

Because of the lack of documentation it was necessary to derive this description from

examples generated using I-X.

From fig 3.2 a description of its parts is described here:

4Another version of this robot.turn(seconds) is robot.sturn(steps) which uses the number of steps
to turn in a clockwise fashion if the number is positive or anti-clockwise if the number is negative.
Since robot.turn(seconds) uses time it has greater resolution than robot.sturn(steps) and therefore is
more precise, which is why it is favoured out of the two.

Chapter 3. Design and Implementation 24

(refinement robot-standup (robot-standup ?robot)

(variables ?robot)

(constraints

(world-state condition (Posture ?robot) = sitting)

(world-state effect (Posture ?robot) = standing))

(annotations

(comments ="Makes the named Robot Stand UP")))

Figure 3.3: robot.stand() which was designed in the I-X LISP formalism

• refinement: One way to look at the refinement is as an option for action, but this

option is available only if certain conditions are met. Every refinement has a

unique name (“robot-move-by-walking” in fig 3.2) and unique pattern (“robot-

move ?robot ?steps” in fig 3.2) which is some activity name followed by any

number of parameters. This pattern is used to match the activities currently

shown on the I-X Process Panel.

• variables: Arguments that follow this keyword are basically the variables that

are used throughout this action. The variables for our primitive action “robot-

move” are?robot and?stepswhere ?robot refers to the name of the robot that

you would like to send this action to and ?steps refer to the number of steps the

robot should take.

• constraints: There are two types of constraints on an action. The first is called

a “world-state condition” and the second is called a “world-state effect”. A

“world-state condition” is a statement that can describe particular attributes about

the world which must be true at the given point that we wish to apply the action
5. If there are one or more of these “world-state conditions” then it is necessary

for the conjunction of all these statements to be true before this action can be

considered. A “world-state effect” is the immediate consequence of an action

which modifies the agent’s6 perspective of the world. The words that follow the

constraints are the propositions as described in section 3.2.1

• annotations: [32] describes annotations as being “additional human-centric in-

formation or design decision rationale to the description of the artefact”; the

5This is the same concept as a “precondition”
6In this case the Agent is represented by the I-X Process Panel.

Chapter 3. Design and Implementation 25

artefact in this case is our primitive action “robot-move”.

Other primitive actions that we have developed in the I-X formalism are:

• (robot-searchZone ?robot ?zone): This action, given appropriate values for ?robot

and ?zone is sent to the URBI interface for that ?robot which searches for the

zone. As of now this primitive action requires no preconditions, but the effect

of this action is asserted by URBI. This action utilises vision programming for

searching for zones. See section 3.6.

• (robot-inzone ?robot ?zone): This primitive action is sent to the URBI interface

to check which zone the robot is currently in, and also requires no precondition.

The effect is asserted by URBI

• (robot-align ?robot): This action aligns the robot and it is also used to reset joint

positions in the robot because during motion it accumulates positioning errors

in its joints. If the total error is able to throw off the walking patterns of the

robot this actually forces a major reset in the joint positions which can throw the

intended direction of the robot way off. The precondition to using this action

requires the posture of the robot to be standing and there are no effects that can

be asserted by this action.

Most of the primitive actions descriptions are in a form which does not correspond

directly to the names of the URBI actions. The advantage of having it this way is that

its in a more human readable form. The disadvantage lies in the fact that we need to

interpret each action that is sent so that URBI essentially understands and executes the

action.

3.2.4 High Level Actions

From the previous sections 3.2.1 and 3.2.2 we use this knowledge to design our higher-

level actions. The way that our higher-level actions are represented in the I-X LISP

formalism is a little different from the way our primitive actions are represented. For

high-level actions there are two more features that we need to add to our action defi-

nition for it to be considered a higher-level task. But first let us look at an example of

our higher-level tasks “robot-gotoZoneD”. See figure 3.4 below.

The two new features are:

Chapter 3. Design and Implementation 26

(refinement robot-gotoZoneD(robot-gotoZoneD ?robot)

(variables ?robot)

(nodes

(1 (robot-turn ?robot -19s))

(2 (robot-align ?robot))

(3 (robot-move ?robot 30))

(4 (robot-turn ?robot 5s))

(5 (robot-align ?robot))

(6 (robot-move ?robot 18))

(7 (robot-turn ?robot 12s))

(8 (robot-align ?robot))

(9 (robot-move ?robot 17))

(10(robot-turn ?robot 15s))

(11(robot-align ?robot))

(12(robot-turn ?robot 2s))

(13(robot-move ?robot 2))

(14(robot-stand ?robot))

(15(robot-inzoneOCR ?robot)))

(orderings

(1 2) (2 3) (3 4) (4 5) (5 6) (6 7)

(7 8) (8 9) (9 10) (11 12)

(12 13) (13 14) (14 15))

(constraints

(world-state condition (Inzone ?robot) = "ZoneA"))

(annotations

(comments ="Robot goes to zone B from Zone A")))

Figure 3.4: Higher Level Task “robot-gotoZoneD” in I-X LISP formalism

Chapter 3. Design and Implementation 27

• nodes: This higher-level task is expanded by the Activity Handler into a set of

actions called nodes. Notice the nodes in figure 3.4 are also numbered, which

play an important role in the orderings.

• orderings: All nodes within a higher-level task can have a full or partial temporal

ordering. Most of our higher-level actions have a temporal ordering just like in

figure 3.4.

Note that many of the node activities in 3.4 have precise numerical parameters

indicating the time and direction a robot turns and the number of steps it takes, etc. It

was necessary to determine these values empirically for the given environments.

There are two sets of high-level actions; those for the “Labelled Zones Environ-

ment” (which will be described in section 3.5.1 and those for the “Coloured Zones

Environment (Which will be described in section 3.5.2). For the OCR environment

our high-level actions are:

• robot-gotoZoneD ?robot: This high-level task decomposes into a subset of ac-

tions which were heuristically found for getting a robot to “Zone D”. The pre-

condition to this action is that the robot should be in “Zone A”.

• robot-exitZoneD ?robot: This high-level task decomposes into a subset of ac-

tions which were heuristically found for getting a robot from “Zone D” to “Zone

A”. The precondition to this action is that the robot should be in “Zone D”

• robot-gotoZoneB ?robot: This design for this action follows the same format for

“robot-gotoZoneD” with special heuristic actions for getting the robot to “Zone

B”. The precondition is that the robot should be in “Zone A”.

• robot-exitZoneB ?robot: Again this action is similar to “robot-exitZoneD” in

terms of how it was designed instead the robot exits “Zone B” to go to “Zone

A”. The precondition to this action is that the robot should be in “Zone B”

There are two main high-level tasks for the “Coloured Zones Environment”. These

are:

• searchForZoneA ?robot: This high-level task decomposes into a subset of ac-

tions which were heuristically found to get the robot to find “Zone A” from any

zone. By “find” we mean to “locate visually”. You can use this high-level task

in any Zone (even in “Zone A”). There are no preconditions to using this action.

Chapter 3. Design and Implementation 28

• gotoZone ?robot ?zone: This high-level task decomposes into a series of primi-

tive actions which instruct the robot to go to the Zone represented by ?zone. The

precondition to using this action is that the robot should be in “Zone A”.

Effects of all of these actions are asserted by the support functions that we have

created. See section 3.4.3 for more details.

3.3 Activity Handler

This section describes the purpose of our activity handler and why it is such a critical

component to this system. Explanation is aided via a diagram of an example activity

being handled.

Figure 3.5: Figure shows a snapshot of an action being handled by the selected Activity

Handler “URBI-Expand” (in purple), in the Activity Area of the I-X Process Panel. The

dotted arrow shows the relationship that that activity is carried out by the handler.

The name of our activity handler is ”URBI-Expand” which primarily has two func-

tions:

• When this activity handler comes into contact with a higher-level action, our

HTN planner first checks to see if there are any available refinements for the

user to use. The user will then select the refinement and that higher-level activity

will then be decomposed into a lower set of primitive or higher-level actions. In

figure 3.5 the refinement available for the higher-level action “robot-gotoZone”

is “searchForZoneA”.

Chapter 3. Design and Implementation 29

• When this activity handler comes into contact with a primitive action then that

action’s “Description” is dispatched to the “Command Interpreter” of the “Robot

Controller”.

Because of the plug-in capabilities of I-X and the activity handler it would have

been difficult to send actions to the robot controller otherwise.

3.4 The Robot Controller

In this section we discuss one of the key aspects of the project, the robot controller and

its primary components.

The Robot Controller is made up of the following:

1. Command Interpreter

2. Command Monitor

3. Support Functions

3.4.1 Command Interpretor

The main job of the command interpretor is to turn the I-X action description into

its respective URBI command with parameters. However, when an URBI command

is selected an URBI Tag (see section 2.4.2) is created in order for keeping track of

that command. The URBI command and the URBI tag is then sent to the “Command

Monitor”.7 All URBI tags have the “+end” option attached to them (see section 2.4.2

for more details on tagging options).

3.4.2 Command Monitor

The command monitor is responsible for a number of things. These are:

1. To deploy URBI commands to the URBI Server.

2. To use the URBI Tags created by the command interpretor and monitor the exe-

cution status (if that command has finished or not) of the URBI commands.

7The naming conventions for the URBI Tag was so that they almost matched the name of the I-X
action. For example if the primitive action “robot-move Robot1 23” was sent to the command monitor
then the URBI tag representative for that action would be “robotmove”.

Chapter 3. Design and Implementation 30

3. To update the status of that action on the I-X Process Panel i.e. the action is

painted green if that action is currently being executed and blue if that action has

finished.

4. Preparing the Support Functions.

3.4.3 Support Functions

The support functions are special functions which were created in order to enhance

the robot’s ability to perceive certain things about the environment and about the robot

itself. These functions also have the added responsibility of relaying this information

to the I-X Process Panel in the form of “world-state constraints” (see figure 3.1). They

are also represented in the I-X formalism as primitive actions so when sent to the robot

controller can carry out its primary function. Below is a list of the support functions

that were created:

• ColourZone: This function when activated searches for a given zone by using

colour recognition and is activated by the URBI tag “zone”.

• InOCRZone: This function like the “ColourZone” uses OCR recognition to iden-

tify the current zone that the robot is in. It is activated by the URBI tag “OCR”;

• InColourZone: This function when activated checks which zone the robot is in

by using colour recognition. This class is activated by the URBI tag “inzone”.

• RobotBatteryCmd: This function is responsible for constantly updating the bat-

tery information on the I-X Process Panel. It is activated by the URBI tag “bat-

tery”.

• RobotObstructionCmd: This function is responsible for constantly checking to

see if the Robot is obstructed and updates the I-X Process Panel accordingly. It

is activated by the URBI tag “obstruction”.

• RobotNoObstructionCmd: Like the “RobotObstructionCmd” class this function

constantly checks to see if the Robot is not obstructed. It is activated by the

URBI tag “noObstruction”.

Chapter 3. Design and Implementation 31

3.5 The Test Environment

In order to test our system a test environment was needed. It was decided that we

model the CISA/AIAI (Centre for Intelligent Systems and their Applications/Artificial

Intelligent and Applications Institute) room layout as the test bed because it is an envi-

ronment which includes interesting features such as a wide open corridor and adjacent

offices. The environment offers us challenging issues in navigating to other rooms

because these rooms may not be visible from all points.

A relaxed assumption was made about the size of the rooms, corridor spacings and

open areas. The model was first designed in Blender 3D [2], a free open source 3D

development program. The VRML code from Blender was then ported into the WE-

BOTS simulation environment and was used as an overlay to build walls and a ground

floor. The final model is shown in figure 3.6. However, from the many discussions on

the limited basic perceptions that our robot possessed it was felt that this final model

would have been a great challenge for the robot to navigate with these perceptive abil-

ities as was discussed in section 2.6. Therefore two simplified modifications to the

environment were developed and was deemed suitable for evaluation purposes. The

environments that were created are split into zones. A zone can be classified as an

open space or a room. All zones are shown and labelled in figure 3.7 and figure 3.8.

Figure 3.6: The Model of the Test Environment in WEBOTS.

Chapter 3. Design and Implementation 32

3.5.1 Labelled Zones Environment

To address the problem of our robot’s limited navigation capabilities we needed an

environment that would aid its motion to the different zones.

The first environment is a simplified version of the overall area, where a number of

different rooms were blocked. In this environment signs with a unique letter on each

one indicate different zones. These signs were also strategically placed in different

rooms. This placement was to ensure that upon identifying a sign the robot will not

see other signs in its view and it will essentially know where it is and which way it

was facing, which gave us the opportunity to design fairly simple heuristic refinements

(such as that shown in figure 3.4)for getting from one zone to the next.

Figure 3.7: The Modified Environment With Signs. There are five zones that are acces-

sible to the robot from Zone A - Zone E.

Details of using OCR in this way are given in section 3.6.1.

3.5.2 Coloured Zones Environment

For this environment the same rooms were blocked off as in the “Labelled Zones”

environment. However, the difference here is that each zone is colour coded. See

figure 3.8.

Chapter 3. Design and Implementation 33

Figure 3.8: The Multi-Coloured world. Each zone stands for a colour. Zone A for Green,

Zone B for Red, Zone C for Yellow, Zone D for Blue and Zone E for Dark Khaki.

Chapter 3. Design and Implementation 34

In order to navigate within this environment the robot would need to know which

zone it was currently located. This was done with the aid of colour recognition which

is detailed in section 3.6.

Although these two environments are simplified versions of the real environment,

the modifications did not stray too far from the main idea which was to keep the envi-

ronment challenging enough to locate and navigate to different zones. Details of how

well our planning representation was suited for the environment and the performance

of the robot dealing with such a representation is discussed in detail in Chapter 4.

3.6 Sensing the Environment

This section describes the two different ways that the robot uses to sense its environ-

ment. We first describe the colour recognition techniques that were employed, and then

go on to discuss the Optical Character Recognition (OCR) technique that was used as

another form of “Zone” identification. Both these techniques work on the images that

are received by the camera. The camera has a resolution of 208x160 (as default). Be-

cause the AIBO robot receives relatively low resolution images this has the potential

advantage of faster visual processing.

3.6.1 Using Optical Character Recognition (OCR)

We programmed within the robot the ability to read simple signs. This was done using

OCR recognition as provided by an external Java package called the Asprise Java SDK

Package8[1]. Precise details of how the Asprise package provides the functionality for

recognising characters is out of the scope of this project,however, we can discuss from

a higher-level of abstraction the process of getting OCR results.

Applying the OCR recognition was quite simple. All that was needed to be supplied

was the robot’s current image, which possibly contained the zone signs (and, hence, the

letter displayed on these) and the Asprise recognition function handled the rest. After

this, the final task was to verify if the text recognised (if any) matched the current target

zone letter. Here is the algorithm doing this:

8Normally OCR recognition packages are extremely expensive such as the Tasman SDK package
(http://www.tasman.co.uk) which costs about 3000 pounds just for a user license. The Asprise Java
package came with a demo license which was free to use. However included in this demo version, extra
output was embedded when getting results from the recognition process. I therefore had to find a way
of filtering the extra output.

Chapter 3. Design and Implementation 35

Let Image = From Camera

Let TextResult = Get the result of Image when passed to

Asprise Text Recognition Function

For The Number of Zones

{

IF (TextResult == String Representation of Zone)

Exit recognition process and return result

}

Exit Recognition Process and return failure.

There were limitations to this approach. For instance the robot needs to be in line

with the sign to identify the text correctly. This affected the types of refinements that

were developed from moving from one zone to the other using this approach. An

analysis of this approach is detailed in chapter 4 section 4.1.1.

3.6.2 Using Colour Identification

For colour identification two methods were employed. One of those methods uses

the Euclidean distance between the reference colour that we are searching for and the

colour the camera is receiving. Each colour represented a zone which was talked about

in section 3.5. The algorithm for identifying a Colour:

Image1 = Get Image from Camera

Let count_pixel_accepted = 0

For each pixel in Image1

{

Let D = Euclidean distance between the

pixel and the reference colour

if D < Pixel_Accepted_Distance_Threshold

{

Chapter 3. Design and Implementation 36

let count_pixel_accepted = count_pixel_accepted + 1

}

if count_accepted > Zone_Threshold

{

then zone found

} else {

zone not found

}

}

Although the algorithm worked it was hard to choose a suitable threshold for a

pixel to be accepted in the colour range that we were looking for. However, we looked

for the simpler solution which was heuristically coding the ranges for each Red Green

Blue Channels.

Image1 = Get Image From Camera

Let Zone = Zone to Search For

Let count_pixel_accepted = 0

For Each pixel in Image1

{

if (pixel In Zone ’Red’ Channel Range

AND pixel in Zone ’Green’ Channel Range

AND pixel in Zone ‘Blue’ Channel Range)

{

count_pixel_accepted = count_pixel_accepted + 1

}

if count_accepted > Zone_Threshold

{

then zone found

} else {

zone not found

}

Chapter 3. Design and Implementation 37

}

This was most effective for the number of colours that we wanted to identify. The

next step was to find a representation for these actions in the planning domain.

3.7 Chapter Summary

In this chapter we have described at the design and implementation aspect of the

project. We first described in summary the architecture that was developed to pro-

vide a base for the reader to logically flow through the rest of the chapter. We then

discussed the design of our planning domain and provided answers to the following

questions.

1. What were the predicates and how were they designed?

2. What were the primitive actions that were developed and in what notation did

they take?

3. What were the high-level actions that were built up as a result from our primitive

actions?

We then focused on the robot controller by first describing the way URBI clients

tag their messages and how the URBI server handles these tagged messages. From

there we looked at utilising this utility to update the I-X Process Panel’s knowledge of

the robot’s world and also the status of sent actions. As a result of this work we now

have a working model of a generic high-level controller that allows us to conduct our

experiments and evaluate our hypothesis.

In the next chapter we describe the experimental procedures for evaluating our

system and give a detailed analysis of the results of our experiments. We critically

review the architecture that was designed and also comment on any improvements that

we may need to make to the planning model and/or the robot controller.

Chapter 4

Evaluation & Analysis

Our primary goal was to provide evidence in support of our hypothesis which was that

“I-X and URBI together can provide a generic controller for Robots”. In this chapter

we discuss the experiments that may provide evidence. The nature of this hypothe-

sis, and the complexity of the system architecture and robot environment, meant that

defining the best way to evaluate the system proved to be a very difficult task. Our ex-

perimental approach focuses on having our robot perform the higher-level actions that

were discussed in subsection 3.2.4. Since our higher-level actions primarily focused

on navigation, one option was to place the robot in situations where it depended on

the planning capability of the I-X HTN planner to provide a plan for getting the robot

from one zone to the next. While these experiments were unlikely to provide conclu-

sive results, it was hoped that an analysis of failed experiments, and of the system as

a whole, would provide insights into the adequacy of the developed architecture. Un-

fortunately we were not able to test the implemented architecture using the real AIBO

robot because this would also have required altering the real environment to match the

simulated environments (see fig 3.8); instead, the experiments were performed in the

WEBOTS simulation environment.

For the evaluation, two sets of experiments were performed. For each set of exper-

iments a description of the experiment is given along with the results of these and at

setup an analysis of the results. We then continue to give a general analysis of I-X and

URBI architecture and the extent to which it supports our hypothesis.

38

Chapter 4. Evaluation & Analysis 39

4.1 Labelled Zones Experiment

We first discuss the experimental setup and give the results. An analysis of the results

that were obtained from the experiments is then given.

In this experiment we test the high-level navigation actions for the “Labelled Zones”

environment. The environment for this experiment has only three zones which are

Zone A, Zone Band Zone Dand the four high-level actions that have been imple-

mented arerobot-gotoZoneB,robot-exitZoneB,robot-gotoZoneDandrobot-exitZoneD.

The precondition for the robot to move to another zone is that it must be inZone A

(which is also the initial state of the robot). For each experiment we choose a maxi-

mum number of four high-level actions which are decomposed by the I-X HTN planner

and sent to the robot. This number was chosen to limit the run time of the experiments

since each action took eight to ten minutes to complete. Successful runs are based

on the fact that the robot can perform all actions and identify the zones which it is in

correctly. Overall failure will be the result of

1. Failing to identify the zone that it is currently in.

2. Failing to complete a goal of an action i.e. the Robot did not reach its intended

target even though all the actions were completed.

Four runs of this experiment were completed and their respective results are recorded

in table 4.1.

Run # Actions to Complete Completed Actions Result

1
robot-gotoZoneD, robot-exitZoneD, robot-gotoZoneD, robot-exitZoneD, Success

robot-gotoZoneB, robot-exitZoneB robot-gotoZoneB, robot-exitZoneB,

2
robot-gotoZoneB, robot-exitZoneB, robot-gotoZoneB, robot-exitZoneB, Success

robot-gotoZoneB, robot-exitZoneB robot-gotoZoneB, robot-exitZoneB,

3
robot-gotoZoneD, robot-exitZoneD, robot-gotoZoneD, robot-exitZoneD, Fail

robot-gotoZoneD, robot-exitZoneD robot-gotoZoneD

4
robot-gotoZoneB, robot-exitZoneB, robot-gotoZoneB, robot-exitZoneB, Success

robot-gotoZoneD robot-gotoZoneD

Table 4.1: Table shows the results from 4 experimental test runs.

Chapter 4. Evaluation & Analysis 40

4.1.1 Analysis of the Labelled Zone Experiment Results

From the results from table 4.1 there was only one test run that failed. This was because

the robot could not identify the letter on the sign using our support functions. This in

turn was because, after performing the necessary actions in getting to “Zone D” the

robot was placed in a slightly unusual position where it could not read the sign due

to the accumulation of the errors in the joints as a result of a bad heuristic in our

refinement for travelling to “Zone D”.

Note that many of the node activities pertaining to this environment have precise

numerical parameters indicating the time and direction a robot turns and the number of

steps (see figure 3.4 for example) it takes, etc. Because of this and the time it actually

took to run the experiments a more generalised environment and more generalised

actions needed to be defined and experimented on.

4.2 Coloured Zones Experiment

We first discuss the experimental procedures of this set of experiments and then give

the achieved results. An analysis is then given of these results.

In this experiment the immediate goal was to record the success and failure of

the robot navigating to different random zones using the higher-level tasksrobot-

searchForZoneAandrobot-gotoZone1.

Using the grid map in figure 4.1 a number was randomly generated between 1-58

in order to determine an approximate starting position for our robot. Another number

was picked between 1-5 which represented the end goal zone that the robot was going

to navigate to, with 1 = Zone A, 2 = Zone B ... etc. If the robot’s starting square was

located in the target zone then another target zone was selected.

The experiment was run fifteen times2. The starting position and the intended target

zone was recorded for each experiment run. The actions that the HTN planner selected

for deciding how to get to a zone were also recorded. A run was successful if the robot

reached its intended target, unsuccessful otherwise. Table 4.2 summarises the results

obtained from doing a test run of 15 runs.

1refer to section 3.2.4 for a review of these two high-level actions.
2The same explanation applies for this experiment as it did for Labelled Zones Experiment

Chapter 4. Evaluation & Analysis 41

Figure 4.1: The numbered grid. For each test run a number is chosen at random

between 1-58. The robot is then placed in the approximate position of that square.

4.2.1 Analysis of Coloured Zone Experiment Results

From the results from table 4.2 it can be seen that most of the test runs resulted in suc-

cess. For the first two runs, failure was due to the fact that the AIBO simply could not

visually locate3 the target zones and so the support functions did not assert this fact on

the I-X Process Panel. Thus, no further actions were applicable and planning failed.

For test runs #5, #12 and #15 the robot was placed in a position where it identified the

target zone but failed to reach it. This was a result of a poor heuristic in our “Colour-

Zone” support function (See section 3.4.3) which calculated the distance in terms of

steps depending on how much of the zone colour that the robot identified. For run #11

the robot was placed very close to the wall but could still identify the connecting “Zone

A”. However, when approaching Zone A the wall disturbed the direction heading of the

robot and so it never entered “Zone A” and could not reach its intended target “Zone

3The identification is handled by the “ColourZone” see section 3.4.3.

Chapter 4. Evaluation & Analysis 42

Run # Position on Grid In Zone Target Zone Result

1 5 Zone B Zone D failure

2 30 Zone A Zone B failure

3 16 Zone A Zone B success

4 34 Zone A Zone E success

5 49 Zone E Zone B failure

6 38 Zone D Zone C success

7 43 Zone E Zone D success

8 43 Zone E Zone B success

9 17 Zone B Zone D success

10 20 Zone C Zone A success

11 45 Zone E Zone D failure

12 5 Zone B Zone E failure

13 18 Zone B Zone C success

14 25 Zone D Zone B failure

15 35 Zone A Zone E success

Table 4.2: Table shows the results of the 15 experiments for navigating in the colour

zone.

D”.

In conclusion of these results, success was possible only if the robot was placed

in a position where it was able to identify the connecting Zone A and also had a clear

view of other zones from Zone A. In a real world scenario this idea of a coloured

world would be more difficult in identifying colours since the lighting conditions may

change. Since our colour environment is one that has no lighting fluctuations our robot

was able to identify all the colours all the time.

Both types of experiments provide us with evidence that I-X and URBI together

are capable of providing robot control at a higher-level. The question of whether these

experiments provided any evidence on the genericity of the system is answered in

section 4.3.3.

Chapter 4. Evaluation & Analysis 43

4.3 General Discussion

In this section we take a step back to look at the influence of the architectural design

on the results from our experiments. We first discuss the relevance of I-X as a frame-

work for this application, then we focus on URBI as a generic robot controller. We

then discuss how well the two work together and proceed to answer the question of

whether this combination of I-X and URBI has the potential to encompass the generic

environment and robots.

4.3.1 I-X as a Robot Planner

Some of the flaws within I-X that have been noted in the course of this work:

• The inability for the I-X planner to process I-X primitive or complex actions’

effects because the support functions do this.

• I-X does not provide any utility for recovery from plan failure

• I-X does not do conditional planning; For example If the robot fails to reach its

intended target, have the robot search again.

• I-X definition of a primitive action is epistemologically inadequate.

The I-X framework is used primarily as a planning tool to able to come up with

complete plans, but at the moment it provides no support for plan execution and mon-

itoring. The true power of I-X lies in its planning capability in conjunction with the

< I −N−C−A > ontology. If the planner does not know all of the true world-state

conditions and effects required by a primitive or high-level action then the planner will

not be able to plan effectively. For our project (to recap) the refinements available to

the planner model only partially the conditions and especially the effects of the corre-

sponding actions. Our support functions assert most of the effects of their counterpart

I-X actions which may be necessary for subsequent actions. This is necessary if the

refinements are actually going to be enacted, since only when the robot has completed

the action can the effects be said to be true, but means they are inadequate for plan-

ning purposes! Therefore I-X is perhaps not capable of being fully integrated into any

robot controller. Other architectures such as ATLANTIS and ALFA [15] are integrated

within their robots, therefore they can fully observe the effects of all actions(high-level

or primitive) and are able to plan efficiently.

Chapter 4. Evaluation & Analysis 44

The I-X architecture provides no utility for plan failure. Once a plan is prepared

by the I-X Planner then that plan is “static” and will not change regardless of what

goes on in the environment. If I-X was to incorporate conditional planning within the

I-X Planner then this would increase our chances of fulfilling all high-level plans and

possibly improve the success rate of our experiments in finding their intended target

zones.

I-X’s definition of a primitive action is epistemologically inadequate. If we look

back at our discussion of the I-X LISP notation (see section 3.2.3) where our primitive

actions are defined to be refinements but with no nodes or orderings of those nodes,

intuitively we know that a primitive action cannot be a refinement. Nevertheless, this

was felt to be necessary to provide an activity ‘placeholder’ in plans and corresponding

to the actual URBI primitive(s), which could not be represented in the refinements but

only in the code invoked when the activity is handled.

4.3.2 URBI as a Generic Robot Controller

Some of the noted flaws within URBI are:

• Reduced Functionality

• Non-generic parameters

• Potential Communication Problems

Robots normally have the ability to perform a multitude of actions. As we have

discussed before in section 2.6 the AIBO with its built-in Sony operating system allows

for the robot to perform quite sophisticated actions. We noted that the URBI interface

provides access to only a subset of this functionality. For instance, instead of being

able to automatically identify the shape and colour of its toys (Pink Bone and Pink

Ball) the AIBO with URBI can only identify the colour pink.

Coming back to the actions that URBI provides us, some of those actions are non-

generic. For instance, the URBI action “robot.swalk” uses the number of steps as an

argument. What would happen if this was applied to a wheeled robot or a flying robot?

This function is specific to legged-robots. Other functions such as “robot.turn” uses

time as its argument which is quite ambiguous if you were to apply the same function

to a different robot. A better argument would be to turn in degrees which would be the

same regardless of what type of robot it is.

Chapter 4. Evaluation & Analysis 45

In section 3.4.3 we discussed the communication of commands between the “Com-

mand Monitor” and the URBI Server. The flaw lies within the communication. A

successful transaction of commands between these two components solely depends

on the nature of communication. Because the robot, its simulation environment, our

robot controller and I-X reside on the same computer the communication link was

efficient and reliable. If these actions were to be sent through a different communica-

tion medium such as a “Wireless Fidelity” (WIFI) connection which is part of the real

AIBO then the probability of the robot not being able to perform actions sent remotely

by some URBI client will be considerably higher since for instance:

1. Our Robot is in constant motion and so signal strength from our wireless server

will vary.

2. The WIFI connection may not be as reliable the moment we would like to con-

nect to the URBI server.

4.3.3 I-X and URBI: A Generic High-Level Robotic Controller?

Let us say for instance that we do some manipulation on our environment to help an-

swer the question. For our “Labelled Zones” environment we build bigger rooms and

we add more signs. With our current architecture configuration the refinements that we

have designed for navigating in this environment would fail and so will the previous

experiments that we have done. This is because when designing our refinements we

took the previous environment configuration into consideration and became very spe-

cific as to the number of steps it should take when getting from one zone to another.

Scalability is a non-generic issue in the sense that when the scale changes we will have

to modify the actions in our action domain to suit the environment.

For our “Coloured Zone” environment let us say for instance that we add more

rooms and hence more colours. The colours that were chosen for our previous envi-

ronment were such that the robot can easily tell them apart. However, the more colours

we have the more precise our algorithm for identifying colours would have to be and

hence more room for error since some colours will be very similar to others. So again,

the environment was specifically made to accommodate the limitations of URBI.

In the end our environments held the key for our navigation and were specific

to our development of our action refinements. With this in mind and the flaws that

we noted about I-X and URBI, I will conclude by saying that there was not enough

Chapter 4. Evaluation & Analysis 46

evidence provided from experiments and analysis to give any support to our hypothesis.

Instead, another weaker hypothesis is put forward as a result and this is that I-X and

URBI together can provide a robotic controller capable of performing some high-level

tasks for a specific robot in a specific environment as shown by our implementation.

However, no claim about genericness can be made, mostly because no such claim is

true for URBI.

4.4 Chapter Summary

In this chapter we described the experiments that we used to evaluate our system. We

then gave an analysis of the results from those experiments and how they contributed

to our hypothesis. After which we gave a general discussion on the architecture itself,

critically analysing the short falls of our system, and with the results of our experiments

concluded that not enough evidence was provided in support of our original hypothesis.

Chapter 5

Conclusion

In this chapter we provide a brief overview of the work done in this project highlighting

and enforcing main design decisions that were made. We then conclude by restating the

hypothesis which was that “I-X and URBI together can provide a generic controller for

Robots”, and a brief discussion about our findings and why sufficient evidence could

not be provided to support it.

In this thesis we investigated the development of an architecture that would involve

a generic HTN planner (provided by the I-X framework) sending actions to a robot

via a generic controller (provided by URBI) in order to perform some complex task

that cannot be executed by the robot directly. Our primary complex task having our

robot navigate from one zone to another using a generic office environment, with zones

representing rooms and open spaces. In order to do this we first focused on identifying

the robot’s capabilities which are available actions that URBI provided. We modelled

them in a way that I-X would be able to reason about and create plans from. This led

to a small library of primitive I-X actions implemented in the I-X LISP notation such

that resulted in a one to one mapping to URBI commands. The communication and

monitoring of commands were handled by the robot controller that we designed and

implemented. It was also the job of the robot controller to update I-X’s knowledge of

the world.

However, these commands were not enough because the robot still lacked the func-

tionality to know where it was in the world and without this knowledge, navigation

within the environment cannot be achieved. Therefore, it was decided that the set of

URBI commands to be enhanced and so the ability to identify colours and read letters

were created for our robot. This also meant that we would have to alter the environment

to suit the new abilities of our robot. Therefore, the environment was redesigned into

47

Chapter 5. Conclusion 48

two different ways where one environment was coloured such that each zone had its

own colour, and the other was amended with signs with letters where each zone had a

sign with a different letter to represent that zone. This also meant that we updated the I-

X action domain where the robot’s new abilities were represented as primitive actions.

It gave us the opportunity to evaluate our system by doing some limited experiments

for each environment by testing the navigational abilities of the robot.

The results of the experiments for the labelled environments showed that the robot

completed all higher-level tasks for 3 out of 4 the test runs which provided evidence

that showed the system was able to decompose and execute higher-level task. Failure

in the other 1 out of 4 of the test runs was due to a a very strict heuristic high-level

refinement which did not account for minor errors in navigation and the robot failed

to identify the zone which it was in. The results for the experiments in the coloured

zone showed that on 9 out of 15 of the test runs the system was able to locate its target

zone, which again provides evidence that the robot is able to decompose and execute

higher-level tasks. Again, the other 6 out of 15 of the test runs were failures as a result

of insufficient heuristics for finding the distance between zones or for visually locating

target zones. However, this empirical testing still did not provide enough evidence to

support our hypothesis.

Our hypothesis was that I-X and URBI together can provide a generic high-level

controller for robots. The main reason for the lack of support of evidence for our

hypothesis was due to the fact that from the beginning we modelled our actions and

environments to suit the limitations of URBI and also we did not test our action do-

main on other robots. This therefore does not support the genericness aspect of the

hypothesis that I-X and URBI together can be applied to any environment and to any

robot. From the results of the experiments and general discussions of I-X and URBI

as important components to this architecture this only provided evidence for a weaker

hypothesis, namely that I-X and URBI together provide a high-level controller for a

specificrobot in aspecificenvironment.

Bibliography

[1] Asprise Optical Character Recognition Package. http://asprise.com/home/.

[2] Blender 3D Modelling Program. http://www.blender.org.

[3] I-X Architecture. http://www.aiai.ed.ac.uk/project/ix/architecture.html.

[4] Sony Aibo ERS7. http://www.sony.net/Products/aibo/.

[5] U2S Robot. http://u2s.gel.usherbrooke.ca/accueil.html.

[6] Urbiforge. http://www.urbiforge.com.

[7] J-C Baillie. URBI: Towards a universal robotic body interface.2004 4th IEEE-

RAS International Conference on Humanoid Robots, 1:33 – 51, 2004.

[8] E. Beaudry, F. Kabanza, and F. Michaud. Planning for a mobile robot to attend a

conference. Technical report, University of Sherbrooke, 2004.

[9] T. Belker, T. Hammel, and J. Hertzberg. Learning to optimize mobile robot nav-

igation. Proceedings of the 2003 IEEE International Conference on Robotics &

Automation, pages 4136–4141, 2003.

[10] N. Constantinos, B. Jaramaz, and D. Anthony.

[11] Minh Binh Do and Subbarao Kambhampati. Sapa: A multi-objective metric

temporal planner.J. Artif. Intell. Res. (JAIR), 20:155–194, 2003.

[12] K. Erol, J. Hendler, and D. Nau. Semantics for HTN planning. Technical report,

University of Maryland, College Park, March 1994.

[13] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and

expressivity.Proceedings of the National Conference on Artificial Intelligence,

2:1123 – 1128, 1994.

49

Bibliography 50

[14] M. Fujita. Robot entertainment for digital creature’s era.30th International

Symposium on Robotics. Celebrating the 30th Anniversary toward the Next Mil-

lennium, pages 287 – 93, 1999.

[15] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous ar-

chitecture for controlling real-world mobile robots.AAAI-92. Proceedings Tenth

National Conference on Artificial Intelligence, pages 809 – 15, 1992.

[16] M. Ghallab, D. Nau, and P. Traverso.Automated Planning: Theory and Practice,

chapter 11. Morgan Koffman Publishers, 2004.

[17] R.P. Goldman, K.Z. Haigh, D.J. Musliner, and M.J.S. Pelican. Macbeth: a multi-

agent constraint-based planner [autonomous agent tactical planner].21st Digital

Avionics Systems Conference. Proceedings (Cat. No.02CH37325), vol.2:7 – 3,

2002.

[18] A.K. Jonsson, P.H. Morris, N. Muscettola, K. Rajan, and B. Smith. Planning in

interplanetary space: theory and practice.Proceedings of the Fifth International

Conference on Artificial Intelligence Planning and Scheduling, pages 177 – 86,

2000.

[19] T. Kanade, D. Gioia, D. Anthony, O. Ghattas, B. Jaramaz, M. Blackwell, L. Kalli-

vokas, F. Morgan, S. Shah, and D. Simon. Simulation, planning, and execution of

computer-assisted surgery. InProceedings of the NSF Grand Challenges Work-

shop, March 1996.

[20] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,

K. Akachi, and T. Isozumi. Humanoid robot hrp-2.2004 IEEE International Con-

ference on Robotics and Automation (IEEE Cat. No.04CH37508), Vol.2:1083 –

90, 2004.

[21] F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria. A system for hierarchical plan-

ning in service mobile robotics. Technical report, Laboratorium DST, University

of Genova, Italy, 2004.

[22] O. Michel. Webots: symbiosis between virtual and real mobile robots.Virtual

Worlds. First International Conference, VW’98. Proceedings, pages 254 – 63,

1998.

Bibliography 51

[23] D. S. Nau, T. C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN planning system.Journal of Artificial Intelligence Research,

20:379–404, 2003.

[24] O. Obst, A. Maas, and J. Boedecker. HTN planning for flexible coordination of

multiagent team behavior. Technical report, AI Research Group, University of

Koblenz, 2003.

[25] M. Piaggio and A. Sgorbissa. Real-time motion planning in autonomous vehicles:

A hybrid approach. In Evelina Lamma and Paola Mello, editors,AI*IA , volume

1792 ofLecture Notes in Computer Science, pages 368–379. Springer, 1999.

[26] M.E. Pollack. Evaluating planners, plans, and planning agents.SIGART Bull.,

6(1):4–7, 1995.

[27] M.E. Pollack. The uses of plans.Artificial Intelligence, 57(1):43 – 68, Sept.

1992.

[28] M. Ridsdale. Create Advanced AI Mission Control Algorithms For Use In a

Simulated Environment. Master’s thesis, University of Edinburgh, 2004.

[29] A. Tate. Project Planning Using a Hierarchic Non-linear Planner. Technical

Report 25, Department of Artificial Intelligence, University of Edinburgh, 1976.

[30] A. Tate. Generating project networks. InProceedings 5th IJCAI, pages 888–893,

1977.

[31] A. Tate and K. Currie. O-plan: The open planning architecture.Artificial Intelli-

gence, 52:49–86, 1991.

[32] A. Tate, J. Dalton, and S. Potter. Intelligible messaging - activity-oriented instant

messaging. Technical report, University of Edinburgh, Artificial Intelligence Ap-

plications Institute, 2003.

[33] David S. Touretzky and Ethan J. Tira-Thompson. Tekkotsu: A framework for

aibo cognitive robotics.Proceedings of the National Conference on Artificial

Intelligence, 4:1741 – 1742, 2005.

[34] R.T. Vaughan, B.P. Gerkey, and A. Howard. On device abstractions for portable,

reusable robot code.Proceedings 2003 IEEE/RSJ International Conference on

Bibliography 52

Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol.3:2421 –

7, 2003.

[35] S Vere. Planning in Time: Windows and Durations for Activities and Goals.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 1981.

[36] T. Wagner and K. Ḧubner. An egocentric qualitative spatial knowledge represen-

tation based on ordering information for physical robot navigation. InRoboCup,

pages 134–149, 2004.

