
22nd International Conference
on Automated Planning and Scheduling
June 26, 2012, Atibaia – Sao Paulo – Brazil

SPARK 2012
Proceedings of the Scheduling and
Planning Applications woRKshop

Edited by
Luis Castillo Vidal, Minh Do and Riccardo Rasconi

Organization

Luis Castillo Vidal, IActive, Spain, luis.castillo@iactiveit.com
Minh Do, NASA Ames Research Center / SGT Inc., USA, minh.b.do@nasa.gov
Riccardo Rasconi, ISTC-CNR, Italy, riccardo.rasconi@istc.cnr.it

Program Committee

Susanne Biundo, Universität Ulm, Germany
Mark Boddy, Adventium, USA
Luis Castillo, IActive Intelligent Solutions, Spain
Gabriella Cortellessa, ISTC-CNR, Italy
Mathijs de Weerdt, TU Delft
Minh Do, NASA Ames / SGT Inc., USA
Patrik Haslum, NICTA, Australia
Jana Koehler, IBM Zurich, Switzerland
Robert Morris, NASA Ames, USA
Nicola Policella, ESA-ESOC, Germany
Riccardo Rasconi, ISTC-CNR, Italy
David Smith, NASA Ames, USA
Gérard Verfaillie, ONERA, France
Neil Yorke-Smith, American University of Beirut, Lebanon, and SRI International, USA
Terry Zimmerman, SIFT, USA

mailto:luis.castillo@iactiveit.com�
mailto:minh.b.do@nasa.gov�
mailto:riccardo.rasconi@istc.cnr.it�

Contents

Preface

Composition of Flow-Based Applications with HTN Planning .. 1
Shirin Sohrabi, Octavian Udrea, Anand Ranganathan and Anton Riabov

Planning and Scheduling Ship Operations on Petroleum Ports and Platforms 8
Tiago Stegun Vaquero, Gustavo Costa, Flavio Tonidandel, Haroldo Igreja,
J. Reinaldo Silva and Chris Beck

Constraint-based Scheduling for Closed-loop Production Control in RMSs 17
Emanuele Carpanzano, Andrea Orlandini, Anna Valente , Amedeo Cesta, Fernando Marinò,
Riccardo Rasconi

Planning for perception and perceiving for decision: POMDP-like online target
detection and recognition for autonomous UAVs... 24
Caroline Ponzoni Carvalho Chanel, Florent Teichteil-Königsbuch and Charles Lesire

On Estimating the Return of Resource Aquisitions through Scheduling: An Evaluation of
Continuous-Time MILP Models to Approach the
Development of Offshore Oil Wells... 32
Thiago Serra, Gilberto Nishioka and Fernando Marcellino

PELEA: a Domain-Independent Architecture for Planning,
Execution and Learning.. 38
César Guzmán, Vidal Alcázar, David Prior, Eva Onaindia, Daniel Borrajo,
Juan Fernández-Olivares and Ezequiel Quintero

Digital Cityscapes: Challenges and Opportunities for Planning & Scheduling 46
Ming C Lin and Dinesh Manocha

Planning Task Validation ... 48
Maria Viviane Menezes, Leliane N. Barros and Silvio Do Lago Pereira

EmergenceGrid – Planning in Convergence Environments .. 56
Natasha C. Queiroz Lino, Clauirton de A. Siebra, Manoel Amaro and Austin Tate

Preface

Application domains that entail planning and scheduling (P&S) problems present a set of
compelling challenges to the AI planning and scheduling community, from modeling to
technological to institutional issues. New real-world domains and problems are becoming more
and more frequently affordable challenges for AI. The international Scheduling and Planning
Applications woRKshop (SPARK) was established to foster the practical application of advances
made in the AI P&S community. Building on antecedent events, SPARK'12 is the sixth edition of a
workshop series designed to provide a stable, long-term forum where researchers and
practitioners can discuss the applications of planning and scheduling techniques to real-world
problems. The series webpage is at http://decsai.ugr.es/~lcv/SPARK/

In the attempt to cover the whole spectrum of the efforts in P&S Application-oriented Research,
this year’s SPARK edition will categorize all contributions in three main areas, namely P&S Under
Uncertainty, Execution & Validation, Novel Domains for P&S, and Emerging Applications for P&S.
We are once more very pleased to continue the tradition of representing more applied aspects of
the planning and scheduling community and to perhaps present a pipeline that will enable
increased representation of applied papers in the main ICAPS conference.

We thank the Program Committee for their commitment in reviewing. We thank the ICAPS'12
workshop and publication chairs for their support.

Edited by
Luis Castillo Vidal, Minh Do and Riccardo Rasconi

Composition of Flow-Based Applications with HTN Planning∗

Shirin Sohrabi†
University of Toronto

Toronto, Ontario, Canada

Octavian Udrea, Anand Ranganathan, Anton V. Riabov
IBM T.J. Watson Research Center

Hawthorne, NY, U.S.A.

Abstract

Goal-driven automated composition of software components
is an important problem with applications in Web service
composition and stream processing systems. The popular ap-
proach to address this problem is to build the composition au-
tomatically using Artificial Intelligence planning. However, it
is shown that some of these popular planning approaches may
neither be feasible nor scalable for many real large-scale flow-
based applications. Recent advances have proven that the au-
tomated composition problem can take advantage of expert
knowledge restricting the ways in which different reusable
components can be composed. This knowledge can be rep-
resented using an extensible composition template or pattern.
In prior work, a flow pattern language called Cascade and its
corresponding specialized planner have shown the best per-
formance in these domains. In this paper, we propose to ad-
dress this problem using Hierarchical Task Network (HTN)
planning. To this end, we propose an automated approach of
creating an HTN-based problem from the Cascade represen-
tation of the flow patterns. The resulting technique not only
allows us to use the HTN planning paradigm and its many
advantages including added expressivity but also enables op-
timization and customization of composition with respect to
preferences and constraints. Further, we propose and develop
a lookahead heuristic and show that it significantly reduces
the planning time. We have performed extensive experimen-
tation in the context of the stream processing application and
evaluated applicability and performance of our approach.

Introduction
One of the approaches to automated software composition
focuses on composition of information flows from reusable
software components. This flow-based model of composi-
tion is applicable in a number of application areas, includ-
ing Web service composition and stream processing. There
are a number of tools (e.g., Yahoo Pipes and IBM Mashup
Center) that support the modeling of the data flow across
multiple components. Although these visual tools are fairly
popular, the use of these tools becomes increasingly difficult
as the number of available components increases, even more
so, when there are complex dependencies between compo-
nents, or other kinds of constraints in the composition.

∗This paperalso appears in the AAAI-12 Workshop on Problem
Solving using Classical Planners (CP4PS), 2012.

†This work was done at IBM T.J.Watson Research Center.

While automated Artificial Intelligence (AI) planning is
a popular approach to automate the composition of compo-
nents, Riabov and Liu have shown that Planning Domain
Definition Language (PDDL)-based planning approach may
neither be feasible nor scalable when it comes to address-
ing real large-scale stream processing systems or other flow-
based applications (e.g., (Riabov and Liu 2006)). The pri-
mary reason behind this is that while the problem of com-
posing flow-based applications can be expressed in PDDL,
in practice the PDDL-based encoding of certain features
poses significant limitation to the scalability of planning.

In 2009, we proposed a pattern-based composition ap-
proach where composition patterns were specified using our
proposed language called Cascade and the plans were com-
puted using our specialized planner, MARIO (Ranganathan,
Riabov, and Udrea 2009). We made use of the observation
that automated composition problem can take advantage of
expert knowledge of how different components can be cou-
pled together and this knowledge can be expressed using a
composition pattern. For software engineers, who are usu-
ally responsible for encoding composition patterns, doing
so in Cascade is easier and more intuitive than in PDDL
or in other planning specification languages. The MARIO
planner achieves fast composition times due to optimiza-
tions specific to Cascade, taking advantage of the structure
of flow-based composition problems, while limiting expres-
sivity of domain descriptions.

In this paper, we propose a planning approach based on
Hierarchical Task Networks (HTNs) to address the problem
of automated composition of components. To this end, we
propose a novel technique for creating an HTN-based plan-
ning problem with preferences from the Cascade represen-
tation of the patterns together with a set of user-specified
Cascade goals. The resulting technique enables us to ex-
plore the advantages of using domain-independent planning
and HTN planning including added expressivity, and address
optimization and customization of composition with respect
to preferences and constraints. We use the preference-based
HTN plannerHTNPLAN -P (Sohrabi, Baier, and McIlraith
2009) for implementation and evaluation of our approach.
Moreover, we develop a new lookahead heuristic by draw-
ing inspirations from ideas proposed in (Marthi, Russell, and
Wolfe 2007). We also propose an algorithm to derive in-
dexes required by our proposed heuristic.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 1

The contributions of this paper are as follows: (1) we ex-
ploit HTN planning with preferences to address modeling,
computing, and optimizing the composition of information
flows in software components; (2) we develop a method
to automatically translate Cascade patterns into HTN do-
main description and Cascade goals into preferences, and
to that end we address several unique challenges that hinder
planner performance in flow-based applications; (3) we per-
form extensive experiments with real-world patterns using
IBM InfoSphere Streams applications; and (4) we develop
an enhanced lookahead heuristic that improves HTN plan-
ning performance by 65% on average in those applications.

Preliminaries

Specifying Patterns in Cascade

The Cascade language has been proposed in (Ranganathan,
Riabov, and Udrea 2009) for specifying flow patterns. A
Cascade flow pattern describes a set of flows by describ-
ing different possible structures of flow graphs, and possi-
ble components that can be part of the graph. Components
in Cascade can have zero or more input ports and one or
more output ports. A component can be either primitive
or composite. A primitive component embeds a code frag-
ment from a flow-based language (e.g., SPADE (Gedik et
al. 2008)). These code fragments are used to convert a flow
into a program/script that can be deployed on a flow-based
information processing platform. A composite component
internally defines a flow of other components.

Figure 1 shows an example of a flow pattern, defining
a composite calledStockBargainIndexComputation. Source
data can be obtained from eitherTAQTCPor TAQFile. This
data can be filtered by either a set of tickers, by an industry,
or neither as the filter components is optional (indicated by
the “?”). The VWAP and the Bargain Index calculations can
be performed by a variety of concrete components (which
inherit from abstract componentsCalculateVWAPandCal-
culateBargainIndexrespectively). The final results can be
visualized using a table, a time- or a stream-plot. Note, the
composite includes a sub-compositeBIComputationCore.

A single flow pattern defines a number of actual flows. As
an example, let us assume there are 5 different descendants
for each of the abstract components. Then, the number of
possible flows defined byStockBargainIndexComputationis
2 × 3 × 5 × 5 × 3, or 450 flows.

A flow pattern in Cascade is a tupleF = (G(V, E),M),
whereG is a directed acyclic graph, andM is a main com-
posite. Each vertex,v ∈ V, can be the invocation of one
or more of the following: (1) a primitive component, (2) a
composite component, (3) a choice of components, (4) an
abstract component with descendants, (5) a component, op-
tionally. Each directed edge,e ∈ E in the graph represents
the transfer of data from an output port of one component
to the input port of another component. Throughout the pa-
per, we refer to edges asstreams, outgoing edges as “output
streams”, and ingoing edges as “input streams”. The main
composite,M , defines the set of allowable flows. For exam-
ple, if StockBargainIndexComputationis the main compos-
ite in Figure 1, then any of the 450 flows that it defines can

Figure 1: Example of a Cascade flow pattern.

potentially bedeployed on the underlying platform.
In Cascade, output ports of components (output streams)

can be annotated with tags to describe the properties of the
produced data. Tags can be any keywords related to terms
of the business domain. Tags are used by the end-user to
specify the composition goals; we refer to as theCascade
goals. For each graph composed according to the pattern,
tags associated with output streams are propagated down-
stream, recursively associating the union of all input tags
with outputs for each component. Cascade goals are then
matched to the description of graph output. Graphs that in-
clude all goal tags become candidate flows (orsatisfying
flows) for the goal. For example, if we annotate the output
port of theFilterTradeByIndustrycomponent with the tag
ByIndusty, there would be2 × 5 × 5 × 3, or 150 satisfying
flows for the Cascade goal “ByIndustry”. Planning is used
to find “best” satisfying flows efficiently from the millions
of possible flows, present in a typical domain.

Hierarchical Task Network (HTN) Planning

HTN planning is a widely used planning paradigm and many
domain-independent HTN planners exist (Ghallab, Nau, and
Traverso 2004). The HTN planner is given the HTN plan-
ning problem: the initial states0, the initial task network
w0, and the planning domainD (a set of operators and meth-
ods). HTN planning is performed by repeatedly decompos-
ing tasks, by the application of methods, into smaller and
smaller subtasks until a primitive decomposition of the ini-
tial task network is found. A task network is a pair(U,C)
whereU is a set of tasks andC is a set of constraints. A
task isprimitive if its name matches with an operator, oth-
erwise it isnonprimitive. An operator is a regular planning
action. It can be applied to accomplish a primitive task. A
method is described by its name, the task it can be applied to
task(m), and its task networksubtasks(m). A methodm
can accomplish a taskt if there is a substitutionσ such that
σ(t) =task(m). Several methods can accomplish a particular
nonprimitive task, leading to different decompositions of it.
Refer to (Ghallab et al. 2004) for more information.

HTNPLAN -P (Sohrabi et al. 2009) is a provably optimal
preference-based planner, built on top of a Lisp implemen-
tation ofSHOP2 (Nau et al. 2003), a highly-optimized HTN
planner.HTNPLAN -P takes as input an HTN planning prob-
lem, specified in theSHOP2’s specification language (not
in PDDL). HTNPLAN -P performs incremental search and
uses variety of different heuristics including the Lookahead
Heuristic (LA). We modifiedHTNPLAN -P to implement
our proposed heuristic, the Enhanced Lookahead Heuristic
(ELA). We also useHTNPLAN -P to evaluate our approach.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 2

From Cascade Patterns to HTN Planning
In this section, we describe an approach to create an HTN
planning problem with preferences from any Cascade flow
pattern and goals. In particular, we show how to: (1) cre-
ate an HTN planning domain from the definition of Cas-
cade components (2) represent the Cascade goals as pref-
erences. We refer to theSHOP2’s specification language
(alsoHTNPLAN -P’s input language) in Lisp. We consider or-
dered and unordered task networks specified by keywords
“:ordered” and “:unordered”, distinguish operators by the
symbol “!” before their names, and variables by the sym-
bol “?” before their names.

Creating the HTN Planning Domain

In this section, we describe an approach to translate the dif-
ferent elements and unique features of Cascade flow patterns
to operators or methods, in an HTN planning domain.

Creating New Streams One of the features of stream pro-
cessing domains is that components produce one or more
new data streams from several existing ones. Further, the
precondition of each input port is only evaluated based on
the properties of connected streams; hence, instead of a
global state, the state of the world is partitioned into sev-
eral mutually independent ones. Although it is possible to
encode parts of these features in PDDL, the experimental
results in (Riabov and Liu 2005; 2006) show poor perfor-
mance of planners (on an attempt to formulate the problem
in PDDL). We believe the main difficulty in the PDDL rep-
resentation is the ability to address creating new objects that
have not been previously initialized to represent the gener-
ation of new streams. This can result in a large number of
symmetric objects, significantly slowing down the planner.

To address the creation of new uninitialized streams
we propose to use theassignment expression, available in
SHOP2’s input language, in the precondition of the opera-
tor that creates the new stream (will discuss how to model
Cascade components next). We use numbers to represent
the stream variables using a special predicate calledsNum.
We then increase this number by manipulating the add and
delete effects of the operators that are creating new streams.
This sNumpredicate acts as acounterto keep track of the
currentvalue that we can assign for the new output streams.

The assignment expression takes the form “(assign v t)”
wherev is a variable, andt is a term. Here is an example
of how we implement this approach for the “bargainIndex”
stream, the outgoing edge of the abstract componentCalcu-
lateBargainIndexin Figure 1. The following precondition,
add and delete list belong to the corresponding operators of
any concrete component of this abstract component.

Pre:((sNum ?current)(assign ?bargainIndex ?current)
(assign ?newNum (call + 1 ?current)))

Delele List: ((sNum ?current))
Add List: ((sNum ?newNum))

Now for any invocation of the abstract componentCal-
culateBargainIndex, new numbers, hence, new streams are
used to represent the “bargainIndex” stream.

Tagging Model for Components Output ports of compo-
nents are annotated with tags to describe the properties of

the produced data. Some tags are calledsticky tags, mean-
ing that these properties propagate to all downstream com-
ponents unless they arenegatedor removed explicitly. The
set of tags on each stream depends on all components that
appear before them or on allupstreamoutput ports.

To represent the association of a tag to a stream, we use a
predicate “(Tag Stream)”, whereTag is a variable or a string
representing a tag (must be grounded before any evaluation
of state with respect to this predicate), andStreamis the vari-
able representing a stream. To address propagation of tags,
we use aforall expression, ensuring that all tags that appear
in the input streams propagate to the output streams unless
they are negated by the component. A forall expression in
SHOP2 is of the form “(forall X Y Z)”, whereX is a list
of variables inY , Y is a logical expression,Z is a list of
logical atoms. Here is an example going back to Figure 1.
?tradeQuoteand?filteredTradeQuoteare the input and out-
put stream variables respectively for theFilterTradeQuote-
ByIndustrycomponent. Note, we know all tags ahead of
time and they are represented by the predicate “(tags ?tag)”.
Also we use a special predicatediff to ensure the negated
tag “AllCompanies” does not propagate downstream.
(forall (?tag)(and (tags ?tag) (?tag ?QuoteInfo)

(diff ?tag AllCompanies))
((?tag ?filteredTradeQuote)))

Tag Hierarchy Tags used in Cascade belong to tag hier-
archy (or tag taxonomies). This notion is useful in inferring
additional tags. In the example in Figure 1, we know that
the “TableView” tag is a sub-tag of the tag “Visualizable”,
meaning that any stream annotated with the tag “TableView”
is also implicitly annotated by the tag “Visualizable”. To
address the tag hierarchy we useSHOP2 axioms. SHOP2
axioms are generalized versions of Horn clauses, written in
this form (:-head tail).Tail can be anything that appears in
the precondition of an operator or a method. The following
are axioms that express the hierarchy of views.

:- (Visualizable ?stream)((TableView ?stream))
:- (Visualizable ?stream)((StreamPlot ?stream))

Component Definition in the Flow Pattern Next, we put
together the different pieces described so far in order to cre-
ate the HTN planning domain. In particular, we represent
the abstract components by nonprimitive tasks, enabling the
use of methods to represent concrete components. For each
concrete component, we create new methods that can de-
compose this nonprimitive task (i.e., the abstract compo-
nent). If no method is written for handling a task, this is
an indication that the abstract component had no children.

Components can inherit from other components. The
net (or expanded) description of an inherited component in-
cludes not only the tags that annotate its output ports but
also the tags defined by its parent. We represent this in-
heritance model directly on each method that represents the
inherited component using helper operators that add to the
output stream, the tags that belong to the parent component.

We encode each primitive component as an HTN oper-
ator. The parameters of the HTN operator correspond to
the input and output stream variables of the primitive com-
ponent. The preconditions of the operator include the “as-
sign expressions” as mentioned earlier to create new output

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 3

streams. The add list also includes the tags of the output
streams ifany. The following is an HTN operator that cor-
responds to theTableViewprimitive component.

Operator: (!TableView ?bargainIndex ?output)
Pre: ((sNum ?current) (assign ?output ?current)

(assign ?newNum (call + 1 ?current)))
Delete List: ((sNum ?current))
Add List:((sNum ?newNum)(TableView ?bargainIndex)

(forall (?tag) (and (tags ?tag)
(?tag ?bargainIndex))((?tag ?output))

We encode each composite component as HTN meth-
ods with task networks that are either ordered or unordered.
Each composite component specifies agraph clausewithin
its body. The corresponding method addresses the graph
clause using task networks that comply with the ordering
of the components. For example, the graph clause within
the BIComputationCorecomposite component in Figure 1
can be encoded as the following task. Note the parameters
are omitted. Note also, we used ordered task networks for
representing the sequence of components, and an unordered
task network for representing the split in the data flow.

(:ordered (:unordered (!ExtractQuoteInfo)
(:ordered (!ExtractTradeInfo) (CalculateVWAP)))
(CalculateBargainIndex))

Structural Variations of Flows There are three types of
structural variation in Cascade: enumeration, optional com-
ponents, and use of high-level components. Structural vari-
ations create patterns that capture multiple flows. Enumer-
ations are specified by listing the different possible compo-
nents. To capture this we use multiple methods applicable to
the same task. A component can be specified as optional,
meaning that it may not appear as part of the flow. We cap-
ture optional components using methods that simulate the
no-optask. Abstract components are used in flow patterns
to capture high-level components. These components can be
replaced by their concrete components. In HTN, this is al-
ready captured by the use of nonprimitive tasks for abstract
components and methods for each concrete component.

Specifying Cascade Goals as Preferences

While Cascade flow patterns specify a set of flows, users can
be interested in only a subset of these. Thus, users are able
to specify the Cascade goals by providing a set of tags that
they would like to appear in the final stream. We propose
to specify the user-specified Cascade goals as Planning Do-
main Definition Language (PDDL3) (Gerevini et al. 2009)
simple preferences.Simple preferencesare atemporal for-
mulae that express a preference for certain conditions to hold
in the final state of the plan. In PDDL3 the quality of the
plan is defined using a metric function. The PDDL3 func-
tion is-violated is used to assign appropriate weights to
different preference formula. Note, inconsistent preferences
are automatically handled by the metric function.

The advantage of encoding the Cascade goals as prefer-
ences is that the users can specify them outside the domain
description as an additional input to the problem. Also, by
encoding the Cascade goals as preferences, if the goals are
not achievable, a solution can still be found but with an as-
sociated quality measure. In addition, the preference-based

planner,HTNPLAN -P, can potentially guide the planner to-
wards achieving these preferences; can do branch and bound
with sound pruning using admissible heuristics, whenever
possible to guide the search toward a high-quality plan.

The following are some example. If the Cascade goals en-
coded as preferences are mutually inconsistent, we can as-
sign a higher weight to the “preferred” goal. Otherwise, we
can use uniform weights when defining a metric function.

(preference g1 (at end (ByIndustry ?finalStream)))
(preference g2 (at end (TableView ?finalStream)))
(preference g3 (at end (LinearIndex ?finalStream)))

Flow-Based HTN Planning Problem with Preferences

In this section, we characterize a flow-based HTN planning
problem with preferences and discuss the relationship be-
tween satisfying flows and optimal plans.

A Cascade flow pattern problem is a 2-tuplePF =
(F,G), whereF = (G(V, E),M) is a Cascade flow pat-
tern (whereG is a directed acyclic graph, andM is the main
composite), andG is the set of Cascade goals.α is a satis-
fying flow for PF if and only if α is a flow that meets the
main compositeM . Set of Cascade goalsG is realizable if
and only if there exists at least one satisfying flow for it.

Given the Cascade flow pattern problemPF , we define
the corresponding flow-based HTN planning problem with
preferences as a 4-tupleP = (s0, w0, D,�), where: s0 is
the initial state consisting of a list of all tags and our special
predicates;w0 is the initial task network encoding of the
main componentM ; D is the HTN planning domain, con-
sisting of a set of operators and methods derived from the
Cascade componentsv ∈ V; and� is a preorder between
plans dictated by the set of Cascade goalsG.

Proposition 1 Let PF = (F,G) be a Cascade flow pattern
problem whereG is realizable. LetP = (s0, w0, D,�) be the
corresponding flow-based HTN planning problem with prefer-
ences. Ifα is an optimal plan forP , then we can construct a
flow (based onα) that is a satisfying flow for the problemPF .

Consider the Cascade flow pattern problemPF with F
shown in Figure 1 andG be the “TableView” tag. LetP
be the corresponding flow-based HTN problem with pref-
erences. Then consider the following optimal plan for
P : [TAQFileSource(1), ExtradeTradeInfo(1,2), VWAPBy-
Time(2,3), ExtractQuoteInfo(1,4), BISimple(3,4,5), Table-
View(5,6)]. We can construct a flow in which the compo-
nents mentioned in the plan are the vertices and the edges
are determined by the numbered parameters corresponding
to the generated output streams. The resulting graph is not
only a flow but a satisfying flow for the problemPF .

Computation

In the previous section, we described a method that trans-
lates Cascade flow patterns and Cascade goals into an HTN
planning problem with preferences. We also showed the re-
lationship between optimal plans and satisfying flows. Now
given a specification of preference-based HTN planning in
hand we selectHTNPLAN -P to compute these optimal plans
that later get translated to satisfying flows for the original
Cascade flow patterns. In this section, we focus on our pro-

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 4

posed heuristic, and describe how the required indexes for
this heuristiccan be generated in the preprocessing step.

Enhanced Lookahead Heuristic (ELA)

The enhanced lookahead function estimates the metric value
achievable from a search nodeN . To estimate this met-
ric value, we compute a set of reachable tags for each task
within the initial task network. A set of tags are reachable by
a task if they are reachable by anyplan that extends from de-
composing this task. Note, we assume that every nonprimi-
tive task can eventually have a primitive decomposition.

The ELA function is an underestimate of the actual met-
ric value because we ignore deleted tags, preconditions that
may prevent achieving a certain tag, and we compute the set
of all reachable tags, which in many cases is an overesti-
mate. Nevertheless, this does not necessarily mean thatELA
function is a lower bound on the metric value of any plan
extending nodeN . However, if it is a lower bound, then it
will provide sound pruning (following Baier et al. 2009) if
used within theHTNPLAN -P search algorithm and provably
optimal plans can get generated. A pruning strategy is sound
if no state is incorrectly pruned from the search space. That
is whenever a node is pruned from the search space, we can
prove that the metric value of any plan extending this node
will exceed the current bound best metric. To ensure that
theELA is monotone, for each node we take the intersection
of the reachable tags computed for this node’s task and the
set of reachable tags for its immediate predecessor.
Proposition 2 The ELA function provides sound pruning if
the preferences are all PDDL3 simple preferences and the
metric function is non-decreasing in the number of violated
preferences and in plan length.

Our notion of reachable tags is similar to the notion of
“complete reachability set” in Marthi et al. (2007). While
they find a superset of all reachable states by a “high-level”
actiona, we find a superset of all reachable tags by a taskt;
this can be helpful in proving a certain task cannot reach a
goal. However, they assume that for each task a sound and
complete description of it is given in advance, whereas we
do not assume that. In addition, we are using this notion of
reachability to compute a heuristic, which we implement in
HTNPLAN -P. They use this notion for pruning plans and not
necessarily in guiding the search towards a preferred plan.

Generation from HTN

In this section, we briefly discuss how to generate the reach-
able tags from the corresponding HTN planning problem.
Algorithm 1 shows pseudocode of our offline procedure that
creates a set of reachable tags for each task. It takes as input
the planning domainD, a set of tasks (or a single task)w,
and a set of tags to carry overC. The algorithm is called
initially with the initial task networkw0, andC = ∅. To
track the produced tags for each task we use a mapR. If
w is a task network then we consider three cases: 1) task
network is empty, we then returnC, 2) w is an ordered task
network, then for each taskti we call the algorithm starting
with the right most tasktn updating the carryC, 3) w is un-
ordered, then we callGetRTags twice, first to find out what
each task produces (line 8), and then again with the updated

Algorithm 1: TheGetRTags (D, w, C) algorithm.

1 initialize global MapR; T ← ∅;
2 if w is a task networkthen
3 if w = ∅ then return C;
4 else ifw = (:orderedt1 ... tn) then
5 for i=n to 1 do C← GetRTags(D, ti, C);
6 else ifw = (:unorderedt1 ... tn) then
7 for i=1 to n do
8 Tti

← GetRTags(D, ti, ∅); T ← Tti
∪ T ;

9 for i=1 to n do
10 Cti

←
S

n
j=1,j 6=i

Tj ∪ C; GetRTags(D, ti, Cti
);

11 else ifw is a taskthen
12 if R[w] is notdefinedthen R[w]← ∅;
13 else ift is primitive then T ← add-list of an operator that matches;
14 else ift is nonprimitivethen
15 M ′← {m1, ..., mk} such thattask(mi) match witht;
16 U ′← {U1, ..., Uk} such thatUi = subtask(mi);
17 foreachUi ∈ U ′ do T ← GetRTags(D, Ui, C) ∪ T ;
18 R[w]← R[w] ∪ T ∪ C;
19 return T ∪ C

set of carry tags (line 10). This ensures that we overestimate
the reachabletags regardless of the execution order.

If w is a task then we update its returned valueR[w]. If w
is primitive, we find a set of tags it produces by looking at its
add-list. Ifw is nonprimitive then we first find all the meth-
ods that can be applied to decompose it and their associated
task networks. We then take a union of all tags produced by
a call toGetRTags for each of these task networks.

Our algorithm can be updated to deal with recursive tasks
by first identifying when loops occur and then by modifying
the algorithm to return special tags in place of a recursive
task’s returned value. We then use a fixed-point algorithm to
remove these special tags and update the values for all tasks.

Experimental Evaluation

We had two main objectives in our experimental analysis:
(1) evaluate the applicability of our approach when deal-
ing with large real-world applications or composition pat-
terns, (2) evaluate the computational time gain that may re-
sult from use of our proposed heuristic. To address our first
objective, we took a suite of diverse Cascade flow pattern
problems from patterns described by customers for IBM In-
foSphere Streams and applied our techniques to create the
corresponding HTN planning problems with preferences.
We then examined the performance ofHTNPLAN -P, on the
created problems. To address our second objective, we im-
plemented the preprocessing algorithm discussed earlier and
modifiedHTNPLAN -P to incorporate the enhanced lookahead
heuristic within its search strategy and then examined its
performance. A search strategy is a prioritized sequence of
heuristics that determines if a node is better than another.

We had 7 domains and more than 50 HTN planning prob-
lems in our experiments. The created HTN problems come
from patterns of varying sizes and therefore vary in hard-
ness. For example, a problem can be harder if the pattern
had many optional components or many choices, hence in-
fluencing the branching factor. Also a problem can be harder
if the tags that are part of the Cascade goal appear in the
harder to reach branches depending on the planner’s search
strategy. ForHTNPLAN -P, it is harder if the goal tags appear

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 5

Plan # of No-LA LA
Dom Prob Length Plans Time (s) Time (s)

1
1 11 81 0.04 0.05
2 11 162 0.10 0.01
3 11 81 0.18 0.04

2
1 11 162 0.04 0.05
2 11 162 0.13 0.01
3 11 81 0.25 0.04

3
1 38 2

26 0.08 0.08
2 38 2

13 276.11 0.09
3 20 2

13 OM 0.14
4 38 2

26 OM 0.14

4

1 44 46082 0.09 0.11
2 92 46084 0.64 0.61
3 184 46088 4.80 4.50
4 368 460816 43.00 35.00

Figure 2: Evaluating the applicability of our approach by running
HTNPLA N-P (two modes) as we increase problem hardness.

in the very right side of the search space since it explores
the search space from left to right if the heuristic is not in-
forming enough. All problems were run for 10 minutes, and
with a limit of 1GB per process. “OM” stands for “out of
memory”, and “OT” stands for “out of time”.

We show a subset of our results in Figure 2. Columns
5 and 6 show the time in seconds to find an optimal plan.
We ranHTNPLAN -P in its existing two modes:LA andNo-
LA. LA means that the search makes use of theLA (looka-
head) heuristic (No-LAmeans it does not). NoteHTNPLAN -
P’s other heuristics are used to break ties in both modes.We
measure plan length for each solved problem as a way to
show the number of generated output streams. We show the
number of possible optimal plans for each problem as an in-
dication of the size of the search space. This number is a
lower bound in many cases on the actual size of the search
space. Note we only find one optimal plan for each problem
through the incremental search performed byHTNPLAN -P.

The results in Figure 2 indicates the applicability and fea-
sibility of our approach as we increase the difficulty of the
problem. All problems were solved within 35 seconds by
at least one of the two modes used. The result also indicates
that not surprisingly, theLA heuristic performs better at least
in the harder cases (indicated in bold). This is partly because
the LA heuristic forms a sampling of the search space. In
some cases, due to the possible overhead in calculation of
theLA heuristic, we did not see an improvement. Note that
in some problems (3rd domain Problems 3 and 4), an opti-
mal plan was only found when theLA heuristic was used.

We had two sub-objectives in evaluating our proposed
heuristic, the Enhanced Lookahead Heuristic (ELA): (1) to
find out if it improves the time to find an optimal plan (2) to
see if it can be combined with the planner’s previous heuris-
tics, namely theLA heuristic. To address our objectives, we
identified cases whereHTNPLAN -P has difficulty finding the
optimal solution. In particular we chose the third and fourth
domain and tested with goal tags that appear deep in the
right branch of the HTN search tree. These problems are
difficult because achieving the goal tags are harder and the
LA heuristic fails in providing sufficient guidance.

Figure 3 shows a subset of our results.LA thenELA (resp.
ELA then LA) column indicates that we use a strategy in
which we compare two nodes first based on theirLA (resp.

LA thenELA ELA thenLA JustELA JustLA No-LA
Dom Prob Time (s) Time (s) Time (s) Time (s)Time (s)

3

5 1.70 1.70 0.07 0.13 OM
6 1.70 1.70 0.07 1.50 OM
7 1.80 1.80 0.07 1.60 OM
8 1.70 1.70 0.07 OM OM
9 1.40 1.40 0.07 OM OM
10 1.40 1.30 0.07 OM OM

4

5 0.58 0.45 0.02 0.56 0.12
6 2.28 2.24 0.07 3.01 0.38
7 14.40 14.28 0.44 19.71 1.44
8 104.70 102.83 3.15 147.00 8.00
9 349.80 341.20 10.61 486.53 18.95
10 OT OT 24.45 OT 40.20

Figure 3: Evaluation of theELAheuristic.

ELA) values, then break ties using theirELA (resp. ELA)
values. In the JustELA and JustLA columns we used either
justLA or ELA. Finally in theNo-LAcolumn we did not use
either heuristics. Our results show that the ordering of the
heuristics does not seem to make any significant change in
the time it takes to find an optimal plan. The results also
show that using theELA heuristic improves the search time
compared to other search strategies. In particular, there are
cases in which the planner fails to find the optimal plan when
usingLA or No-LAbut the optimal plan is found within the
tenth of a second when using theELA heuristic. To mea-
sure the gain in computation time from theELA heuristic
technique, we computed the percentage difference between
theLA heuristic and theELA heuristic times, relative to the
worst time. We assigned a time of 600 to those that exceeded
the time or memory limit. The results show that on aver-
age we gained 65% improvement when usingELA for the
problems we used. This shows that our enhanced lookahead
heuristic seems to significantly improve the performance.

Summary and Related Work

There is a large body of work that explores the use of AI
planning for the task of automated Web service composition
(e.g., (Pistore et al. 2005)). Additionally some explore the
use of some form of expert knowledge (e.g., (McIlraith and
Son 2002)). While similarly, many explore the use of HTN
planning, they rely on the translation of OWL-S (Martin et
al. 2007) service descriptions of services to HTN planning
(e.g., (Sirin et al. 2005)). Hence, the HTN planning prob-
lems driven from OWL-S generally ignore the data flow as-
pect of services, a major focus of Cascade flow patterns.

In this paper, we examined the correspondence between
HTN planning and automated composition of flow-based
applications. We proposed use of HTN planning and to
that end proposed a technique for creating an HTN plan-
ning problem with user preferences from Cascade flow pat-
terns and user-specified Cascade goals. This opens the door
to increased expressive power in flow pattern languages
such as Cascade, for instance the use of recursive struc-
tures (e.g., loops), user preferences, and additional compo-
sition constraints. We also developed a lookahead heuristic
and showed that it improves the performance ofHTNPLAN -P
for the domains we used. The proposed heuristic is general
enough to be used within other HTN planners. We have per-
formed extensive experimentation that showed applicability
and promise of the proposed approach.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 6

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences.Artificial Intelligence 173(5-6):593–
618.
Gedik, B.; Andrade, H.; lung Wu, K.; Yu, P. S.; and Doo,
M. 2008. SPADE: the System S declarative stream pro-
cessing engine. InProceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD),
1123–1134.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners.Artificial Intelligence173(5–
6):619–668.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Hierarchical
Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann.
IBM. IBM InfoSphere Streams.
http://www.ibm.com/software/data/infosphere/streams/.
[online; accessed 14-05-2012].
IBM. IBM Mashup Center. http://www-
01.ibm.com/software/info/mashup-center/. [online;
accessed 14-05-2012].
Marthi, B.; Russell, S. J.; and Wolfe, J. 2007. Angelic
semantics for high-level actions. InProceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS), 232–239.
Martin, D.; Burstein, M.; McDermott, D.; McIlraith, S.;
Paolucci, M.; Sycara, K.; McGuinness, D.; Sirin, E.; and
Srinivasan, N. 2007. Bringing semantics to Web services
with OWL-S. World Wide Web Journal10(3):243–277.
McIlraith, S., and Son, T. 2002. Adapting Golog for compo-
sition of semantic Web services. InProceedings of the 8th
International Conference on Knowledge Representation and
Reasoning (KR), 482–493.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system.Journal of Artificial Intelligence Research
20:379–404.
Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso, P. 2005.
Automated composition of Web services by planning at the
knowledge level. InProceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI), 1252–
1259.
Ranganathan, A.; Riabov, A.; and Udrea, O. 2009. Mashup-
based information retrieval for domain experts. InPro-
ceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM), 711–720.
Riabov, A., and Liu, Z. 2005. Planning for stream process-
ing systems. InProceedings of the 20th National Conference
on Artificial Intelligence (AAAI), 1205–1210.
Riabov, A., and Liu, Z. 2006. Scalable planning for dis-
tributed stream processing systems. InProceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 31–41.

Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2005.
HTN planning for Web service composition using SHOP2.
Journal of Web Semantics1(4):377–396.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2009. HTN
planning with preferences. InProceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1790–1797.
Yahoo. Yahoo pipes. http://pipes.yahoo.com. [online; ac-
cessed 14-05-2012].

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 7

Planning and Scheduling Ship Operations on Petroleum Ports and Platforms
Tiago Stegun Vaquero1 and Gustavo Costa2 and Flavio Tonidandel3
Haroldo Igreja4 and José Reinaldo Silva2 and J. Christopher Beck1

1Department of Mechanical & Industrial Engineering, University of Toronto, Canada
2Department of Mechatronics Engineering, University of São Paulo, Brazil
3IAAA Lab, University Center of FEI - São Bernardo do Campo, Brazil

4Transpetro, PETROBRAS, Brazil
{tvaquero,jcb}@mie.utoronto.ca, {gustavorochacosta, reinaldo}@usp.br, flaviot@fei.edu.br, higreja@petrobras.com.br

Abstract
In this paper, we address the process of modeling planning
and scheduling ship operations on petroleum platforms and
ports. The general problem to be solved is based on the trans-
portation and delivery of a list of requested cargo to differ-
ent locations considering a number of constraints and ele-
ments based on a real problem of Petrobras – the Brazilian
Petroleum Company. The objective is to optimize a set of
costs brought by the execution of a schedule. Modeling the
problem in UML and then translating to PDDL is shown to be
feasible and practical by using itSIMPLE. However, although
domain-independent planners can provide valid solutions to
simplified versions of the problem, they struggle with a more
realistic version.

Introduction
With the discovery of a promising massive oilfield beneath
2000 to 3000 meters of water in 2007, the Brazilian gov-
ernment has been investing in advanced technologies and
infrastructure for deep water extraction of oil and natural
gas. New discoveries in what is called the pre-salt basin
created even more challenges in deep water exploitation and
in several underlying engineering problems in order to make
this effort secure, profitable and safe for the environment.
One of the challenges is the planning and scheduling of ves-
sels which transport goods, components and tools between
crowded ports on land to platforms in the ocean. The supply
of these elements to the network of platforms is essential to
maintaining a fully operational oil extraction station off the
Brazilian coast. Potential expansion of the number of plat-
forms must be carefully studied and optimized to result in
minimal impact on the environment. Hence, studying the
planning and scheduling of ship operations in those ports
and platforms is one of the aims of Petrobras.

The general problem to be solved is based on the trans-
portation and delivery of a list of requested cargo to dif-
ferent locations considering a number of constraints and el-
ements such as available ports, platforms, vessel capacity,
weights of cargo items, fuel consumption, available refuel-
ing stations in the ocean, different duration of operations,
and costs. Given a set of cargo items, the problem is to find a
feasible plan that guarantees their delivery while respecting

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the constraints and requirements of the ship capacities. The
objective is to minimize the total amount of fuel used, the
size of waiting queues in ports, the number of ships used,
the makespan of the schedule and the docking cost. The
problem has a number of features that have been addressed
by heuristic-based space-state search. Thus, it is a realistic
problem that may be amenable to planning technology.

Since the 1980s there has been a recurring discussion in
the literature regarding the relationship between Artificial
Intelligence (AI) planning and optimization problems. A
particular contrast is the traditional satisfaction-oriented bias
of AI planning (Kautz and Walser 1999; 2000) versus the
substantial focus and exploitation of cost functions in opti-
mization approaches studied in Operations Research. Devel-
oping solvers for planning & scheduling (P&S) applications
that demand both satisfaction-oriented approaches and op-
timization mechanisms is, with the current technology, still
challenging. This is also a challenge faced by Knowledge
Engineering (KE) tools and approaches: how to allow de-
signers (both problem-domain experts and planning experts)
to model problems requiring sophisticated planning capa-
bilities, reasoning about time constraints, and the expres-
sion and minimization of complicated cost functions. There
are not many KE tools available for modeling these sorts of
problems in the AI P&S literature (Vaquero, Silva, and Beck
2011). As a consequence, the problem presented in this pa-
per is one of the challenge domains in the Fourth Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS 2012).

In this paper, we describe the modeling process we un-
dertook using an AI P&S approach to study one potential
expansion of the network of platforms. Our aim is (1) to in-
vestigate and describe the modeling process of the ship op-
eration problem in such a network utilizing KE tools (in this
case, the itSIMPLE tool (Vaquero et al. 2009)) and standard
languages from AI P&S (e.g., PDDL), and (2) to study the
use of available domain-independent planners and their per-
formance in solving the model and generating plans. Even
though we do not use real data in this paper due to pri-
vacy policies, it does not change or reduce the challenge
of modeling and solving the problem. The main contribu-
tions of this work are: the design of a knowledge model for
the planning and scheduling problem of ship operations in
petroleum ports and platforms following the AI P&S ap-

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 8

proach; and experimental studies that explore the perfor-
mance of domain-independent, heuristic-based planners on
a realistic P&S problem that includes numeric variables and
time constraints.

This paper is structured as follows. Firstly, we describe
the problem, its restrictions and requirements. Secondly,
we describe the design process, focusing on the modeling
approach using itSIMPLE. Next, we provide experimental
results obtained by selected domain-independent planners
when solving problem instances of increasing size in two
different scenarios: with and without time constraints. We
conclude with a discussion of the results.

Problem Description
The problem of planning and scheduling ship operations on
petroleum platforms and ports includes vessel capacity re-
strictions, the optimization of multiple, coupled objectives,
and many others features that make this domain a challenge
to AI planning systems. The model of this problem was
simplified to focus on the need to provide transportation of
goods from ports on the land to platforms in the ocean. In
this problem, we consider two strips of the Brazilian coast:
Rio de Janeiro and Santos. Each strip has one port (port P1
at Rio de Janeiro and port P2 at Santos) where the loading
activities of cargo items occur to support petroleum extrac-
tion in deep water.

Figure 1: Layout of the strips and position of the ports on
the Brazilian Coast.

Both strips contain a set of ocean platforms: six platforms
(F1, . . . , F6) in the Rio de Janeiro strip and four (G1, . . . ,
G4) in the Santos strip. The ports are located 200 km from
each other while platforms are located from 100 km to 300
km from ports. These platforms frequently require cargo
that must be delivered from a port to the requesting platform.
Each group of platforms is located in the strip connected
to their respective port onshore, as shown in Figure 1. A
vessel loads cargo at a port (and sometimes at platforms)
and travels to target points for delivery of part or all of its
cargo. After completing a delivery, ships go to the waiting
areas off-shore. There is one waiting area in each strip: the
one in Rio de Janeiro (called A1) is located 120 km (radial
distance) from port P1 and the one in Santos (called A2)

P1 F2 F3 F4 F5 F6
F1 300km 168km 168km 120km 260km 240km
F2 160km - 240km 120km 168km 120km
F3 280km 240km - 120km 168km 260km
F4 200km 120km 120km - 120km 168km
F5 160km 168km 168km 120km - 120km
F6 130km 120km 260km 168km 120km -

Table 1: Distance between platforms and ports in the Rio de
Janeiro strip.

P2 G2 G3 G4
G1 300km 200km 120km 260km
G2 180km - 260km 120km
G3 280km 260km - 200km
G4 140km 120km 200km -

Table 2: Distance between platforms and ports in the Santos
strip.

is located 100 km from port P2. The distance between A1
and A2 is 340 km. Tables 1, 2 and 3 provide the distances
between ports, platforms and waiting areas in this problem,
as illustrated in Figure 1.

Vessels are the main resource used to transport cargo
items from/to ports and platforms. A set of ships is respon-
sible for supplying the platforms. In this problem, we con-
sider ten available vessels (S1, . . . , S10): six of them have
the Rio de Janeiro strip as their base and four of them have
Santos as base. Cargo items (C1, . . . ,CN) refer to products,
food, equipment, and parts that must be delivered to plat-
forms and/or ports. They are represented as containers in
this work.

Given a set of cargo items to transport and their respective
locations, the challenge is to find a feasible plan that delivers
all cargo properly, minimizing the total amount of fuel used,
the makespan and the costs involved. Such a feasible plan
must respect the requirements described in the remainder of
this section.

Ports and Platforms: The ports can dock two ships si-
multaneously for loading, unloading and refueling. After re-
ceiving two ships, all further requests for docking have to be
queued. The cost for docking is is 1000 Brazilian Reais per
hour. This cost is applied only when the vessel is moored in
a port, and is computed from the time the vessel starts dock-
ing to the time it undocks. We do not address the packing
and organization of the cargo in the vessel, only the load-
ing/unloading rate.

Besides the port, a vessel can refuel at a subset of the plat-
forms. For this problem, we consider platforms F5 and G3
as capable for providing refueling operations. The refueling
operation of a vessel is performed at a rate of 100 liters per
hour in both ports and platforms. Only one vessel can dock
to a platform at any given time.

Vessels: Each ship has a limited capacity for cargo items
(100 tons) and a limited fuel tank (600 liters). Traveling
with the specified speed average of 70 km/h, ships consume

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 9

F1 F2 F3 F4 F5 F6 A1 A2 P1 P2
G1 468km 580km 420km 500km 380km 520km 540km 320km 350km 300km
G2 580km 468km 380km 520km 300km 500km 540km 110km 400km 180km
G3 588km 600km 420km 560km 580km 580km 580km 400km 450km 280km
G4 600km 588km 580km 580km 420km 580km 570km 180km 420km 140km
A1 200km 40km 320km 280km 180km 80km - 340km 120km 270km
A2 340km 380km 370km 340km 280km 300km 340km - 270km 100km
P1 300km 160km 280km 200km 160km 130km 120km 270km - 200km
P2 380km 290km 320km 340km 270km 300km 270km 100km 200km -

Table 3: Distance between the platforms, ports and waiting areas in the Rio de Janeiro and Santos strips.

1 liter of fuel each 3 km when traveling fully loaded and 1
liter each 5 km if empty. We assume that all ships have the
same capacity for cargo and the same average speed.

Before executing any activity in a port or a platform, ships
must perform a docking process. The docking or undocking
process of a vessel at a port takes 1 hour, whereas at a plat-
form it takes 0.5 hour. Ships can be docked at ports and
platforms to load and unload cargo items, to be refueled,
or both. The loading and unloading processes can be done
either at the platforms in the ocean or at the port onshore;
however, they cannot be done at the same time in a given
location. Each vessel can perform the loading/unloading op-
eration with a rate of 1 ton per hour. Refueling can be done
at the port or at platforms that have a refueling system, and
can be performed during loading or unloading. The rates for
refueling are the following: 100 liters per hour at a platform;
100 liters in half an hour at the ports.

Cargo Items: Cargo items can be carried by ships from
one location to another, and we disregard the order of load-
ing and unloading in this problem. Since each cargo item has
a specified weight, loading a ship is limited by the capacity
of that ship. The weight for each cargo item is specified in
the request and is considered input data for the problem.

Waiting areas in the ocean: All vessels have to be in a
waiting area at the beginning its multiple deliveries. At the
end of all deliveries the vessels must go back to a waiting
area to wait for the next requests. It is possible to send a
vessel located initially in one waiting area to another waiting
area of the other strip. However, it is important to have a
balanced number of vessels in each one. The ideal balance
is 6 vessels in the Rio de Janeiro area A1 and 4 in the Santos
waiting area A2.

The use of waiting areas is important to avoid long and
unnecessary docking periods at the ports (since there is a
cost associated with each docking period) and at the plat-
forms. When parking at the waiting areas, ships must have
sufficient fuel to return to a refueling location.

The Modeling Process with itSIMPLE
The KE tool called itSIMPLE (Vaquero et al. 2007; 2009)
was used to support the construction and development of the
domain model for the problem described above. itSIMPLE’s
integrated environment focuses on the crucial initial phases
of a design.

The tool allows users to follow a disciplined design pro-
cess to create knowledge intensive models of planning do-
mains, from the informality or semi-informality of real
world requirements to formal specifications and domain
models that can be read by domain-independent planners
(those that read PDDL). The suggested design process for
building planning domain models includes the following
phases: requirements specification; modeling; model anal-
ysis; testing with planners; and plan evaluation (Vaquero et
al. 2007). These phases are inherited from Software Engi-
neering and Design Engineering, combined with real plan-
ning domain modeling experiences. In this paper, we focus
on three of the main phases of such a design process: mod-
eling, testing with planners, and plan analysis.

Domain Modeling
Modeling in itSIMPLE follows an object-oriented approach.
Requirements are gathered and modeled using Unified Mod-
eling Language (UML) (OMG 2005), a general purpose lan-
guage broadly accepted in Software Engineering and Re-
quirements Engineering. UML is used to specify, visualize,
modify, construct and document domains or artifacts, gener-
ally following an object-oriented approach. The tool allows
the modeling of a planning problem using diagrams such as
class diagram, state machine diagram, timing diagram, and
object diagram

The class diagram represents the static structure of the
planning domain. It shows the existing types of objects, their
relationships, properties, operators (actions) and constraints.
Class attributes and associations give a visual notion of the
semantics of the model. Figure 2 shows the class diagram
designed for the Petrobras problem. The diagram consists
of nine classes: Basin, Location, WaitingArea (a special-
ization of Location), DockingLocation (also a specializa-
tion of Location), Port (a specialization of DockingLoca-
tion), Platform (also a specialization of DockingLocation),
Cargo, Ship, and Global (the class Global is a utility class
that stores global variables that are accessed from all other
classes). The classes illustrated in Figure 2 model all the
entities relevant to the problem.

The class Ship has several properties that match the re-
quirements. We tried to use straightforward names for these
properties to facilitate the understanding of the model and
provide an intuitive semantics for a non-planning expert
(e.g., loadcapacity and currentload are numeric values rep-
resenting the capacity of the ship and its current load); how-

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 10

Figure 2: Class diagram of the ship operations problem in petroleum ports and platforms.

ever, some of them deserve further explanation. The vari-
ables higherfuelrate and lowerfuelrate are the fuel consump-
tion rates of the ship when navigating with and without cargo
items, respectively. Even though fuel consumption rates
are the same for every ship in this problem, we decided to
store this information in each ship for extensibility: possi-
ble changes in ship performance in a more dynamic envi-
ronment would require re-planning. The mutually exclusive
variables readytonavigate and docked refer to the status of
the ship, whether it is available for moving from one loca-
tion to another or docked in any docking location (port or
platform). Finally, craneidle signals if the ship is perform-
ing neither loading nor loading operations. It is used to avoid
executing them concurrently.

Both WaitingArea and DockingLocation represent the in-
formation about which basin they belong to. Property avail-
ablespots in the DockingLocation is a numeric variable cor-
responding to how many ships are currently allowed to dock.
If a vessel docks at a port or platform, this variable is de-
creased by 1; it is increased if an undock operation is per-
formed. If an instance of DockingLocation can perform a
refueling operation, then variable canrefuel is set to true
and a refueling rate can be specified (e.g., 100 liters/hour
at a platform and 200 liters/hour at a port). The differ-
ent (un)docking durations at ports and platforms are spec-
ified in the dockingduration variable (since docking and un-
docking durations are the same in a given location, we use
dockingduration to represent both). Here we also store the
(un)docking duration for either location.

The Global class holds the information about the distance
between the location points shown in Figure 1 and speci-
fied in Tables 1, 2 and 3. The total fuel used by ships while
delivering the cargo items is stored in the global property to-
talfuelused, which defines the quality of the plan and which
must be minimized by the planners. Even though the prob-
lem has a set of criteria to be optimized, in this model we
evaluate only the total fuel used and the makespan. In ad-
dition, loadingrate holds the rate of loading and unloading
cargo in the ports and platforms (1 ton/h).

We have identified eight main operators (action schema)
performed by the ships, as listed below.
• navigatewithnocargo: Navigate from one location to a

docking location without cargo. Lower fuel consumption
is considered. The duration for this action is specified as
‘distance(from,to)/s.speed’.

• navigatewithcargo: Navigate from one location to a dock-
ing location with cargo (currentload > 0). Higher fuel
consumption is considered. The duration is specified as
‘distance(from,to)/s.speed’.

• navigate2waitingarea: Navigate from one location to a
waiting area. This operator considers the total fuel con-
sumption necessary to get to the destination and then to a
refueling location. lowerfuelrate is employed in this case.
The duration is specified as ‘distance(from,to)/s.speed’.

• dock: Dock the ship in one of the available spots in the
docking location (port or platform). The duration is spec-
ified as ‘loc.dockingduration’.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 11

Figure 3: State machine diagram of the Ship.

• undock: Undock the ship from one of the spots used in
the docking location (port or platform). The crane must
be idle for this operation. The duration is specified as
‘loc.dockingduration’.

• loadcargo: Load a cargo item from the location where
the ship is docked. The ship must have available capac-
ity to load the item. The crane must be idle and during
the whole operation the crane becomes unavailable. The
duration is specified as ‘c.weight/loadingrate’.

• unloadcargo: Unload a cargo item from the docked ship
to the location. The crane must be idle and during the
whole operation the crane is unavailable. The duration is
specified as ‘c.weight/loadingrate’.

• refuelship: Refuel the ship’s tank to its maximum ca-
pacity. The ship must be docked during the whole op-
eration. The duration is specified as ‘(s.fuelcapacity -
s.currentfuel)/loc.refuelingrate’ which is the time neces-
sary to re-fill the fuel that has been consumed.

The actions of the domain are modeled using two dia-
grams: the class diagram and the state machine diagram. In
the class diagram, we define the name, parameters and dura-
tion for each operator (we use discrete time). The dynamics
of the actions are specified in the state machine diagram, in
which it is possible to represent the pre- and post-conditions
of the operators declared in the class diagram. In itSIMPLE,
pre- and post-conditions are defined using the formal con-
straint language called Object Constraint Language (OCL)
(OMG 2003), a predefined language of UML. Usually ev-
ery class in the class diagram has its own state machine di-
agram. A state machine diagram does not intend to specify
all changes caused by an action. Instead, the diagram details
only the changes that the action causes in an object of a spe-
cific class. Figures 3 and 4 show the state machine diagrams
for the classes Ship and Cargo, respectively.

Timing diagrams and annotated OCL expressions are
used to specify how properties change in an action horizon.
For example, properties such as readytonavigate and cranei-
dle become false when the action starts and then change to

Figure 4: State machine diagram of the Cargo.

true when it ends. In itSIMPLE, we can represent this effect
in the timing diagrams or in the OCL conditions. For exam-
ple, readytonavigate is used to control the status of the ship
when navigating from one location to another, preventing
the planner from assigning another navigation action during
the operation. As an effect of action navigatewithnocargo
for instance, readytonavigate must be set to false at the start
and then set to true at the end (when the ship arrives at the
destination), as done in PDDL.

If a timing diagram is not used, temporal operators are
annotated to the OCL pre- and post-conditions. For ex-
ample, the variable availablespots is decreased as soon as
the action dock is started, preventing any other ship dock-
ing at the same spot. This is done by annotating the post-
condition ‘loc.availablespots = loc.availablespots - 1’ to the
interval [start,start]. Users can also specify numeric inter-
vals; however, PDDL does not support such indexation of
time points. Property readytonavigate is also set to false
when dock starts, ‘s.readytonavigate = false’ in the interval
[start,end]. Undocking is similar, but the variable availa-
blespots is increased at the end and readytonavigate is set
to true at the end. Therefore, we can guarantee that naviga-
tion will not be assigned during the whole process of dock-
ing and undocking. Moreover, the refueling operation must
guarantee that the ship remains docked for the entire dura-
tion of the action. That is done by annotating the precondi-
tion ‘s.docked = true’ with the interval [start,end]. In PDDL,

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 12

this precondition would be be translated to ‘(over all (docked
?s))’.

In order to illustrate the resulting specification of the ac-
tions and facilitate their understanding, we present below the
PDDL code for the actions navigate2waitingarea and load-
cargo. This code was generated automatically by itSIMPLE.

(:durative-action navigate2waitingarea

:parameters(?s - Ship ?from - Location ?to - WaitingArea

?next - DockingLocation)

:duration

(= ?duration (/ (distance ?from ?to) (speed ?s)))

:condition

(and (at start (at ?s ?from))

(at start (readytonavigate ?s))

(at start (canrefuel ?next))

(at start (>= (currentfuel ?s)

(+ (* (distance ?from ?to) (lowerfuelrate ?s))

(* (distance ?to ?next) (lowerfuelrate ?s))))))

:effect

(and (at end (at ?s ?to))

(at end (decrease (currentfuel ?s)

(* (distance ?from ?to) (lowerfuelrate ?s))))

(at end (increase (totalfuelused)

(* (distance ?from ?to) (lowerfuelrate ?s))))

(at end (not (at ?s ?from)))

(at start (not (readytonavigate ?s)))

(at end (readytonavigate ?s))))

(:durative-action loadcargo

:parameters (?s - Ship ?c - CargoItem

?loc - DockingLocation)

:duration (= ?duration (/ (weight ?c) (loadingrate)))

:condition

(and (at start (at ?s ?loc))

(at start (docked ?s))

(at start (>= (loadcapacity ?s)

(+ (currentload ?s) (weight ?c))))

(at start (isAt ?c ?loc))

(at start (craneidle ?s)))

:effect

(and

(at end (increase (currentload ?s) (weight ?c)))

(at end (in ?c ?s))

(at end (not (isAt ?c ?loc)))

(at start (not (craneidle ?s)))

(at end (craneidle ?s))))

In itSIMPLE, UML object diagrams are used to describe
the initial state and the goal state of a planning problem in-
stance. The object diagram represents a picture of the sys-
tem in a specific state. It can also be seen as an instantiation
of the domain structure defined in the class diagram. This
instantiation defines four main aspects: the number and type
of objects in the problem; the values of the attributes of each
object; and the relationships between the objects. In our
problem, the initial state consists of a set of ships at their cor-
responding waiting areas and with the corresponding prop-
erty values, the cargo items and their respective initial lo-
cations (ports), the platforms with their available spots and
refueling capability, as well as all the distances between the
existing location objects (this information can be inserted
by importing data in a text file as opposed to manually in-

putting the information). The goal state is an object diagram
in which all cargo items are at their destination and the ships
are back to their respective waiting areas.

Besides the object diagrams for defining initial and goal
states, we also model the objective function to be optimized
in every planning situation. In itSIMPLE, we select the do-
main variable to be minimized in a way that allows it to
be represented as a linear function in the :metric section
of PDDL. In this model we consider (1) the total fuel used
(stored in the variable totalfuelused) and (2) the makespan.
The cost of docking time of each ship is not considered in
this work due to limitation on available general planners in
dealing with continuous properties/time. The continuous ap-
proach could be used to compute the time that a ship remains
docked for its operations, providing the necessary costs to be
considered during planning.

Model Testing with Planners and Plan Analysis
itSIMPLE can automatically generate a PDDL model from
a UML representation. In addition to the automated transla-
tion process, the tool can communicate with several planners
in order to test the domain models in an integrated design en-
vironment. In this application, the planners must be selected
based on the resulting PDDL model requirements that ex-
tend beyond the classical approaches.

In order to analyze the generated plans, itSIMPLE pro-
vides two main support tools for plan analysis: simulation
and validation. Plan simulation is performed by observing
a sequence of snapshots (UML object diagrams), state by
state, generated by applying the plan from the initial state to
the goal state. The tool highlights every change in each state
transition as described by Vaquero et al. (2007). For the plan
analysis, itSIMPLE provides charts that represent the evolu-
tion of selected variables such as those related to the quality
of a plan (metrics). In addition, itSIMPLE provides the use
of the tool VAL1 to validate the plans generated by PDDL-
based planners.

Experimental Results
We present two case studies in this section to demonstrate
how planners solve the ship operations problem (in one sce-
nario for expansion of the platforms network) using the
model generated by itSIMPLE. In the first case study, we
investigate the performance of three classical, modern plan-
ners using a reduced version of the model in which no time
constraints are considered. We focus on plan feasibility and
the minimization of fuel consumption. Time constraints usu-
ally add more difficulty to the AI P&S techniques so we aim
to set up a baseline performance with such a first study. In
the second case study, we analyze the output of three mod-
ern planners using the model described in the paper, i.e.,
with the time constraints and requirements; however, only
the makespan is considered in the minimization function. In
this latter study, we selected three planners that were able to
read and correctly handle the PDDL durative-actions present
in the model.

1Available at http://planning.cis.strath.ac.uk/VAL/

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 13

In both case studies, we investigate different delivery re-
quest scenarios. We analyze the performance of the se-
lected planners in problem instances with the number of
cargo items equal to: 5, 7, 9, 11, 13, and 15 (with differ-
ent weights). In these instances, P1 has n cargo items while
P2 has n+ 1 to simulate unbalanced requests. The problem
instance with 15 cargo items represents a realistic demand
from the platforms. In all instances, there are six ships in A1
and four in A2 in the initial state–all of them with 600 liters
of fuel capacity, 400 liters of fuel, 100 tons of load capacity,
no cargo, an average speed of 70 km/h, 0.3 l/km and 0.2 l/km
as the higher and lower fuel consumption rates, respectively.
In addition to the ports, platforms F5 and G3 are able to per-
form refueling. 100 l/h is the refueling rate at the ports and
at platforms F5 and G3. Docking and undocking durations
are set to 1 hour in the ports and 0.5 hour in the platforms.

In our experiment, planners were run on an Intel Core i7
950 3.07 GHz computer with 4.00 Gigabytes of RAM.

Case Study 1: No Time Constraints
In this case study we consider a simplified model with no
time constraints. Taking into account the model in Figure
2, we do not include the variables related to time and rates
such as loadingrate, speed, refuelingrate and dockingdura-
tion. Actions are adapted accordingly. In fact, they are used
only in the definition of action durations.

We selected the planners Metric-FF (Hoffmann 2003),
SGPlan6 (Hsu and Wah 2008) and MIPS-xxl 2008
(Edelkamp and Jabbar 2008) for this experiment. Other
planners such as LPG, LPG-td, LPRPG were also tried for
this experiment but they could not handle the model (e.g.,
the planner halts with a segmentation fault). We investigate
the performance of Metric-FF and MIPS-xxl 2008 with and
without the optimization flag on. To analyze the planners’
performance we look at the generated plans from the six
problem instances (p05, p07, p09, p11, p13, p15) and mea-
sure the runtime, number of actions in the plan and the total
fuel used by ships. We assigned a 6-hour timeout for the
planners. Table 4 shows the results from this case study.

As shown in Table 4, Metric-FF without optimization is
able to provide a solution to every problem instance. How-
ever, the planner is unable to solve any problems with the
optimization flag on2 – the time limit is reached in ev-
ery case. SGPlan6 is not able to solve problems p09 and
p15: the planner stopped before reaching the time limit.
Nevertheless, SGPlan6 outperforms Metric-FF in p07 and
p11in terms of the number of actions and the total fuel
used. Metric-FF outperforms SGPlan6 in most of the cases.
MIPS-xxl 2008 in terms of the number in all problem in-
stances.

Analyzing the plans generated by Metric-FF without op-
timization, we detected that even though several vessels are
available for the operations, the planners provide solutions
in which just a few ships are used. For example, in the
plan generated for the problem p05, only one ship (S9) is

2Since Metric-FF is treated as a blackbox in this experiment,
we did not explore the reasons for why it does not solve any of the
problems.

used for all deliveries and transportations. Only three ships
(S7,S8,S9) are used to solve the problem p15. In addition,
some plans contained unnecessary consumption of fuel, for
example in cases where a ship travels from location A to B
and then from B to C without doing any delivery, while it
could go directly from A to C using less fuel (shorter dis-
tance). SGPlan6 shows a similar behavior by using a few
ships to solve the problems; however, it does not show the
unnecessary fuel consumption behavior.

Case Study 2: With Time Constraints
In this case study we consider the complete model of ship
operations in the port and platforms, with time constraints
and requirements, illustrated in Figure 2. We selected plan-
ners POPF (Coles et al. 2010), SGPlan6 and MIPS-xxl 2008
for this experiment. POPF participated in the seventh Inter-
national Planning Competition (2011) in the deterministic,
temporal satisficing track. We have set up POPF to generate
as many solutions as it could in the time limit, improving the
plan quality (makespan in this case) in each subsequent so-
lution. Other planners such as LPG-td and LPRPG were also
tried for this experiment but they could not handle the model.
To analyze the selected planners’ performance we looked at
the generated plans from the six problems instances (p05,
p07, p09, p11, p13, p15) and measured the runtime, number
of actions in the plan, the total fuel used by ships and the
makespan. We assigned a 3-hour timeout for the planners to
simulate a more realistic response horizon. Table 5 shows
the results for the second case study.

As shown in Table 5, SGPlan6 is the only planner in this
experiment that managed to solve some of the instances.
Surprisingly, the more recent planner POPF does not solve
any of the problem instances. We have also checked smaller
problems with 2 and 3 cargo items, and even 1 cargo item
and 1 ship, but it still does not solve them. SGPlan6 pro-
duced exactly the same solutions as in case study 1; the run-
times were greater in most of the cases though.

Discussion
The case studies showed that an AI P&S approach for solv-
ing the ship operation problem in Petrobras is possible; how-
ever, the available domain-independent planners do not cur-
rently provide the necessary set of tools to solve the modeled
problem in real life. SGPlan6 can often provide a feasible
solution, but optimal solutions in a realistic horizon do not
appear to be achievable. As opposed to modeling the prob-
lem using optimization approaches (e.g., using MIP or CP
models), our intention was to develop a model in order to
evaluate if current planners would have acceptable perfor-
mance in real scenarios. From the results presented in the
previous section, we conclude that the planners do not suc-
ceed at this task.

Since one of the main goals in this paper is to describe the
modeling experience, in this investigation we tried to model
the problem using KE tools that would direct the model to
standard representation languages in AI P&S and therefore
could potentially be read by several planners. In fact, model-
ing the problem in UML and then translating to PDDL was

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 14

Cargo Metric-FF SGPlan6 MIPS-xxl 2008
no optimization with optimization With Metric With and without optimization

Runtime (s) # actions Fuel (l) Runtime (s) # actions Fuel (l) Runtime (s) # actions Fuel (l) Runtime (s) # actions Fuel (l)
5 13.56 42 631 Timeout - - 12.11 47 781 Timeout - -
7 38.50 59 881 Timeout - - 933.68 58 805 Timeout - -
9 106.94 76 1,073 Timeout - - X - - Timeout - -
11 244.45 88 1,523 Timeout - - 1,114.42 96 1457 Timeout - -
13 284.68 105 1,533 Timeout - - 1,041.22 108 1630 Timeout - -
15 499.47 122 1,844 Timeout - - X - - Timeout - -

Table 4: Results from Case Study 1 - No Time Constraints. ‘Timeout’ means that the planner reached the 6-hour limit without
generating any plan. ‘X’ means that the planner stopped before reaching the timeout limit without generating a plan.

Cargo POPF SGPlan6 MIPS-xxl 2008
Runtime (s) # actions Fuel (l) Makespan (h) Runtime (s) # actions Fuel (l) Makespan (h) Runtime (s) # actions Fuel (l) Makespan (h)

5 X - - - 1.82 47 781 152.52 Timeout - - -
7 X - - - 3,071.61 58 805 294.34 Timeout - - -
9 X - - - X - - - Timeout - - -
11 X - - - 3,245.85 96 1,457 422.24 Timeout - - -
13 X - - - 1,180.81 108 1,630 600.54 Timeout - - -
15 X - - - X - - - Timeout - - -

Table 5: Results from Case Study 2 - With Time Constraints. ‘Timeout’ means that the planner reached the 3-hour limit without
generating any plan. ‘X’ means that the planner stopped before reaching the timeout limit without generating a plan.

feasible and practical. The semantics of the model results
in a natural mapping between real objects and objects in the
model. Moreover, the mapping of the generated solution fol-
lows the same rules and has a direct map to the real world.
This modeling ease is not necessarily true in the models de-
veloped with optimization technology.

It is indeed possible to refine and adapt the model so that
planners could run faster and produce better solutions. A
designer could even reduce the problem to a basic form so
other planners can handle it. However, we tried to perform
the modeling process by focusing on the semantics of the
model – keeping the mapping obvious for non-planning ex-
perts. In fact, the resulting model can be seen as a trans-
portation problem (the class of problems addressed the most
by the AI Planning community) with extensions that make it
more realistic (e.g., load capacity, fuel capacity). The model
does not seem to be far different from what we see in clas-
sical numeric and temporal domains (e.g., logistics, depots,
driverlog, zenotravel, etc.), but it indeed combines certain
requirements that test the limits of the state-of-the-art plan-
ners. Therefore, it is a challenge domain for AI P&S ap-
proach. That is why it has been proposed as one of the chal-
lenge domains in the ICKEPS’12 competition.

Conclusion
In this paper, we have investigated a real planning problem,
the planning and scheduling of ship operations in ports and
platforms, using an AI P&S approach. We described the
design process used for building a domain model with the
KE tool itSIMPLE. In order to validate the model and in-
vestigate the applicability of state-of-the-art planners in this
problem, two case studies were conducted. The first one
considers a semi-realistic scenario in which no time con-
straints are considered and the second brings a more realistic
case in which time is considered. The planners were selected

based on their capacity in dealing with the domain model
requirements (durative-actions, numeric variables, and met-
rics). The metrics considered in these problems focus on the
minimization of different parameters such as total fuel used
by ships and the makespan.

Experimental results showed that in both cases some plan-
ners can provide valid solutions for the problem, however,
they struggle to provide solutions to more realistic prob-
lems. It is important to note that few planners can deal with
such a combination of PDDL features. Therefore, the re-
sulting PDDL model brings interesting challenges even for
the state-of-the-art planners. The model will be made avail-
able in order to share our results on this domain. In addition,
experience from this application has motivated the improve-
ment of itSIMPLE towards time-based models to support de-
signers on real-world problems.

Acknowledgment
The first author is supported by the Government of Canada
Post-Doctoral Research Fellowship. The second author is
supported by FAPEAM.

References
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Plan-
ning and Scheduling (ICAPS-10).
Edelkamp, S., and Jabbar, S. 2008. MIPS-XXL: Featuring
External Shortest Path Search for Sequential Optimal Plans
and External Branch-And-Bound for Optimal Net Benefit.
In Short paper for the International Planning Competition
2008.
Hoffmann, J. 2003. The metric-FF planning system: Trans-
lating ignoring delete lists to numerical state variables. Jour-
nal of Artificial Intelligence Research (JAIR) 20.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 15

Hsu, C.-W., and Wah, B. W. 2008. The sgplan planning sys-
tem in ipc-6. In Proceedings of the Sixth Internation Plan-
ning Competition (IPC) in ICAPS 2008.
Kautz, H., and Walser, J. P. 1999. State-space planning by
integer optimization. In In Proceedings of the Sixteenth Na-
tional Conference on Artificial Intelligence, 526–533. AAAI
Press.
Kautz, H., and Walser, J. P. 2000. Integer optimization mod-
els of ai planning problems. The Knowledge Engineering
Review 15:2000.
OMG. 2003. UML 2.0 OCL Specification m Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, m Version 2.0.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From requirements and analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third ICK-
EPS, ICAPS 2009, Thessaloniki, Greece.
Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. A
brief review of tools and methods for knowledge engineer-
ing for planning & scheduling. In Proceedings of the ICAPS
2011 workshop on Knowledge Engineering for Planning
and Scheduling workshop. Toronto, Canada.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 16

Constraint-based Scheduling for Closed-loop Production Control in RMSs

E. Carpanzano & A. Orlandini & A. Valente
ITIA-CNR

Italian National Research Council
Milan, Italy

A. Cesta & F. Marinò & R. Rasconi
ISTC-CNR

Italian National Research Council
Rome, Italy

Abstract

Reconfigurable manufacturing systems (RMS) are conceived
to operate in dynamic production contexts often character-
ized by fluctuations in demand, discovery or invention of new
technologies, changes in part geometry, variances in raw ma-
terial requirements. With specific focus on the RMS produc-
tion aspects, the scheduling problem implies the capability of
developing plans that can be easily and efficiently adjusted
and regenerated once a production or system change occurs.
The authors present a constraint-based online scheduling con-
troller for RMS whose main advantage is its capability of dy-
namically interpreting and adapting to production anomalies
or system misbehavior by regenerating on-line a new sched-
ule. The performance of the controller has been tested by run-
ning a set of closed-loop experiments based on a real-world
industrial case study. Results demonstrate that automatically
synthesizing plans and recovery actions positively contribute
to ensure a higher production rate.

Introduction
Highly automated production systems are devised to effi-
ciently operate in dynamic production environments, as they
implement at various levels the capability to adapt or an-
ticipate uncertainty in production requirements (Smith and
Waterman 1981; Wiendahl et al. 2007). Generally, Re-
configurable Manufacturing Systems (RMS) are endowed
with a set of reconfigurability enablers related either to the
single system component (e.g., mechatronic device, spindle
axes), or related to the entire production cell and the sys-
tem layout; as a consequence, possible fluctuations of the
production demand can be counteracted by implementing
the required enablers. Differently from RMSs, in Focused
Flexibility Manufacturing Systems (FFMS) the responsive-
ness towards the changes relies on the production evolu-
tion forecasting. On the basis of the predicted events, the
production system is preliminarily endowed with the nec-
essary degree of flexibility which is exploited at the mo-
ment the change occurs (Terkaj, Tolio, and Valente 2009;
2010).

A particularly interesting case concerns the integration of
production and automation RMS layers, as failing to pro-
vide an efficient integration between the previous two mod-

Copyright c⃝ 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Production scheduler and automation dispatcher
closed-loop.

ules may severely affect the system global performance (Va-
lente and Carpanzano 2011; Carpanzano et al. 2011). A pro-
duction schedule module designed for highly automated sys-
tems must be able to manage both exogenous (e.g. change
of volumes or machining features) and endogenous events
(e.g. machine failures or anomalous behavior). At the same
time, it must close the loop with the automation dispatch-
ing module, which is responsible for mapping production
tasks into the related automation tasks that are assigned to
the devices, coherently to the scheduled production jobs se-
quences. Closing the loop between the two modules entails
that the dispatching module continuously feeds back the cur-
rent status to the production schedule module, which may
decide to possibly modify the plan (Fig. 1).

There is a number of production scheduling approaches
considering changes, both static (Tolio and Urgo 2007) and
dynamic (Rasconi, Policella, and Cesta 2006). Another sim-
ilar example of deployment of Planning & Scheduling tech-
niques for on-line planning and execution in real-world do-
mains can be found in (Ruml et al. 2011), where the authors
tackle the problem of controlling production printing equip-
ment by exploiting an on-line algorithm combining state-
space planning and partial-order scheduling to synthesize
plans. As opposed to (Ruml et al. 2011), the emphasis in the
work presented here is more focused on the exploitation of
the plan’s temporal flexibility during the execution phase to
hedge against the environmental uncertainty. More in detail,

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 17

while in (Ruml et al. 2011) the main effort revolves around
the on-line planning, makespan-optimization and dispatch-
ing of each new printing requests (goals) with plan abor-
tion in case of a printer module failure, in our work great
attention is devoted to the on-line plan readjustment in case
exogenous events occur during execution. In our case, less
effort is devoted to planning, as a determined sequence of
tasks is provided for each different production request (i.e.,
there is no need to plan, in the classical sense); rather, we fo-
cus on the production plan AI-based scheduling followed by
the on-line rescheduling and/or corrective temporal propaga-
tion, should disruptions make the plan resource-unfeasible at
execution time.

With specific focus on the RMS management aspects, the
production scheduling problem implies the capability to de-
velop a short term production plan based on the inputs gen-
erated by the capacity planning problem that can be easily
and efficiently adjusted and regenerated once a production
or system change occurs. Despite the capability of generat-
ing robust and adaptive scheduling plans, the available ap-
proaches described above are decoupled by the system au-
tomation layer. The work addressed in this paper attempts
to fill this gap, by merging the production and automation
scheduling modules in a RMS context, and presenting the
system resulting from this integration applied to a real indus-
trial case. The paper is structured as follows: after present-
ing the proposed dynamic production scheduling approach,
we analyze a particular case study taken from an industrial
application; we then proceed to describe the formulation of
the scheduling model, and finally we outline the major ben-
efits of the approach, closing the paper with some final ob-
servations about the ongoing work.

The proposed approach
In (Carpanzano et al. 2011) we proposed to address the pro-
duction scheduling problem using the Constraint Satisfac-
tion Problem (CSP) formalism, as it allows to naturally ex-
press the features needed to model scheduling problems un-
der uncertainty (Rasconi, Policella, and Cesta 2006) (e.g., it
allows to easily provide the search algorithms with domain-
specific heuristic, and to naturally represent flexible solu-
tions). This characteristics provide the schedule with strong
reconfiguration capabilities during execution, should poten-
tially disrupting events occur. Synthesizing a production
plan basically entails assigning the available resources to the
jobs that are to be processed in the plant with a temporal
horizon of the shift; once jobs are allocated to the resources,
the schedule is passed to the automation layer that translates
the production scheduling in automation plans.

Modeling the scheduling features
The base scheduling problem model employed in this work
conforms to the Resource Constrained Project Scheduling
Problem with Time Lags (RCPSP/max), this is to open the
possibility to import a robust algorithmic experience on the
problem (Cesta, Oddi, and Smith 2002; Rasconi, Policella,
and Cesta 2006). The RCPSP/max can be formalized as fol-
lows: (i) a set V of n activities must be executed, where

each activity aj has a fixed duration dj . Each activity has
a start-time Sj and a completion-time Cj that satisfies the
constraint Sj + dj = Cj ; (ii) a set E of temporal constraints
exists between various activity pairs < ai, aj > of the form
Sj − Si ∈ [Tmin

ij , Tmax
ij], called start-to-start constraints

(time lags or generalized precedence relations between ac-
tivities); (iii) a set R of renewable resources are available,
where each resource rk has a integer capacity ck ≥ 1. The
execution of an activity aj requires capacity from one or
more resources; for each resource rk the integer rcj,k repre-
sents the required capacity (or size) of activity aj . A sched-
ule S is said to be time-feasible if all temporal constraints
are satisfied, while it is resource-feasible if all resource con-
straints are satisfied (let A(S, t) = i ∈ V |Si ≤ t < Si + di
be the set of activities which are in progress at time t and
rk(S, t) =

∑
j∈A(S,t) rcj,k the usage of resource rk at

that same time; for each t the constraint rk(S, t) ≤ ck
must hold). The solving process is performed exploiting
a makespan optimization scheduling algorithm called ISES
(Iterative Sampling Earliest Solutions) (Cesta, Oddi, and
Smith 2002) . The ISES solving algorithm basically pro-
ceeds by detecting the sets of schedule activities that com-
pete for the same resource beyond the resource maximum
capacity (conflict sets) and deciding the order of the activ-
ities in each set, through the insertion of further temporal
constraints between the end time of one activity and the start
time of the other, to eliminate conflicting overlaps.

The Dynamic Scheduling Control Architecture
In this work, we present a real-time control architecture (see
Fig. 2) endowed with the flexible production scheduling ca-
pabilities discussed above in order to dynamically synthe-
size updated scheduling solutions as required by the contin-
uously changing environmental conditions.

As shown in Fig. 2, the control architecture is designed
to provide/receive data to/from the automation layer, and is
composed of three different modules, each one holding dif-
ferent responsibilities. The Controller is the main compo-
nent of the architecture and is in charge of: (i) invoking
the Scheduler in order to ask for new solutions whenever
a new job is entering the system (find solution command,
see also the following point iv); (ii) updating the internal
model of the system according to the observations received
by the Dispatcher (modify model command); (iii) detect-
ing any possible cause (e.g., anomalous behaviors, failures,
etc.) leading to plan unfeasibility; (iv) invoking the Sched-
uler in order to reschedule the current solution and possibly
produce a new feasible solution; (v) disposing completed
tasks from the current model. Whenever invoked by the
Controller, the Scheduler is responsible for (i) producing
the initial solution needed to initiate the production process
starting from a given problem, and (ii) rescheduling the cur-
rent solution when it becomes unfeasible due to the onset of
some exogenous event. Finally, the Dispatcher is respon-
sible for (i) realizing the communication from the automa-
tion level to the rest of the architecture (all messages coming
from the field are pre-processed by the Dispatcher and the
related data are forwarded to the Controller), and (ii) dis-

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 18

patching solution-related plan activation signals to the au-
tomation layer.

Figure 2: The Overall Control Architecture.

The overall architecture is implemented in Java as a com-
position of three concurrent and asynchronous processes that
interact in a coordinated way to control the production pro-
cess. In addition, one additional component has been imple-
mented in order to record and store in a database the infor-
mation flowing within the control system and to provide a
human operator with a graphical view of the collected data.
Finally, the communication between the control architecture
and the automation level has been implemented through the
use of the OPC protocol. According to the ISA95 standard,
such protocol is fully compatible for SCADA connection.

Representing Maintenances and Recovery actions
In order to make the execution domain as close as possi-
ble to the real production system environments, besides the
ordinary production tasks the system is able to accommo-
date maintenance activities (ordinary and extraordinary) as
well as recovery actions that should be executed after a ma-
chine failure. Ordinary maintenances are generally sched-
uled in the plan according to their due frequency, extraordi-
nary maintenances are scheduled in case of anomalous ma-
chine behaviors, while recovery actions are instead inserted
in the plan on occurrence of particular machine failures.
The urgency (i.e., the execution immediacy) of the extra-
maintenance will be decided on the basis of the gravity of
the occurred anomaly, which is assessed by the Controller’s
Anomaly Diagnosis module (see Fig. 2). It should be noted
that as opposed to anomalies (which entail a degraded ma-
chine performance), we assume failures entail the complete
inoperability of the affected resource until the failure is re-
solved (see Section Production and management features of
the FRC for details related to the use case considered in this
work).

Industrial case application
The proposed scheduling approach has been applied to an
industrial case pertaining to a reconfigurable production line
for the manufacturing of customized shoes, representing the

European Best Practice in mass customization. The produc-
tion system is composed by 5 manufacturing cells connected
by a flexible transport system composed by rotating tables.
The last automated manufacturing island in the shop-floor
(Fig. 3) is the Finishing Robotic Cell (FRC), responsible for
the shoe finishing before packaging and delivery.

1.1

E dg e of 1 st Fl oo r

3 .2

2 .1

3.1

4.1

6 .2

7.1

6.1

6.3

9.2

11 .1

6.4

8.1

13.1

Figure 3: Shop-Floor Layout and Finishing Robotic Cell lo-
cation.

As illustrated in Fig. 4, the FRC consists of four machine
units, respectively an ABB robot (R1), the island from/to
which parts are un/loaded (R2), a controlled brushing ma-
chine (R3), a creaming machine (R4) and a spraying ma-
chine (R5). The robot operates as pick and place and fix-
turing system; it loads the semi-finished shoe from the is-
land (or rotary table) and, according to the part program,
transports the part to the related machines, holding the part
while the machine is processing it, as a proper fixturing sys-
tem. Creaming and spraying machines are equipped with
two inter-operational buffers with 9 slots each.

Figure 4: Resource composing the Finishing Robotic Cell.

As far as the FRC automated system is concerned, the
FRC controller is connected with the transportation system
PLC, the SCADA of the entire line and the low lever cell
controller modules. Three types of activities are achieved by
means of the existing control architecture: Communication-
synchronization with production line controller; Synchro-
nization of tasks in the finishing cell; Control of finishing
operations such as rotation speed of the felt rollers, check of

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 19

spray pressure and drying time, tracking of actual operation
execution times compared to nominal expected ones.

Production and management features of the FRC
The FRC finishing process can be clustered in three main
families: creaming processes, spraying processes and brush-
ing processes. A typical process sequence is structured in
the following steps: part loading; brushing for cleaning the
raw piece of dust; finishing by spraying or creaming opera-
tions; drying in the buffer; brushing; unloading the finished
part.

As highlighted in (Carpanzano et al. 2011), the consid-
ered family of products consists of 8 different part types (i.e.,
4 woman models and 4 male models). The processing of
each part is to be further divided into the left and right sub-
parts of each shoe model. The production of all parts can be
described in terms of the task sequences presented in Table
1. Given a specific shoe model, the left and right part of the

Table 1: Description of operation sequences.

Sequence #1 Sequence #2 Sequence #3 Sequence #4
Load Load Load Load
Brushing Brushing Spraying Creaming
Spraying Creaming Unload Unload
Unload Unload Buffering Buffering
Buffering Buffering Load Load
Load Load Brushing Brushing
Brushing Brushing Unload Unload
Unload Unload

model can be produced by means of the same sequence type
for both female and male items. However, the durations of
the sequence tasks can vary depending on the product type,
resulting in 16 different process sequences in total.

As stated earlier, besides the production tasks a number of
maintenance operations need to be foreseen and scheduled
to ensure the FRC health. Table 2 synthesizes a few exam-
ples of maintenance tasks for FRC resources, considered in
this work; in the table, the listed maintenance activities are
associated to the related resource, and it is specified whether
a stop of the cell is required. The table reports the aver-
age expected time (in seconds) for carrying out each main-
tenance activity as well as the maintenance rate indicated in
brackets.

Table 2: Maintenance Operation Time matrix [sec].
Maint. Task [Rate] R1 R2 R3 R4 R5 Stop Fqncy
Fill cream tank 90 no 1/day
Creaming M. Clean. 60 no 12/day
Creaming M. Nozzle Clean. 3 no 2/hour
Fill spray tank 60 no 1/day
Spraying M. Clean. 60 no 12/day
Spraying M. Nozzle Clean. 3 no 2/hour
Fill wax in Brushing M. 60 no 1/day
Gripper Calibr. 15 no 1/day

Besides the maintenance tasks, a set of FRC failures have
also been systemized and clustered by type in this work (see
Table 3). Each failure type mapped upon resources is asso-
ciated to a number of suitable troubleshooting strategies. An

efficient execution of maintenance and/or recovery tasks re-
lies on a persistent signal interpretation to assess the system
status. This evaluation is crucial to identify the gap between
actual and nominal system behavior and consequently the
related actions to be implemented. Table 4 outlines few ex-
amples of signal information associated to the need to un-
dertake specific maintenance tasks. For each considered
machine maintenance, the table shows: (i) the polled sen-
sors, and (ii) the predefined signal threshold values beyond
which anomalies of different gravity are recognized (e.g., se-
vere (red) anomalies are detected when the weighted sum of
the anomalous readings obtained from sensors goes below
10%).

Table 3: Failure modes.

Fail. types R3 R4 R5 Dur. (mins) Cell Stop
Wax not moving x 2 no
Brush slider not moving x 2 no
Brush not rotating x 2 no
Dosage not working x 5,15 no,yes
Cream not arising from sponge x 15,25 no,yes
Spray pistol not responding x 10,20 no,yes
Air only from spray pistol x 5 no
Anomalous spray pistol jet x 10 no

Table 4: Maintenance tasks from signal interpreting.

Maintenance type Sensors Orange Red
Fill cream tank Level 10-20% 0-10%
Fill spray tank Level 10-20% 0-10%
Fill wax in Brushing M. Level 10-20% 0-10%
Gripper calibration Force sensor 10-20% 0-10%
Creaming M. cleaning Visual + filter + prod. qlty 15-30% 0-15%
Spraying M. cleaning Visual + filter + prod. qlty 15-30% 0-15%
Creaming M. nozzle clean. Cream cons. + valve + prod. qlty 15-30% 0-15%
Spraying M. nozzle clean. Spray cons. + valve + prod. qlty 15-30% 0-15%

The scheduling-based controller
As explained in (Carpanzano et al. 2011), the FRC schedul-
ing problem is modeled in CSP terms adopting a combina-
tion of modeling strategies that allows to capture all the sig-
nificant aspects of the problem that the solving process must
reason upon.

Modeling in the static case
The reader interested in the base model details can refer
to (Carpanzano et al. 2011); in that work, we focused on
a model abstraction suitable for the static problem solving
case, which has allowed us to: (1) decrease the number of
involved tasks guaranteeing no loss of expressiveness, and
(2) re-use partially modified, if at all, off-the-shelf schedul-
ing algorithms for the solving process.

The solution provided in (Carpanzano et al. 2011) was
taking advantage of the robot acting as a critical resource,
which allowed the two task subsequences immediately pre-
ceding and following the buffering operation to be grouped
in two single blocks (the first and the third dashed boxes,
in Fig. 5). In order to allow for a finer treatment of ma-
chine faults and maintenance operations, in the present work
it is necessary to abandon such aggregated model and keep

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 20

Figure 5: FRC task sequence for the woman #1 shoe part.

each individual sequence task separated. Fig. 5 depicts a
typical sequence that entails the utilization of a subset of
FRC machines and tools, e.g., the brushing machine and
the spraying machine, as well as one of the two available
buffers. Each sequence task is characterized by a nominal
duration d, and consecutive tasks are separated by temporal
constraints [a, b] where a and b are the lower and the up-
per bound of the separation constraint. The actual constraint
values depicted in Fig. 5 are consistent with the real robot
transition times (e.g., the 6 value between the brushing and
the spraying tasks represents the time that the robot takes to
go from the brushing machine to the spraying machine pass-
ing through the home position), while the negative constraint
values shown in red characterize the fact that the buffering
operation actually starts 3 seconds in advance with respect
to the end of the first dashed box, because the robot must
however return to its home position before commencing any
other action.

The Dynamic Model
Interleaving deliberation and execution in a smooth and ef-
fective way is a crucial issue for real time model-based con-
trol systems. In particular, integrating deliberative and reac-
tive control is not a straightforward task and, then, suitable
mechanisms are needed in order to guarantee a robust and
continuous control.

In literature, several solutions have been proposed. For
instance, in (Lemaitre and Verfaillie 2007), the authors pro-
pose a generic schema for the interaction between reactive
and deliberative tasks where reactive and high-level reason-
ing control tasks are implemented and integrated so as to
respectively meet a synchronous behavior assumption (i.e.,
in case of an exogenous event, a reactive task is always ready
to be executed before any other event arrives), and an any-
time behavior (i.e., a deliberative task is able to produce a
first solution quickly, which can be improved later if time
allows). Another approach is the one proposed in (Py, Ra-
jan, and McGann 2010) where a hierarchy of reactors is ex-
ploited constituting several concurrent sense-plan-act con-
trol loops with different deliberation latencies. Both delib-
erative and reactive controls are implemented by means of,
respectively, higher and lower latency reactors. In particular,
reactors with small latencies are in charge to quickly react to
unexpected events while reactors with long-term goals are
managed by reactors with larger latencies.

In our case, given the chosen system latency and the
FRC’s characteristics, during the rescheduling phases the
proposed control architecture is designed so as to (i) col-

lect unexpected events (e.g., detected delays) that may oc-
cur during the rescheduling phases, and (ii) propagate such
delays on the new solution generated for execution, by ex-
ploiting the solution’s temporal flexibility. Such propaga-
tions/adjustments are guaranteed to be within the system
latency by keeping the number of activities in the current
schedule as low as possible, i.e., by eliminating the activi-
ties from the plan as they terminate their execution, in order
to establish a sort of dynamic equilibrium between incoming
and outgoing sequences, after an initial transient.

In order to allow the management of the schedule in a
dynamic context (i.e., continuously absorbing all the modi-
fications that pertain to the occurrence of exogenous events
as well as to the simple passing of time) it has been neces-
sary to extend the model presented in the previous section
with online knowledge-capturing and management features.
In our framework, such features are added using an asyn-
chronous event-based model. All the information about the
environmental uncertainty (e.g., endogenous and/or exoge-
nous events) is organized through an asynchronous message
exchange mechanism among the system modules. These
messages convey all the information relatively to the devi-
ations between the nominal schedule currently under exe-
cution and the real data coming from the automation side
of the plant. The Controller (see Fig. 2) is in charge of
acquiring such information, adapting the plan accordingly,
and calling for the necessary rescheduling actions. In partic-
ular, a global rescheduling is performed each time a new se-
quence (i.e., a new production order) is inserted in the plan.
However, applying a rescheduling to an executing plan gen-
erally presents the technical difficulty arising from the fact
that the Scheduler does not have any internal chronological
model of the schedule with respect to the passing of time. In
other words, it has no knowledge of past, present and future
relatively its own activities (i.e., it may decide to reschedule
one activity into the past, or postpone the start time of an
activity that has already started).

The latter issue is solved by introducing a number of
constraint-based pre-processing procedures whose objective
is to impose new constraints to the executing schedules prior
to the solving process, so as to force the Scheduler to pro-
duce solutions that reflect the temporal reality of execution.
Such procedures are the following: (i) fixActivity() when
the Dispatcher acknowledges from the plant that an activity
has started, the Controller must fix the activity’s start time
in the model, so that it is not shifted by the rescheduling
process; (ii) fixActivityDuration() when the Dispatcher ac-
knowledges from the plant that an activity has terminated,
the Controller must fix the activity’s end time, so that the lat-
ter is not modified by any possible rescheduling process be-
fore the activity is eliminated from the current plan; (iii) dis-
poseCompletedActivity() this procedure eliminates a com-
pleted activity from the model; (iv) prepareRescheduling()
this procedure performs the very important task of insert-
ing in the plan a set of new release constraints relatively
to all the activities that will participate to the rescheduling,
so as to avoid that such activities will be scheduled in the
past w.r.t. to the current execution time. Once all previous
preparatory actions are performed, the rescheduling proce-

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 21

dure can be safely called by the Controller. The Sched-
uler will therefore produce an alternative solution that (i) is
temporally and resource feasible, (ii) satisfies all problem-
related and execution-related constraints, and (iii) complies
with the chronological physical requirements.

Experimental Results
In this section, we analyze the dynamic scheduling perfor-
mances of our architecture by deploying it to control the ex-
ecution of a series of typical production tasks relatively to
the FRC case study. In particular, we will test the dynamic
scheduling capabilities of our system by simulating the ex-
ecution of a determined number of production sequences,
which entails the online scheduling of the continuously in-
coming production tasks (equally distributed among the dif-
ferent process types) and ordinary maintenances (defined in
Tab. 2). Both the temporal flexibility of the employed model
and the rescheduling efficacy of the solver will be assessed
by simulating the onset of perturbing events of random ex-
tent during each execution. More specifically, we analyze
the performances of our architecture by varying the follow-
ing settings: (i) we consider randomly variable start and end
times for each incoming task, which affects the overall sta-
bility of the solution and requires the controller to continu-
ously invoke the scheduler in order to adjust the current solu-
tion; (ii) we introduce a number of anomalies on the basis of
the values (described in Tab. 4) detected by the automation
layer sensors, and processed by the Diagnosis module. Each
time an anomaly is detected, the control architecture reacts
by scheduling an extraordinary maintenance activity whose
urgency depends on the severity of the anomaly (orange,
red). Maintenance activities may even cause the complete
stop of the cell, and affect in any case the overall makespan;
(iii) according to Tab. 3, we consider a set of possible fail-
ures for each machine, that may occur during execution. In
this cases, the control architecture is in charge of schedul-
ing the proper recovery task aimed at restoring full machine
operability. As for anomalies, failures may introduce idle
production periods, thus reducing production capability.

The experiments are organized in two different settings,
both entailing the execution of 130 uniformly distributed
production sequences. In the 1stSetting, 5 runs are exe-
cuted for each resource Ri of the FRC. Each run requires
the dynamic scheduling of the continuously incoming pro-
duction tasks, including the periodic maintenances. Tem-
poral uncertainty is introduced by considering an average
10% randomic misalignment between the nominal (i.e., dis-
patched) and the real (i.e., acknowledged) start/end times of
the production activities. Each run is characterized by the
onset of a number of anomalies and failures that depends on
the affected machine Ri: in particular, every brushing ma-
chine will undergo 5 anomalies and 3 failures, every cream-
ing machine will undergo 3 anomalies and 2 failures, and
every spraying machine will undergo 3 anomalies and 3 fail-
ures (such numbers are decided on the basis of the available
maintenance and recovery operations for each machine as
well as of their durations, as per Tables 2 and 3). In order
to appreciate the benefits of a controller that allows the con-
current scheduling and execution of both maintenance and

production tasks, a second experimental setting is developed
(2ndSetting) where all previous runs are performed anew
under the assumption that each maintenance and each fail-
ure recovery action entails a full FRC cell stop. All runs
are performed on a MacBook Pro with a 64-bit Intel Core i5
CPU (2.4GHz) and 4GB RAM. In the following, we illus-
trate the collected empirical results.

Table 5 summarizes the obtained results; the table is hor-
izontally organized so as to provide the data related to every
machine. In particular, for each machine row the table lists
data obtained in the first and second experimental settings
(first and second row) together with the plain value differ-
ence and related percentage (third row). For each setting,
the table provides the average values obtained from the five
runs executed on each machine of: (i) the final makespan
(i.e., the completion time of all 130 production sequences),
(ii) the overall average time spent in reschedulings, (iii) the
total number of reschedulings.

Table 5: Results from the experimental runs.

MK (mins) Resched. T. (mins) # of Resched.
Brushing Machine
1stSetting 251 27 129
2ndSetting 269 30 157
∆ (∆ %) 18 (7.2%) 3 (11.1%) 28 (21.7%)
Spraying Machine
1stSetting 256 26 130
2ndSetting 279 28 155
∆ (∆ %) 23 (9%) 2 (7.7%) 25 (19.2%)
Creaming Machine
1stSetting 250 25 127
2ndSetting 278 28 154
∆ (∆ %) 28 (11.2%) 3 (12%) 27 (21.2%)

The obtained results show the advantage of deploying
an online reasoner that allows to continue execution during
maintenances and recovery actions. Regardless of the ma-
chine involved in the performed runs, a significant reduction
in makespan can be observed between the two experimen-
tal settings, meaning that the cell succeeds in executing all
sequences in less time. In the table, makespan gains rang-
ing from 18 up to 28 minutes are observable, which rep-
resent a significant improvement when measured against a
total run time of 4 hours. Such gains are more evident for
the machines that are characterized by longer maintenance
and recovery actions (i.e., spraying and creaming). In case
of long maintenances or recoveries, the capability to con-
tinue the execution of the tasks already scheduled on the
unaffected machines is of great importance. Another in-
teresting aspect can be observed by analyzing the higher
number of reschedulings necessary in the 2ndSetting w.r.t.
to 1stSetting runs; the reason of this stems from the fact
that in order to simulate the absence of the execution con-
troller (2ndSetting runs) we have modeled the cell-blocking
condition by considering all maintenances and recoveries as
tasks that require the whole cell; this causes a resource con-
flict that has to be solved by means of a rescheduling each
time a maintenance or a recovery must be executed. As a last

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 22

observation, the table also confirms that the chosen number
of failures and anomalies injected during all runs for the dif-
ferent machines was well balanced, as the average total time
spent for reschedulings is equally subdivided in all cases of
the same type, despite the durations of the recoveries and
maintenances varied significantly among the machines (see
Tables 2 and 3), the reason being that the longer the recov-
ery/maintenance operation, the higher the possibility of a
rescheduling when it is added to the plan.

Conclusions
This work has presented an AI-based online scheduling con-
troller capable of dynamically manage a production plan un-
der execution in uncertain environmental conditions. The
capabilities of the proposed scheduling controller have been
tested with reference to a real-world industrial application
case study. The series of closed-loop experimental tests con-
cerning the execution of reality-inspired production plans
(i.e., complete with regular maintenances, as well as ran-
dom failures and anomalies), demonstrate that thanks to the
adopted flexible model, the proposed controller enhances the
current production system with the robustness necessary to
face a subset of typical real-world production requirement
evolutions. The current results confirm that the deployment
of continuous rescheduling capabilities on a temporally flex-
ible plan model positively contribute to the overall efficiency
of the production plant, by allowing the execution of the
planned number of jobs in less time. The authors work is
currently ongoing with the further objectives of (i) improv-
ing the controller’s rescheduling optimization capabilities in
environments characterized by a higher number of tasks, and
(ii) expanding the controller’s uncertainty management ca-
pabilities to the whole actual set of FRC exogenous events,
which represents a necessary step before commencing any
experimentation on the real field.

Acknowlegments. The research presented in the current
work has been partially funded under the Regional Project
“CNR - Lombardy Region Agreement: Project 3”. Cesta
and Rasconi acknowledge the partial support of MIUR under
the PRIN project 20089M932N (funds 2008).

References
Carpanzano, E.; Cesta, A.; Orlandini, A.; Rasconi, R.; and
Valente, A. 2011. Closed-loop production and automation
scheduling in RMSs. In ETFA. International Conference
on Emergent Technologies and Factory Automation.
Cesta, A.; Oddi, A.; and Smith, S. 2002. A Constraint-
based Method for Project Scheduling with Time Windows.
Journal of Heuristics 8(1):109–136.
Lemaitre, M., and Verfaillie, G. 2007. Interaction between
reactive and deliberative tasks for on-line decision-making.
In Proceedings of the ICAPS 3rd Workshop on Planning
and Plan Execution for Real-World Systems.
Py, F.; Rajan, K.; and McGann, C. 2010. A systematic
agent framework for situated autonomous systems. In AA-
MAS, 583–590.
Rasconi, R.; Policella, N.; and Cesta, A. 2006. Fix the
Schedule or Solve Again? Comparing Constraint-Based

Approaches to Schedule Execution. In COPLAS-06. Pro-
ceedings of the ICAPS Workshop on Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems.
Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J.
2011. On-line planning and scheduling: An application to
controlling modular printers. J. Artif. Intell. Res. (JAIR)
40:415–468.
Smith, T., and Waterman, M. 1981. Identification of Com-
mon Molecular Subsequences. J. Mol. Biol. 147:195–197.
Terkaj, W.; Tolio, T.; and Valente, A. 2009. Design of
Focused Flexibility Manufacturing Systems (FFMSs). De-
sign of Flexible Production Systems - Methodologies and
Tools 137–190.
Terkaj, W.; Tolio, T.; and Valente, A. 2010. A Stochas-
tic Programming Approach to support the Machine Tool
Builder in Designing Focused Flexibility Manufacturing
Systems – FFMSs. International Journal of Manufactur-
ing Research 5(2):199–229.
Tolio, T., and Urgo, M. 2007. A Rolling Horizon Approach
to Plan Outsourcing in Manufacturing-to-Order Environ-
ments Affected by Uncertainty. CIRP Annals – Manufac-
turing Technology 56(1):487–490.
Valente, A., and Carpanzano, E. 2011. Development
of multi-level adaptive control and scheduling solutions
for shop-floor automation in Reconfigurable Manufactur-
ing Systems. CIRP Annals - Manufacturing Technology
60(1):449–452.
Wiendahl, H.-P.; ElMaraghy, H.; Nyhuis, P.; Zah, M.;
Wiendahl, H.-H.; Duffie, N.; and Brieke, M. 2007.
Changeable Manufacturing - Classification, Design and
Operation. CIRP Annals - Manufacturing Technology
56(2):783–809.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 23

Planning for perception and perceiving for decision:
POMDP-like online target detection and recognition for autonomous UAVs

Caroline P. Carvalho Chanel1,2, Florent Teichteil-Königsbuch2, Charles Lesire2
1Université de Toulouse – ISAE – Institut Supérieur de l’Aéronautique et de l’Espace

2Onera – The french aerospace lab
2, avenue Edouard Belin
FR-31055 TOULOUSE

Abstract

This paper studies the use of POMDP-like techniques
to tackle an online multi-target detection and recogni-
tion mission by an autonomous rotorcraft UAV. Such
robotics missions are complex and too large to be solved
off-line, and acquiring information about the environ-
ment is as important as achieving some symbolic goals.
The POMDP model deals in a single framework with
both perception actions (controlling the camera’s view
angle), and mission actions (moving between zones and
flight levels, landing) needed to achieve the goal of the
mission, i.e. landing in a zone containing a car whose
model is recognized as a desired target model with suf-
ficient belief. We explain how we automatically learned
the probabilistic observation POMDP model from sta-
tistical analysis of the image processing algorithm used
on-board the UAV to analyze objects in the scene. We
also present our ”optimize-while-execute” framework,
which drives a POMDP sub-planner to optimize and ex-
ecute the POMDP policy in parallel under action dura-
tion constraints, reasoning about the future possible ex-
ecution states of the robotic system. Finally, we present
experimental results, which demonstrate that Artificial
Intelligence techniques like POMDP planning can be
successfully applied in order to automatically control
perception and mission actions hand-in-hand for com-
plex time-constrained UAV missions.

Introduction
Target detection and recognition by autonomous Unmanned
Aerial Vehicules (UAVs) is an active field of research (Wang
et al. 2012), due to the increasing deployment of UAV sys-
tems in civil and military missions. In such missions, the
high-level decision strategy of UAVs is usually given as a
hand-written rule (e.g. fly to a given zone, land, take image,
etc.), that depends on stochastic events (e.g. target detected
in a given zone, target recognized, etc.) that may arise when
executing the decision rule. Because of the high complexity
of automatically constructing decision rules, called policy,
under uncertainty (Littman, Cassandra, and Pack Kaelbling
1995; Sabbadin, Lang, and Ravoanjanahary 2007), few de-
ployed UAV systems rely on automatically-constructed and
optimized policies.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When uncertainties in the environment come from imper-
fect action execution or environment observation, high-level
policies can be automatically generated and optimized using
Partially Observable Markov Decision Processes (POMDPs)
(Smallwood and Sondik 1973). This model has been suc-
cessfully implemented in ground robotics (Candido and
Hutchinson 2011; Spaan 2008), and even in aerial robotics
(Miller, Harris, and Chong 2009; Schesvold et al. 2003;
Bai et al. 2011). Yet, in these applications, at least for the
UAV ones, the POMDP problem is assumed to be available
before the mission begins, allowing designers to have plenty
of time to optimize the UAV policy off-line.

However, in a target detection and recognition mission
(Wang et al. 2012), if viewed as an autonomous sequen-
tial decision problem under uncertainty, the problem is not
known before the flight. Indeed, the number of targets, zones
making up the environment, and positions of targets in these
zones, are usually unknown beforehand and must be auto-
matically extracted at the beginning of the mission (for in-
stance using image processing techniques), in order to define
the sequential decision problem to optimize. In this paper,
we study a target detection and recognition mission by an
autonomous UAV, modeled as a POMDP defined during the
flight after the number of zones and targets has been online
analyzed. We think that this work is challenging and original
for at least two reasons: (i) the target detection and recogni-
tion mission is viewed as a long-term sequential decision-
theoretic planning problem, with both perception actions
(changing view angle) and mission actions (moving between
zones, landing), for which we automatically construct an op-
timized policy ; (ii) the POMDP is solved online during the
flight, taking into account time constraints required by the
mission’s duration and possible future execution states of the
system.

Achieving such a fully automated mission from end to
end requires many technical and theoretical pieces, which
can not be all described with highest precision in this pa-
per due to the page limit. We focus attention on the POMDP
model, including a detailed discussion about how we statis-
tically learned the observation model from real data, and on
the “optimize-while-execute” framework that we developed
to solve complex POMDP problems online while executing
the currently available solution under mission duration con-
straints. The next section introduces the mathematical model

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 24

of POMDPs. In Section 3, we present the POMDP model
used for our target detection and recognition mission for an
autonomous rotorcraft UAV. Section 4 explains how we op-
timize and execute the POMDP policy in parallel, dealing
with constraints on action durations and probabilistic evo-
lution of the system. Finally, Section 5 presents and dis-
cusses many results obtained while experimenting with our
approach, showing that Artificial Intelligence techniques can
be applied to complex aerial robotics missions, whose de-
cision rules were previously not fully automated nor opti-
mized.

Formal baseline framework: POMDP
A POMDP is a tuple 〈S,A,Ω, T,O,R, b0〉 where S is a set
of states, A is a set of actions, Ω is a set of observations,
T : S × A × S → [0; 1] is a transition function such that
T (st+1, a, st) = p(st+1 | a, st), O : Ω × S → [0; 1] is
an observation function such that O(ot, st) = p(ot|st), R :
S × A → R is a reward function associated with a state-
action pair, and b0 is an initial probability distribution over
states. We note ∆ the set of probability distributions over
the states, called belief state space. At each time step t, the
agent updates its belief state defined as an element bt ∈ ∆
using Bayes’ rule (Smallwood and Sondik 1973).

Solving POMDPs consists in constructing a policy func-
tion π : ∆→ A, which maximizes some criterion generally
based on rewards averaged over belief states. In robotics,
where symbolic rewarded goals must be achieved, it is usu-
ally accepted to optimize the long-term average discounted
accumulated rewards from any initial belief state (Cassan-
dra, Kaelbling, and Kurien 1996; Spaan and Vlassis 2004):

V π(b) = Eπ

[∞∑
t=0

γtr(bt, π(bt))

∣∣∣∣∣b0 = b

]
(1)

where γ is the actualization factor. The optimal value V ∗ of
an optimal policy π∗ is defined by the value function that
satisfies the bellman’s equation:

V ∗(b) = max
a∈A

[∑
s∈S

r(s, a)b(s) + γ
∑
o∈O

p(o|a, b)V ∗(boa)

]
(2)

Following from optimality theorems, the optimal value of
belief states is piecewise linear and convex (Smallwood and
Sondik 1973), i.e, at a step n < ∞, the value function can
be represented by a set of hyperplanes over ∆, known as α-
vectors. An action a(αin) is associated with each α-vector,
that defines a region in the belief state space for which this
α-vector maximizes Vn. Thus, the value of a belief state can
be defined as Vn(b) = maxαi

n∈Vn
b · αin. And an optimal

policy in this step will be πn(b) = a(αbn).
Recent offline solving algorithms, e.g. PBVI (Pineau,

Gordon, and Thrun 2003), HSVI2 (Smith and Simmons
2005), SARSOP (Kurniawati, Hsu, and Lee 2008) and sym-
bolic PERSEUS (Poupart 2005), and online algorithms as
RTDP-bel (Bonet and Geffner 2009) and AEMS (Ross and
Chaib-Draa 2007) approximate the value function with a
bounded set of belief states B, where B ⊂ ∆. These al-
gorithms implement different heuristics to explore the belief

state space, and update the value of V , which is represented
by a set of α-vectors (except in RTDP-bel), by a backup op-
erator for each b ∈ B explored or relevant. Therefore, V is
reduced and contains a limited number |B| of α-vectors.

Multi-target detection and recognition mission
Mission description
We consider an autonomous Unmanned Aerial Vehicle
(UAV) that must detect and recognize some targets under
real-world constraints. The mission consists in detecting and
identifying a car that has a particular model among several
cars in the scene, and land next to this car. Due to the na-
ture of the problem, especially partially observability due to
the probabilistic belief about cars’ models, it is modeled as
a POMDP. The UAV can perform both high-level mission
tasks (moving between zones, changing height level, land)
and perception actions (change view angle in order to ob-
serve the cars). Cars can be in any of many zones in the
environment, which are beforehand extracted by image pro-
cessing (no more than one car per zone).

The total number of states depends on many variables that
are all discretized: the number of zones (Nz), the height
levels (H), the view angles (NΦ), the number of targets
(Ntargets) and car models (Nmodels), and a terminal state
that characterizes the end of the mission. As cars (candidate
targets) can be in any of the zones and be of any possible
models a priori, the total number of states is:

|S| = Nz ·H ·NΦ · (Nz ·Nmodels)Ntargets + Ts

where Ts represents the terminal states.
For this application case, we consider 4 possible obser-

vations, i.e. |Ω| = 4, in each state: {car not detected, car
detected but not identified, car identified as target, car iden-
tified as non-target}. These observations rely on the result
of image processing (described later).

As mentioned before, the high level mission tasks per-
formed by the autonomous UAV are: moving between zones,
changing height level, land. The number of actions for mov-
ing between zones depends on the number of zones con-
sidered. These actions are called go to(ẑ), where ẑ repre-
sents the zone to go to. Changing the height level also de-
pends on the number of different levels at which the au-
tonomous UAV can fly. These actions are called go to(ĥ),
where ĥ represents the desired height level. The land ac-
tion can be performed by the autonomous UAV at any mo-
ment and in any zone. Moreover, the land action finishes
the mission. We consider only one high level perception ac-
tion, called change view: change view angle when observ-
ing a given car, with two view angles Φ = {front, side}.
So, the total number of actions can be computed as: |A| =
Nz +H + (NΦ − 1) + 1.

Model dynamics
We now describe the transition and reward models. The ef-
fects of each action will be formalized with mathematical
equations, which rely on some variables and functions de-
scribed below, that help to understand the evolution of the
POMDP state.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 25

State variables The world state is described by 7 discrete
state variables. We assume that we have some basic prior
knowledge about the environment:. there are two targets that
can be each of only two possible models, i.e. Nmodels =
{target, non− target}. The state variables are:

1. z with Nz possible values, which indicates the UAV’s po-
sition;

2. h with H possible values, which indicates its height lev-
els;

3. Φ = {front, side}, which indicates the view angle be-
tween the UAV and the observed car;

4. Idtarget1 (resp. Idtarget2) with Nmodels possible values,
which indicates the identity (car model) of target 1 (resp.
target 2);

5. ztarget1 (resp. ztarget2) with Nz possible values, which
indicates the position of target 1 (resp. target 2).

Transition and reward functions To define the model dy-
namics, let us characterize each action with:

• effects: textual description explaining how state variables
change after the action is applied;

• transition function T ;

• reward function R.

Concerning the notation used, the primed variables represent
the successor state variables, and the variable not primed
represent the current state. In addition, let us define the
indicative function : I{cond} equal to 1 if condition cond
holds, or to 0 otherwise; this notation is used to express
the Bayesian dependencies between state variables. Another
useful notation is δx(x′) equal to 1 if x = x′, or to 0 other-
wise; this notation allows us to express the possible different
values taken by the successor state variable x′.

Based on previous missions with our UAV, we know that
moving and landing actions are sufficiently precise to be
considered deterministic: the effect of going to another zone,
or changing flight altitude, or landing, is always determinis-
tic. However, the problem is still a POMDP, because obser-
vations of cars’ models is probabilistic ; moreover, it has
been proved that the complexity of solving POMDPs essen-
tially comes from probabilistic observations rather than from
probabilistic action effects (Sabbadin, Lang, and Ravoan-
janahary 2007).

Moreover, in order to be compliant with the POMDP
model, which assumes that observations are available after
each action is executed, all actions of our model provide an
observation of cars’ models. The only possible observation
after the landing action is non detected, since this action does
not allow the UAV to take images of the environment. All
other actions described in the next automatically take im-
ages of the scene available in front of the UAV, giving rise to
image processing and classification of observation symbols
(see later). As the camera is fixed, it is important to control
the orientation of the UAV in order to observe different por-
tions of the environment.

action go to(ẑ) This action brings the UAV to the desired
zone. The dynamics is described next, but note that if the
UAV is in the terminal state (Ts), this action has no effects
and no cost (what is not formalized bellow).

• Effects: the UAV moves between zones.

• Transition function:

T (s′, go to(ẑ), s) = δẑ(z
′)δh(h′)δΦ(Φ′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

which, according to the definition of function δ previously
mentioned, is non-zero only for the transition where post-
action state variables s′ are all equal to pre-action state
variables s, but the target zone z′ that is equal to ẑ.

• Reward function: R(s, go to(ẑ)) = Cz,ẑ , where Cz,ẑ <
0 represents the cost of moving from z to ẑ. For this mo-
ment we chose to use a constant cost Cz , because actual
fuel consumption is difficult to measure with sufficient
precision on our UAV. And also, because the automatic
generation of the POMDP model does not take into ac-
count zone coordinates. Zone coordinates are needed for
computing the distance between zones in order to model
costs proportionaly to zones’ distances.

action go to(ĥ) This action leads the UAV to the desired
height level. Like action go to(ẑ), if the UAV is in the termi-
nal state (Ts), this action has no effects and no cost.

• Effects: the UAV changes to height level ĥ.

• Transition function:

T (s′, go to(ĥ), s) = δz(z
′)δĥ(h′)δΦ(Φ′)

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, go to(ĥ)) = Ch,ĥ, where Ch,ĥ <
0 represents the cost of changing from height level h to
ĥ. This cost also models the fuel consumption depending
on the distance between altitudes. These costs are typi-
cally higher than costs for moving between zones. For the
same reason as the previous action, we also chose to use
a constant cost such that Cz < Ch.

action change view This action changes the view angle of
the UAV when observing cars. Due to environmental con-
straints, we assume that all cars have the same orientations
in all zones (as in parking lots for instance), so that each
view angle value has the same orientation for all zones. Like
the previous actions, if the UAV is in the terminal state (Ts),
this action has no effects and no cost.

• Effects: the UAV switches its view angle (front to side and
vice versa).

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 26

• Transition function:

T (s′, change view, s) = δz(z
′)δĥ(h′)

(I{Φ=front}δside(Φ
′) + I{Φ=side}δfront(Φ

′))

δIdtarget1
(Id′target1)δztarget1

(z′target1)

δIdtarget2
(Id′target2)δztarget2

(z′target2)

• Reward function: R(s, change view) = Cv , where
Cv < 0 represents the cost of changing the view angle. It
is represented by a constant cost that is higher than costs
of all other actions. Following our previous constant cost
assumptions: Cv ≥ Ch > Cz .

action land This action finalizes the UAV mission, leading
the autonomous UAV to the terminal state. If the UAV is in
the terminal state (Ts), this action has no effects and no cost.
• Effects: the UAV finishes the mission, and goes to the ter-

minal state.
• Transition function: T (s′, land, s) = δTs(s′)

• Reward function:

R(s, land) = I{(z=ztarget1
)&(Idtarget1

=target)}Rl+

I{(z=ztarget2)&(Idtarget2=target)}Rl+

I{(z=ztarget1
)&(Idtarget1

=non−target)}Cl+

I{(z=ztarget2
)&(Idtarget2

=non−target)}Cl+

I{(z!=ztarget1
)&(z!=ztarget2

)}Cl

where Rl > 0 represents the reward associated with a
correctly achieved mission (the UAV is in the zone where
the correct target is located) and Cl < 0 represents the
cost of a failed mission. Note that: Rl � Cv ≥ Ch >
Cz ≫ Cl.

Observation model
POMDP models require a proper probabilistic description of
actions’ effects and observations, which is difficult to obtain
in practice for real complex applications. For our target de-
tection and recognition missions, we automatically learned
from real data the observation model, which relies on im-
age processing. We recall that we consider 4 possible ob-
servations in each state: {no car detected, car detected but
not identified, car identified as target, car identified as non-
target}. The key issue is to assign a prior probability on the
possible semantic outputs of image processing given a par-
ticular scene.

Car observation is based on an object recognition al-
gorithm based on image processing (Saux and Sanfourche
2011), already embedded on-board in our autonomous UAV.
It takes as input one shot image (see Fig. 1(a)) that comes
from the UAV onboard camera. First, the image is filtered
(Fig. 1(b)) to automatically detect if the target is in the im-
age (Fig. 1(c)). If no target is detected, it directly returns
the label no detected. If a target is detected, the algorithm
takes the region of interest of the image (bounding rectan-
gle on Fig. 1(c)), then generates a local projection and com-
pares it with the 3D template silhouettes on a data base of

oi p(oi|s)
car not detected 0.045351

car detected but not identified 0.090703
car identified as target 0.723356

car identified as non-target 0.140590

Table 1: Probability observation table learned from statis-
tical analysis of the image processing algorithm answers
using real data, with s = {z = ztarget1 , Idtarget1 =
target, h = 30, ztarget2 6= z, Idtarget2 = non − target}.

car models (Fig. 1(d)). The local projection only depends on
the UAV height level, and camera focal length and azimuth
as viewing-condition parameters. The height level is known
at every time step, and the focal length and the camera az-
imuth are fixed parameters. Finally, the image processing al-
gorithm chooses the 3D template that maximizes the similar-
ity (for more details see (Saux and Sanfourche 2011)), and
returns the label that corresponds or not to the searched tar-
get: car identified as target or car identified as non-target. If
the level of similarity is less than a hand-tuned threshold, the
image processing algorithm returns the label car detected
but not identified.

In order to learn the POMDP observation model from real
data, we performed many outdoor test campaigns with our
UAV and some known cars. It led to an observation model
learned via a statistical analysis of the image processing al-
gorithm’s answers based on the images taken during these
tests. More precisely, to approximate the observation func-
tion O(ot, st), we count the number of times that one of the
four observations (labels) was an output answer of the im-
age processing algorithm in a given state s. So, we compute
O(oi, s) = p(oi|s), where oi is one of the 4 possible obser-
vations:

p(oi|s) '
1

Nexp

Nexp∑
n=1

I{on=oi|s}, Nexp � 1.

where Nexp represents the number of experiences, i.e. the
number of runs performed by the image processing algo-
rithm with respect to the different images, and on the label
obtained at experience n. Note that we have access to more
than 500 images for each state, so thatNexp � 1 and the sta-
tistical approximations may be good enough. Table 1 shows
an example of observation probability obtained after learn-
ing in a given state.

Optimize-while-execute framework
Large and complex POMDP problems can rarely be op-
timized off-line, because of lack of sufficient computa-
tional means. Moreover, the problem to solve is not al-
ways known in advance, e.g. our target detection and recog-
nition missions where the POMDP problem is based on
zones that are automatically extracted from on-line im-
ages of the environment. Such applications require an ef-
ficient on-line framework for solving POMDPs and execut-
ing policies before the mission’s deadline. We worked on
extending the optimize-while-execute framework proposed

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 27

(a) Input image (b) Filtering (c) Car detection (d) Matching

Figure 1: Target detection and recognition image processing based on (Saux and Sanfourche 2011).

in (Teichteil-Konigsbuch, Lesire, and Infantes 2011), previ-
ously restricted to deterministic or MDP planning, to on-line
solve large POMDPs under time constraints. Our extension
is a meta planner that relies on standard POMDP planners
like PBVI, HSVI, PERSEUS, AEMS, etc., which are called
from possible future execution states while executing the
current optimized action in the current execution state, in
anticipation of the probabilistic evolution of the system and
its environment. One of the issues of our extension was to
adapt the mechanisms of (Teichteil-Konigsbuch, Lesire, and
Infantes 2011) based on completely observable states, to be-
lief states and point-based paradigms used by many state-of-
the-art POMDP planners (Pineau, Gordon, and Thrun 2003;
Ross and Chaib-Draa 2007). This framework is differ-
ent from real-time algorithms like RTDP-bel (Bonet and
Geffner 2009) that solve the POMDP only from the current
execution state, but not from future possible ones as we pro-
pose.

We implemented this meta planner with the anytime
POMDP algorithms PBVI (Pineau, Gordon, and Thrun
2003) and AEMS (Ross and Chaib-Draa 2007). AEMS is
particularly useful for our optimize-while-execute frame-
work with time constraints, since we can explicitly control
the time spent by AEMS to optimize an action in a given be-
lief state. The meta planner handles planning and execution
requests in parallel, as shown in Fig. 2. At a glance, it works
as described in the following:

1. Initially, the meta-planner plans for an initial belief state
b using PBVI or AEMS during a certain amount of time
(bootstrap).

2. Then, the meta-planner receives an action request, to
which it returns back the action optimized by PBVI or
AEMS for b.

3. The approximated execution time of the returned action is
estimated, for instance 8 seconds, so that the meta plan-
ner will plan from some next possible belief states using
PBVI or AEMS during a portion of this time (e.g. 2 sec-
onds each for 4 possible future belief states), while exe-
cuting the returned action.

4. After the current action is executed, an observation is re-
ceived and the belief state is updated to a new b′, for which
the current optimized action is sent by the meta-planner to
the execution engine.

This framework proposes a continuous planning algorithm

that fully takes care of probabilistic uncertainties: it con-
structs various policy chunks at different future probabilistic
execution states.

Furthermore, as illustrated in Fig. 2, planning requests and
action requests are the core information exchanged between
the main component and the planning component. Inter-
estingly, each component works on an independent thread.
More precisely, the main component, which is in charge
of policy execution, runs in the execution thread that inter-
acts with the system’s execution engine. It competes with
the planning component, which is in charge of policy opti-
mization. The planning component runs in the optimization
thread that drives the sub-POMDP planner.

Hence, due to thread concurrency, some data must be
protected against concurrent memory access with mutexes:
planning requests, and the optimized policy. Depending on
the actual data structures used by the sub-POMDP planner,
read and write access to the policy may be expensive. There-
fore, in order to reduce CPU time required by mutex pro-
tection and to improve the execution thread’s reactivity, we
backup the policy after each planning request is solved.

In addition, in real critical applications, end-users often
want the autonomous system to provide some basic guaran-
tees. For instance, in case of UAVs, operators require that
the executed policy never puts the UAV in danger, what may
happen in many situations like being out of fuel. Another
danger may come from the lack of optimized action in the
current system state, due to the on-line optimization process
that has not yet computed a feasible action in this state. For
that reason it is mandatory that the meta-planner provides
a relevant applicable action to execute when queried by the
system’s execution scheme according to the current execu-
tion state. It can be handled by means of an application-
dependent default policy, which can be generated before
optimization in two different ways: either a parametric off-
line expert policy whose parameters are on-line adapted to

main component

meta planner
AEMS (b)

or
PBVI (b)

b→ a∗

planning request

action request

Figure 2: Meta planner planning / execution schema.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 28

the actual problem; or a heuristic policy quickly computed
on-line before computing the optimal policy. Simple but
complete heuristic POMDP policies, for instance based on
the QMDP approximation proposed by (Littman, Cassandra,
and Pack Kaelbling 1995), can be quickly generated.

Experimental results
Up to now, we performed complete realistic “hardware in
the loop” simulations, i.e. using the exact functional archi-
tecture and algorithms used on-board our UAV, a Yamaha
Rmax adapted to autonomous flights, as well as real outdoor
images. Real flights are being tested at the time we write this
article. In this section, we present a deep analysis of results
obtained during our realistic simulations.

The instance of the problem considered has 2 height levels
(30 and 40 meters), 2 view angles (front and side), 2 targets
and 2 car models, and 3 zones, which leads to 433 states.
Recall that we have 4 observation variables. The aim is to
land next to the car whose model is presented in Fig. 1(d);
however, the models of the cars is unknown at the begin-
ning of the mission. The meta-planner on-line framework
presented in the previous section is a good option for this
problem because: (1) the number of zones is discovered in
flight, making it impossible to solve the problem before the
mission starts, and (2) the POMDP algorithms used – PBVI
or AEMS – do not converge within the mission duration
limit.

Note that PBVI and AEMS are point-based algorithms
that approximate the value function for a set of relevant be-
lief states. PBVI chooses the set of belief states by perform-
ing stochastic trials from the initial belief state. AEMS con-
structs a belief state tree beginning from the initial belief
state and expanding this belief tree according to heuristic
guidance means.

We consider two initial belief states that represent 2 dif-
ferent initial view angles and the fact that we do not know
about the positions and the models of cars: b10 (resp. b20) is
a uniform probability distribution over the 12 states {z =
1, h = 40, φ = front, ztarget1 6= ztarget2 , Idtarget1 6=
Idtarget2} (resp. {z = 1, h = 40, φ = side, ztarget1 6=
ztarget2 , Idtarget1 6= Idtarget2}), The reward function is
based on the following constants: Cz = −5, Ch = −1,
Cv = −1, Rl = 10, and Cl = −100. The duration
of an action is represented by a uniform distribution over
[T amin, T

a
max], with T amin = 4s and T amax = 6s, which is

representative of durations observed during preliminary test
flights. We recall that we consider static targets.

The observations are characterized by the output of the
image processing algorithm (Saux and Sanfourche 2011),
which runs in parallel in a concurrent thread, and which is
launched as soon as an action is performed. The simulator,
which knows the real state of the world, takes an image from
the data base and sends it to the image processing algorithm,
which returns an observation to the execution component.

Figure 3 shows the timelines for the meta-planner exe-
cution process. It represents the periods of time where the
policy is optimized (optimization thread) or executed (exe-
cution thread) – both running in parallel –, as well as the
evolution of the Bellman error during the mission. After a

0.0e+00

5.0e+00

1.0e+01

1.5e+01

2.0e+01

2.5e+01

3.0e+01

 0 20 40 60 80 100 120 140

B
e

llm
a

n
 e

rr
o

r

time (s)

optimization thread
execution thread

Bellman error

(a) PBVI

0.0e+00

5.0e+00

1.0e+01

1.5e+01

2.0e+01

2.5e+01

3.0e+01

 0 20 40 60 80 100 120 140

B
e

llm
a

n
 e

rr
o

r

time (s)

optimization thread
execution thread

Bellman error

(b) AEMS

Figure 3: Timelines for PBVI and AEMS implementations
of the optimize-while-execute framework starting from b10.

first bootstrap duration (where only the optimization thread
is active), we can notice that the optimization process contin-
ues for a short time period. Then, small optimization chunks
are still processed when new planning requests are sent to
the planner, because the policy was previously not fully op-
timized in the current belief state during previous optimiza-
tion chunks. The evolution of the Bellman error, reported
for each planning request during optimization, emphasizes
the evolution of the optimization process. In Fig. 3(a) the
value function does not converge for all belief states in the
relevant belief set, contrary to 3(b) where the optimization
process has converged for the current (sliding) belief state.
The reason is that AEMS is more efficient than PBVI, so
that it has enough time to optimize the future possible belief
states while executing actions. We can notice that the exe-
cution thread still goes on, but optimization chunks are very
short because the Bellman error is already very small when
beginning to optimize from each current belief state.

Figure 4 shows results for planning times and mission
success percentages, for the 2 underlying POMDP solvers
PBVI and AEMS driven by the optimize-while-execute
framework: the average mission total time (on-line) repre-
sents the time until the end of the mission (i.e. limit time
step); the average planning time represents the time taken
by the optimization thread, that is very close to the mission
total time for the PBVI algorithm, because it cannot con-
verges during the mission time. These average results were
computed over 50 test runs for each instance of the problem
with a limit horizon of 20 steps ; each test run was a com-
plete mission (optimization and execution in parallel from
scratch). To make a comparison, we drown an offline mission
time that would correspond to optimizing the problem off
line (still during the flight after the zones are extracted from
the environment in-flight), then executing the optimized pol-
icy.

Figure 4 also presents the percentage of default actions
and achieved goals. We aim at showing that, depending on
the underlying algorithm used (PBVI or AEMS), the plan-
ning thread does not react as fast as expected, and more de-
fault actions can be performed. We recall that default policy
used guarantee reactivity in case the optimized policy is not
available in the current execution state. The default policy
was quickly computed before computing the optimal policy.
We chose a heuristic policy based on the QMDP approxima-
tion proposed by (Littman, Cassandra, and Pack Kaelbling
1995).

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 29

 0

 50

 100

 150

 200

 250

 300

PBVI AEMS

ti
m

e
 (

s
)

Average of planning time and mission time (among missions)

average mission total time (offline)

average mission total time (online)

average planning time

(a) Planning time for b10

 0

 20

 40

 60

 80

 100

PBVI AEMS

p
e

rc
e

n
ta

g
e

s

Percentages of success and default actions (among missions)

success

default actions

(b) Percentages for b10

 0

 50

 100

 150

 200

 250

 300

PBVI AEMS

ti
m

e
 (

s
)

Average of planning time and mission time (among missions)

average mission total time (offline)

average mission total time (online)

average planning time

(c) Planning time for b20

 0

 20

 40

 60

 80

 100

PBVI AEMS

p
e

rc
e

n
ta

g
e

s

Percentages of success and default actions (among missions)

success

default actions

(d) Percentages for b20

Figure 4: Averaged results for PBVI and AEMS implementations of the optimize-while-execute framework, starting either from
belief state b10 or from b20.

The average number of achieved goals (the UAV has
landed in the zone containing the car that has the correct tar-
get model) is close to 100%, what shows that our approach
allows the UAV to achieves its mission very well on aver-
age. But, for this kind of partial observable problem where
the real nature of the targets is not known, and where the
observation model is not exactly due to imprecision of the
observation model learned from the image processing algo-
rithm, we think that if targets positions are not static it may
be impossible to achieve the goal 100% of the time.

Figures 5(a) and 5(b) present the averaged return taken
over 50 real policy executions, statistically computed as:

V π(st) =
1

50

∑
50

[
t∑

k=0

γkr(sk, π(bk))|b0, sk

]
(3)

Note that the simulator uses its knowledge about the envi-
ronent (i.e. the state st and all sk), to attibuate the rewards
while simulating. This equation allows us to show the ac-
cumulated rewards from the time step zero until time step
t.

For PBVI, regardless of the initial belief state, the aver-
age return gathered during policy execution tends to be less
important than for AEMS. We believe that this difference
comes from the fact that PBVI is less reactive (efficient) than
AEMS so that more default actions are performed, which are
not optimal for the belief in which they were applied.

Finally, we counted the number of times that a
change view action was chosen by the policy, in order to

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 5 10 15 20

Averaged rewards evolution

PBVI

AEMS

(a) Averaged rewards for b10

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 5 10 15 20

Averaged rewards evolution

PBVI

AEMS

(b) Averaged rewards for b20

Figure 5: Average rewards for PBVI and AEMS implemen-
tations of the optimize-while-execute framework, starting ei-
ther from belief state b10 or from b20.

evaluate the impact of the “perception action”. For the ini-
tial belief state b10 (i.e. Φ = front), this action was chosen
2 times over 50 runs for PBVI, and also 2 times for AEMS.
And, for b20 (i.e. Φ = side): 50 times with PBVI and 50
times for AEMS too. We believe that this behavior comes
from the observation model, which is more discriminative
when Φ = front than when Φ = side: from an initial be-
lief with Φ = front, the policy optimization algorithm does
not find interesting to change the observation view angle.

Conclusion and future work
To the best of our knowledge, this paper presents one of the
first POMDP-based implementations of a target detection
and recognition mission by an autonomous rotorcraft UAV.
Our contribution is threefold: (i) we model perception and
mission actions in the same decision formalism using a sin-
gle POMDP model; (ii) we statistically learn a meaningful
probabilistic observation model of the outputs of an image
processing algorithm that feeds the POMDP model; (iii) we
provide practical algorithmic means to optimize and execute
POMDP policies in parallel under time constraints, what is
required because the POMDP problem is generated during
the flight. We analyzed experiments conducted with a real-
istic “hardware in the loop” simulation based on real data,
which demonstrate that POMDP planning techniques are
now mature enough to tackle complex aerial robotics mis-
sions, on condition of using some kind of “optimize-while-
execute” framework, as the one proposed in this paper.

At the time of writing this paper, we are embedding our
decision-making components on-board the real UAV and
beginning to conduct real outdoor flights. Many improve-
ments can be considered for future research: analyzing the
impact of different initial belief states on the optimized strat-
egy; taking into account safety constraints imposed by civil
aeronautical agencies when optimizing the strategy; build-
ing POMDP policies that are robust to imprecise observation
models.

References
Bai, H.; Hsu, D.; Kochenderfer, M.; and Lee, W. S. 2011.
Unmanned Aircraft Collision Avoidance using Continuous-
State POMDPs. In Proceedings of Robotics: Science and
Systems.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 30

Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
bel vs. point-based algorithms. In Proceedings of the 21st
international jont conference on Artifical intelligence, IJ-
CAI’09, 1641–1646. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Candido, S., and Hutchinson, S. 2011. Minimum uncer-
tainty robot navigation using information-guided POMDP
planning. In ICRA’11, 6102–6108.
Cassandra, A.; Kaelbling, L.; and Kurien, J. 1996. Act-
ing under uncertainty: Discrete Bayesian models for mobile-
robot navigation. In Proceedings of IEEE/RSJ.
Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP: Effi-
cient point-based POMDP planning by approximating opti-
mally reachable belief spaces. In Proc. RSS.
Littman, M.; Cassandra, A.; and Pack Kaelbling, L. 1995.
Learning policies for partially observable environments:
Scaling up. In International Conference on Machine Learn-
ing, 362–370.
Miller, S. A.; Harris, Z. A.; and Chong, E. K. P. 2009.
A POMDP framework for coordinated guidance of au-
tonomous UAVs for multitarget tracking. EURASIP J. Adv.
Signal Process 2009:2:1–2:17.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In Proc.
of IJCAI.
Poupart, P. 2005. Exploiting structure to efficiently solve
large scale partially observable Markov decision processes.
Ph.D. Dissertation, University of Toronto.
Ross, S., and Chaib-Draa, B. 2007. AEMS: An anytime
online search algorithm for approximate policy refinement
in large POMDPs. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07),
2592–2598.
Sabbadin, R.; Lang, J.; and Ravoanjanahary, N. 2007. Purely
epistemic markov decision processes. In Proceedings of the
22nd national conference on Artificial intelligence - Volume
2, 1057–1062. AAAI Press.
Saux, B., and Sanfourche, M. 2011. Robust vehicle cate-
gorization from aerial images by 3d-template matching and
multiple classifier system. In 7th International Symposium
on Image and Signal Processing and Analysis (ISPA), 466–
470.
Schesvold, D.; Tang, J.; Ahmed, B.; Altenburg, K.; and Ny-
gard, K. 2003. POMDP planning for high level UAV deci-
sions: Search vs. strike. In In Proceedings of the 16th Inter-
national Conference on Computer Applications in Industry
and Enineering.
Smallwood, R., and Sondik, E. 1973. The optimal control of
partially observable Markov processes over a finite horizon.
Operations Research 1071–1088.
Smith, T., and Simmons, R. 2005. Point-based POMDP
algorithms: Improved analysis and implementation. In Proc.
UAI.
Spaan, M., and Vlassis, N. 2004. A point-based POMDP
algorithm for robot planning. In ICRA.

Spaan, M. 2008. Cooperative Active Perception using
POMDPs. Association for the Advancement of Artificial In-
telligence - AAAI.
Teichteil-Konigsbuch, F.; Lesire, C.; and Infantes, G. 2011.
A generic framework for anytime execution-driven planning
in robotics. In IEEE International Conference on Robotics
and Automation (ICRA), 299–304.
Wang, J.; Zhang, Y.; Lu, J.; and Xu, W. 2012. A Framework
for Moving Target Detection, Recognition and Tracking in
UAV Videos. In Luo, J., ed., Affective Computing and In-
telligent Interaction, volume 137 of Advances in Intelligent
and Soft Computing. Springer Berlin / Heidelberg. 69–76.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 31

On Estimating the Return of Resource Aquisitions through Scheduling:
An Evaluation of Continuous-Time MILP Models to Approach the Development

of Offshore Oil Wells

Thiago Serra and Gilberto Nishioka and Fernando J. M. Marcellino
PETROBRAS – Petróleo Brasileiro S.A., Av. Paulista, 901, 01311-100, São Paulo – SP, Brazil

{thiago.serra, nishioka, fmarcellino}@petrobras.com.br

Abstract

Resources such as oil rigs and pipelay vessels represent
the bottleneck in the development of offshore oil wells.
Being expensive to hire, oil companies expect a short-
term payback from their use. Consequently, the imme-
diate production brought by their scheduling is intended
to be maximized in the Offshore Resources Scheduling
Problem (ORSP), and the comparison of optimal solu-
tions to instances differing by their availability can be
used to aid the decision-making process for hiring more
resources. Regarding that it is often difficult to find an
optimal solution, we attempt to use estimations obtained
by solving a relaxation instead. This paper describes the
evaluation of alternatives to model the ORSP without
inventory constraints, and discusses how to eventually
include them. Those alternatives are continuous-time
MILP models in which decisions related to the sequenc-
ing of activities are not indexed by resources. They dif-
fer from each other by the constraints to avoid the oc-
currence of simultaneous activities and by the addition
of cuts. According to the tests performed, tighter upper
bounds to instances from the literature were achieved
either by finding an optimal solution to such relaxation
or by the upper limit reached at the solver halt.

Introduction
The development of an offshore oil well is comprised of a
sequence of activities with varied roles, each of which re-
quiring distinct capabilities from the resource that performs
it. Those activities represent consecutive stages in the de-
velopment of each well, such as its drilling, completion,
and connection to a producing unit. The availability of cer-
tain resources represents the development bottleneck due
to their scarcity in face of the number of activities simul-
taneously demanding their use. Among the most required
and expensive resources there are oil rigs and pipelay ves-
sels. The former type of resource is required by the early
stages of drilling and completion, while the latter performs
the connection of wells to producing units through pipes pre-
viously loaded at harbors. The criterion of main concern to
the schedule of offshore resources is the maximization of
the short-term production, which is measured by how much

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each well produces from the day its development is con-
cluded until a given planning horizon. Such criterion enables
the comparison of different solutions by measuring how
each of them impacts the immediate oil production. Besides,
solutions to instances corresponding with scenarios that dif-
fer only by the availability of resources can be compared to
evaluate how acquiring or leasing additional resources im-
pact the production and thus justifies, or not, the investment
required. While it is not always possible to achieve an op-
timal solution in reasonable time to such kind of problem,
such analysis can be quite inaccurate and misleading if the
schedules that are being compared are not optimal. In such
a case, the relaxation of some constraints allows to solve a
simplified version of the problem to optimality, and there-
fore set an upper bound to the achievable production.

The primary aim of this work is to illustrate the impor-
tance of striving for accurate assessments of return on re-
sources by means of scheduling models. It will be done by
comparing the results of the approach developed here with
production bounds previously reported to the Offshore Re-
sources Scheduling Problem (ORSP). Consequently, we also
expect to achieve tighter upper bounds to the ORSP while
exploring Mixed-Integer Linear Programming (MILP) mod-
els aimed at solving its relaxation. The analysis and compar-
ison of modeling alternatives is intended to eventually direct
the extension of one of such models to tackle the full prob-
lem, and thus attempt to solve it to optimality.

The ORSP has already been tackled by many approaches
since its inception by Hasle et al. (1996). Several of them
(do Nascimento 2002; Accioly, Marcellino, and Kobayashi
2002; Pereira, Moura, and de Souza 2005; Moura, Pereira,
and de Souza 2008; Serra, Nishioka, and Marcellino 2011)
represent a progressive detail of a single specification, which
is related to a software developed and used by the Brazil-
ian oil company Petrobras. do Nascimento showed that the
ORSP belongs to the NP-Hard class for being as hard as the
Job-shop Scheduling Problem (JSP). Thus, an efficient al-
gorithm for the general case of the problem is not known.
On account of the size of the instances for which a solu-
tion was being pursued, techniques with smaller memory
requirements but focused on feasibility instead of optimal-
ity such as Constraint Programming (CP) and metaheuris-
tics have been applied to some extent. Nevertheless, an algo-
rithm to generate an upper bound was introduced by Serra,

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 32

Nishioka, and Marcellino and it proved that their CP ap-
proach was able to find solutions at most 40% far from the
optimal in all tested instances. However, they acknowledged
that the estimation provided was very conservative and prob-
ably not accurate enough to evaluate the solutions obtained.
In this work, we intend to tighten such estimation by ap-
proaching the ORSP without loading activities. Those activ-
ities are required to load pipes at harbors prior to the connec-
tion activities in which they are released by vessels. They
were included in the ORSP by Serra, Nishioka, and Mar-
cellino (2011). Hence, our approach targets the problem as
it was described until 2008 by Moura, Pereira, and de Souza.

The selection of MILP to tackle the ORSP relaxation
derives from the fact that our focus was on approaching
the optimal production instead of a feasible schedule. Fol-
lowing the trend observed by Floudas and Lin (2004) in
the development of scheduling models, the temporal deci-
sions were represented using continuous variables instead
of binary variables indexed by discrete time units. That led
to a short representation of precedence relations between
activities and to a model which, in absence of resource
and positioning-related constraints, requires a single binary
variable per activity regardless of the size of the schedul-
ing makespan. Although the number of variables is usually
smaller in continuous-time models, Stefansson et al. (2011)
noticed that the number of constraints tends to be larger and
that they are more complex due to the difficulty of repre-
senting certain resource restrictions without time indexing.
Hence, one of the main concerns of developing such kind of
model is establishing a set of constraints binding resource
assignment to activities sequencing that facilitates the res-
olution while keeping the models as small as possible. In
order to address the issue of the model size, there were de-
veloped at least two types of models in which variables for
sequencing activities are not indexed by resources. Each of
them depicts the same problem with a different meaning for
the decision variables required by the constraints that avoid
the occurrence of simultaneous activities on the resources.
The first type represents the sequencing decisions detached
from the precise order of execution, and thus allow one ac-
tivity to be preceded by multiple activities and vice versa
(e.g., Jain and Grossmann (2001)). The other type considers
sequencing solely as the immediate succession of activities
on each resource (e.g., Méndez, Henning, and Cerdá (2000),
and Gupta and Karimi (2003)). Since it is not possible to tell
in advance which type is more suitable as well as whether
the addition of specific cuts in advance like reported by Jain
and Grossmann (2001) is effective to assist the solving pro-
cess in cases like ours, we will proceed to an evaluation of
some modeling alternatives to that part of the model.

The organization of the remainder of the paper is as fol-
lows. The next section formally defines the ORSP relaxation
that will be approached. We then present a MILP model
covering part of the details and proceed to the description
of some alternatives to model the remainder. Results from
tests involving the models are shown afterwards. They are
followed by a brief discussion and a conclusion regarding
what was achieved, as well as how to improve and extend
the present approach to tackle the full problem.

Problem Definition
The description that follows defines the relaxation of the
Offshore Resources Scheduling Problem (ORSP) that we
aim to solve. We consider only well development activities
that must be performed at well sites by rigs and vessels. Each
of those activities must be assigned to a resource compatible
with its needs, thus comprising requirements such as being
able to operate at the depth of the well. Rigs and vessels
are required to attend to a large geographical area, in which
displacements between sites may take a considerable time.

The ORSP can be depicted as a matter of deciding if, when
and how to perform each of several activities using a set of
resources in a short-term period. Time is represented in days,
starting from a date set as 0. For notational convention, re-
sources will be denoted by index i assuming values in the set
I, and activities by index j assuming values in the set J.

Optimization criteria
We want to maximize the short-term production of the devel-
opments, which is a measure of how much each well would
produce since the day its development finishes until the a
given horizon date H. Thus, we consider that each activity
j induces a daily production rate prj once it is concluded,
which is nonzero only for the last activity of each well.

Resource constraints
• Resources like rigs and vessels are unary, meaning that

each of them performs at most one activity at a time.
• A resource must be assigned to each activity that will be

concluded before the horizon limit.
• A resource i can be assigned to perform an activity j if,

and only if, ci j = 1.
• Each resource i has a contractual period of use, ranging

from its release date rri ≥ 0 to its deadline rdi ≥ rri.
• During that contract period, there are predicted periods

of unavailability. Without loss of generality, they can be
mapped as activities.

• Only one resource can be assigned to perform an activity
on a well at any time.

• To perform consecutive activities j1 and j2 on distinct
wells, it must be accounted the displacement time dtj1j2

.

Activity constraints
• Well development activities are non-preemptive: they are

performed without interruption until their conclusion.
• Each activity j has to be scheduled between its release

date arj ≥ 0 and its deadline adj ≥ arj .
• Each activity j is associated with a well denoted by wj.
• Each activity j requires pj days to be processed.
• One activity may be preceded by other activities. Let

pcj1j2
= 1 if, and only if, activity j2 is preceded by j1

and pdj1j2
be the minimum delay in days between both.

• Some activities may belong to a cluster, in which all ac-
tivities should be performed by a single resource. Let clj
denote the index of the cluster of each activity j.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 33

Model Description
There is a common representation for time variables, prece-
dence relations and part of the resource constraints for all
models considered. The set of decision variables involved is
described in table 1. In the following, the objective function
and the constraints of such common part are stated.

Var. Domain Description

Sj R
+ Start time of activity j.

Ej R
+ End time of activity j.

Yj {0, 1} If activity j ends before H .
Xj R

+ Days before j concludes if Yj = 1.
Fj R

+ Auxiliary variable positive if Yj = 0.
Wij {0, 1} If resource i performs activity j.
Zj1j2 {0, 1} If activity j1 precedes activity j2.

Table 1: Decision variables shared by all models considered.

The objective function (1) is aimed to maximize the pro-
duction until day H .

max.
∑
j∈J

(H × Yj −Xj)× prj (1)

While it is possible to represent a negative production with
such function if Xj > 0 and Yj = 0 for an activity j, that
does not occur when the problem is solved because a higher
return would be achieved with Xj = 0 and Fj = Ej . Thus,
the partial solution at any branch of the search tree of the
problem will always set Xj = 0 in such a case.

For constraints (6), (14) and (17) in the following, there is
a coefficient Mj associated with each activity j. Such coef-
ficient is intended to be larger than any valid assignment to
Ej . This kind of coefficient is usually described in the liter-
ature as “Big M”. Despite being possible to state Mj = adj ,
setting a smaller value would facilitate the solving process.
Thus, a preliminary run of the model comprised of con-
straints (2) to (19) was made for each instance in order to
update Mj as Ej + H − 1, where Ej is the value obtained
for Ej in such run. The interested reader is referred to the
work of Camm, Raturi, and Tsubakitani (1990) for an em-
pirical investigation on the scalability issues incurred by the
selection of overly large values for such kind of coefficient.

Constraints (2) to (4) limit the time variables from sets S
and E by release date, deadline, and processing time.

s.t. Sj + pj = Ej , ∀j ∈ J (2)
Sj ≥ arj , ∀j ∈ J (3)
Ej ≤ adj , ∀j ∈ J (4)

The semantics of the variable sets X and Y as described in
table 1 is guaranteed by constraints (5) to (7). Thus, Fj > 0
if, and only if, Yj = 0 for any activity j. Otherwise, Xj =
Ej . Therefore, the variable sets X and Y can be used in the
objective function to represent the production achieved.

Ej = Xj + Fj , ∀j ∈ J (5)
Fj ≤Mj × (1− Yj), ∀j ∈ J (6)
Ej ≥ H × (1− Yj), ∀j ∈ J (7)

The constraint (8) is a cut that was included to facilitate the
solving process. It consists of an additional binding between
the sets Y and X in order to evidence when an activity can-
not be performed before day H .

Xj + Yj ≤ H, ∀j ∈ J (8)

Further information about cuts will be provided in the sec-
tion discussing the preliminary addition of cuts.

Precedence relations are enforced by equation (9) on the
variable sets S and E, as well as by the additional cut (10)
on Y . Such cut restrains the occurrence of an activity before
H to the case in which its predecessors also occur before H .

Ej1 + pdj1j2 ≤ Sj2 , ∀j1, j2 ∈ J, pcj1j2 = 1 (9)
Yj1 ≥ Yj2 , ∀j1, j2 ∈ J, pcj1j2 = 1 (10)

Equation (11) guarantees that each activity concluded be-
fore H is assigned to a resource, and that such resource is
compatible with the activity as well.∑

i∈I,cij=1

Wij = Yj , ∀j ∈ J (11)

Equation (12) ensures that the total processing time of the
activities assigned to each resource does not exceed its short-
term availability.

min{H − 1, rdi} −min{H − 1, rri}

≥
∑

j∈J,cij=1

pj ×Wij , ∀i ∈ I (12)

Equations (13) and (14) limit the scheduling of each activity
to the contract of the resource it is assigned to.

Sj ≥ rri ×Wij , ∀i ∈ I, j ∈ J, cij = 1 (13)
Ej ≤ rdi + Mj × (1−Wij), ∀i ∈ I, j ∈ J,

cij = 1 (14)

Constraints (15) to (17) restrain the simultaneous occur-
rence of activities. Up to this point, that only applies to those
performed on the same well. The transition time of (17) is
null in such a case. Such transition time serves to separate
activities from distinct wells that use the same resource.

Zj1j2 + Zj2j1 ≤ 1, ∀ j1, j2 ∈ J, j1 < j2 (15)
Zj1j2 + Zj2j1 ≥ Yj1 , ∀ j1, j2 ∈ J,

j1 6= j2, wj1 = wj2 (16)
Ej1 + dtj1j2 − (Mj1 + dtj1j2)× (1− Zj1j2)

≤ Sj2 , ∀ j1, j2 ∈ J, j1 6= j2 (17)

The assignment of activities belonging to a cluster is
restricted to resources capable of performing all of those
scheduled in the short-term by constraint (18) and to a single
resource by (19).

Wij1 ≤ 1− Yj2 , ∀i ∈ I, j1, j2 ∈ J,

cij1 = 1, cij2 6= 1,

clj1 = clj2 (18)
Wij1 ≤ 1− Yj2 + Wij2 , ∀ i ∈ I, j1, j2 ∈ J,

cij1 = 1, cij2 = 1,

clj1 = clj2 (19)

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 34

Full resource sequencing constraints

Our first alternative to complete the model presented above
is by means of a full resource sequencing formulation. In
such a case, whenever two activities j1 and j2 are performed
by a single resource, either Zj1j2 = 1 or Zj2j1 = 1 in order
to avoid their simultaneous occurrence.

Constraint (20) denotes a possibility to represent such re-
striction inspired on the model described by Jain and Gross-
mann (2001). It forces the condition above when two activi-
ties are assigned to a single resource.

Zj1j2 + Zj2j1≥Wij1 + Wij2 − 1,

∀i ∈ I, j1, j2 ∈ J,

cij1 = 1, cij2 = 1

j1 < j2 (20)
The model comprising such constraint along with the oth-

ers stated previously will be denoted as MF hereafter.

Immediate resource sequencing constraints

Another possibility to complete the model of the same prob-
lem is to use immediate sequencing instead of full resource
sequencing to constrain the concurrence of activities on each
resource. In such a case, we must have auxiliary decision
variables that explicitly define which activity precedes each
other or else if an activity is the first to be performed by
a resource. Those sets of decision variables are depicted in
table 2. They are named W ′ and Z ′ due to their comple-
mentary nature with regard to W and Z, respectively. As
observed by Méndez, Henning, and Cerdá (2000), their inte-
grality restriction can be relaxed because it is not necessary
in such context. The constraints below are based on those
used by Méndez, Henning, and Cerdá (2000).

Var. Domain Description

W ′ij R
+ If j is the first activity on resource i.

Z ′j1j2 R
+ If activity j2 immediately follows j1.

Table 2: Decision variables for immediate sequencing.

Constraints (21) and (22) limit the values of W ′ and Z ′

by W and Z.

W ′ij ≤Wij , ∀i ∈ I, j ∈ J, cij = 1 (21)

Z ′j1j2 ≤ Zj1j2 , ∀j1, j2 ∈ J, j1 6= j2 (22)

Constraint (23) states that at most one activity is the first on
each resource, and (24) that each activity is succeeded by at
most a single activity.∑

j∈J,cij=1

W ′ij ≤ 1, ∀i ∈ I (23)

∑
j2∈J,j2!=j1,∃i∈I,cij1=1,cij2=1

Z ′j1j2 ≤ 1, ∀j1 ∈ J (24)

Constraint (25) ensures that each activity scheduled before

H is either the first on a resource or succeeds another one.∑
i∈I,cij1=1

W ′ij1

+
∑

j2∈J,j2!=j1,∃i∈I,cij1=1,cij2=1

Z ′j2j1

= Yj , ∀j ∈ J (25)

Constraint (26) defines that a transition can only occur if a
pair of activities are assigned to the same resource, while
(27) avoids a transition if one activity is assigned to a re-
source incompatible with the other activity.

Wij1 ≤Wij2 + 1− Z ′j1j2 , ∀i ∈ I, j1, j2 ∈ J

cij1 = 1, cij2 = 1 (26)

Wij1 ≤ 1− Z ′j1j2 , ∀i ∈ I, j1, j2 ∈ J,

cij1 = 1, cij2 6= 1 (27)

Along with statements (1) to (19), the constraints depicted
in this section constitute model MI .

Preliminary addition of cuts
Cuts are inferred constraints that can only be obtained from
the model constraints by leveraging integrality restrictions.
They are not required to ensure the model correctness but
they help pruning the problem space towards the polytope
of integer solutions, thus facilitating the solving process.

Jain and Grossmann (2001) suggested a cut for unary
scheduling that consists of avoiding the sequencing of ac-
tivities associated with different resources. However, it was
prohibitive in our case to consider every combination of ac-
tivities and resources pairs. Alternatively, constraint (28) is
adapted from another proposed by Gupta and Karimi (2003).
It forbids the sequencing of a pair of activities if one of them
is assigned to a resource that is incompatible with the other.∑

i∈I,cij1=1,cij2 6=1

Wij1

+
∑

i∈I,cij2=1,cij1 6=1

Wij2

+ 2× (Zj1j2 + Zj2j1) ≤ 2, ∀j1, j2 ∈ J,

wj1 6= wj2 (28)

It is worth of notice that the space pruning incurred by such
constraint is a subset of the pruning that the constraint of
Jain and Grossmann could achieve. Based on it, we have
developed constraint (29) to provide the same cut suggested
by Jain and Grossmann, but using less combinations.

(Zj1j2 + Zj2j1)

+
∑

i2∈I,i2 6=i1,cij2=1,cij1=1

Wij2

+ Wi1j1 ≤ 2, ∀i1 ∈ I, j1, j2 ∈ J,

ci1j1 = 1, ci1j2 = 1

wj1 6= wj2 (29)

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 35

Let MFC be the model resulting from the addition of (28)
to MF and MF∗ the one including (29) instead. Similarly,
models MIC and MI∗ are defined by the addition of con-
straints (28) and (29) to MI , respectively.

Experimental Evaluation

The models previously described were tested using the set
of instances from Serra, Nishioka, and Marcellino (2011).
That set represents a past scenario comprising the activities
to develop 171 wells using 73 resources.

Table 3 summarizes how many activities (Acs.), wells
(Wss.), rigs (Rgs.) and vessels (Vss.) each instance (Ins.)
has. Instance O contains the entire set of activities, which is
partitioned approximately into halves for instances H1 and
H2 as well as into quarters for instances Q1 to Q4. The
table also shows the former production estimations (F.P.E.)
recorded, which represent an upper bound to the achievable
production of each instance. For the sake of comparability,
those values are normalized considering the production of
the best ORSP solution found for each instance on the ex-
periments of Serra, Nishioka, and Marcellino as 100.

Ins. Q1 Q2 Q3 Q4 H1 H2 O
Acs. 116 118 116 115 231 234 465
Wls. 46 37 45 43 82 89 171
Rgs. 64
Vss. 9

F.P.E. 122.08 138.13 117.78 118.31 122.32 124.94 138.24

Table 3: Instances characteristics and former limits.

The models were implemented in the OPL language and
run using the IBM Cplex Studio 12.2 solver with some cus-
tomizations. The time limit was set as one hour in accor-
dance to the end user expectation. The relative precision gap
was set as 0.005% to guarantee precision up to the second
decimal digit. Based on preliminary tests, the solver was set
to emphasize optimality over feasibility and to repeat pre-
solve with cuts and allow new root cuts (IBM 2010). The
computer used had 4 Dual-Core AMD Opteron 8220 pro-
cessors, 16 Gb of RAM and a Linux operating system.

Each instance was run twice for each model with different
starting solutions. The first one consists of an empty short-
term schedule and the second is the best solution found by
Serra, Nishioka, and Marcellino (2011). Despite helping the
solving process, those solutions were seldom valid due to the
smaller values set for the M coefficients, which in turn re-
duced the time for scheduling after the horizon.

Tables 4 and 5 show either the time to achieve a solution
to the ORSP relaxation with the required gap, the gap as-
sured to the best solution found at the solver halt, or a dash
if the run was unsuccessful. Table 6 reports the tightest pro-
duction estimation (T.P.E.) achieved for each instance as a
result of those runs. It corresponds to the optimal solution of
the ORSP relaxation that we approached for instances Q1 to
Q4 and to the smaller upper limit recorded for the others.

Q1 Q2 Q3 Q4 H1 H2 O
MF 37 s 21 s 35 s 49 s 0.06% 0.15% 30%
MFC 28 s 30 s 201 s 69 s 0.36% 0.42% 111%
MF∗ 244 s 621 s 289 s 203 s 37% 33% 124%
MI 504 s 2425 s 1940 s 810 s – – –
MIC 448 s 3147 s 974 s 753 s – – –
MI∗ 6.6% 18% 1405 s 0.27% – – –

Table 4: Solving time (s) or gap (%) after 1 hour for each
model-instance run starting from an empty schedule.

Q1 Q2 Q3 Q4 H1 H2 O
MF 12 s 10 s 14 s 11 s 0.08% 0.16% 9.4%
MFC 13 s 12 s 15 s 28 s 0.29% 0.62% 182%
MF∗ 177 s 256 s 112 s 110 s 1.4% 1.7% 14%
MI 93 s 450 s 293 s 192 s – 1.6% –
MIC 303 s 124 s 91 s 236 s – – –
MI∗ 0.52% 546 s 567 s 1883 s 186% 193% –

Table 5: Solving time (s) or gap (%) after 1 hour for each
model-instance run starting from a feasible solution.

Ins. Q1 Q2 Q3 Q4 H1 H2 O
T.P.E. 104.04 113.90 100.62 103.53 105.00 105.91 118.06

Table 6: Tightest production estimation found for each in-
stance with an optimal solution or an upper limit at the halt.

Discussion
From the comparison of tables 3 and 6, we observe a reduc-
tion in at least a half of the optimality gap of the best solution
found for each instance by Serra, Nishioka, and Marcellino
(2011). The production limit estimation for instance Q3 was
reduced from 117.78 to 100.62. Instances H1 and H2 also
presented considerable improvements with the gap reduc-
tion of their best solutions to less than a quarter of the for-
mer. However, it is worth noticing that instances of similar
size such as Q1 to Q4 had reductions of varied proportions.
Hence, the variability in the reduction of the estimations en-
dorses the use of more accurate relaxations in order to obtain
reliable production assessments.

Regarding the variance of performance between different
models, those using full resource sequencing had better re-
sults than the others using immediate sequencing. That may
be explained by the need of keeping two sets of sequencing
variables in the latter type of models due to the constraints
to limit the concurrence on each well. Moreover, the pre-
liminary addition of cuts often had a negative effect in the
processing effort. Therefore, we conclude that model MF

represents the most promising option among those evaluated
to the development of an extended approach to the ORSP.

Conclusion and Future Work
This work aimed at evidencing the strategic importance of
scheduling applications by means of a study case. It con-
sisted of tightening the production estimation from using oil
rigs and pipelay vessels to develop offshore oil wells. Such
analysis can be applied to other industries where resource
acquisition figures are in similar orders of magnitude. In all

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 36

cases, perceiving scheduling merely as an operational tool
hinders a better valuation of machinery, and thus has the po-
tential of leading to bad managerial decisions.

We also aimed at depicting a solving approach based on
the discussion of relevant MILP modeling issues such as
time representation, sequencing of activities in resources and
preliminary addition of cuts. While the time representation is
discussed according to the review of Floudas and Lin (2004)
and to the evaluation conducted by Stefansson et al. (2011),
the latter issues are further scrutinized by the experimen-
tal comparison of varied models inspired by the literature.
Those models differ from each other in two ways. First, they
vary in regard to the selection between full sequencing and
immediate sequencing of the activities assigned to each re-
source. We have observed that the selection of constraints
for sequencing in continuous-time MILP models is not much
discussed. However, as reported by our experimental evalu-
ation, it has a great impact in the models performance. Sec-
ond, some of them rely on a preliminary addition of cuts
aimed to improve the solving time. Such addition was moti-
vated by the benefit of the practice when approaching a sim-
ilar problem, as described by Jain and Grossmann (2001).
Comparing them, we observed that the modeling of a full
resource sequencing without further cuts was the alternative
that yielded better results. In addition, it was observed that
leveraging good solutions as a starting point to the solver im-
proved considerably the outcome. Despite the fact that the
modeling evaluation relied on the straightforward use of a
MILP solver, it evidences the current capabilities of such
solvers and provides guidance to approaches using MILP
scheduling models as building blocks to tackle more com-
plex problems. The results achieved represent improved up-
per bounds to the ORSP when inventory constraints are also
considered. Nonetheless, they also constitute optimal or ap-
proximate solutions to the problem as it was described in
the literature until 2008, when such constraints were absent.
Hence, we discussed scheduling applications and modeling
issues that can help practitioners to tackle similar problems.

Future work will be directed towards reducing the time
necessary to solve bigger instances as well as extending the
current approach in order to generate feasible schedules. The
improvement induced by the provision of a starting solution
from a CP approach evidences the possible benefit of a hy-
bridization of techniques. On the one hand, developing a CP
model fully compliant with the relaxation described in this
work would guarantee the acceptance of the initial solution
provided to the MILP model and thus reduce the effort to
solve the proposed relaxation. On the other hand, the opti-
mal solution to the relaxation could also be used somehow as
an input to a technique targeting feasibility and therefore aid
with generating valid schedules. Alternatively, the model de-
scribed could be split into models aimed at tackling different
decisions and then integrated by means of a decomposition
approach iteratively switching between them. For instance,
Hooker (2004) describes a Logic-Based Benders Decompo-
sition (LBBD) in which decisions related to resource assign-
ment are taken by a MILP model and those related to activi-
ties sequencing are taken by a CP model. Based on accounts
of previous CP approaches, it appears to be a promising line.

Acknowledgments The authors gratefully acknowledge
the company under study for authorizing the publication of
the information here present. Furthermore, the opinions and
concepts presented are the sole responsibility of the authors.

References
Accioly, R.; Marcellino, F. J. M.; and Kobayashi, H. 2002.
Uma aplicação da programação por restrições no escalona-
mento de atividades em poços de petróleo. In Proceedings
of the 34th Brazilian Symposium on Operations Research.
Camm, J. D.; Raturi, A. S.; and Tsubakitani, S. 1990. Cut-
ting big M down to size. Interfaces 20:61–66.
do Nascimento, J. M. 2002. Ferramentas computacionais
hı́bridas para a otimização da produção de petróleo em águas
profundas. Master’s thesis, Unicamp, Brazil.
Floudas, C. A., and Lin, X. 2004. Continuous-time ver-
sus discrete-time approaches for scheduling of chemical pro-
cesses: a review. Computers and Chemical Engineering
28:2109–2129.
Gupta, S., and Karimi, I. A. 2003. An improved MILP
formulation for scheduling multiproduct, multistage batch
plants. Industrial & Engineering Chemistry Research
42(11):2365–2380.
Hasle, G.; Haut, R.; Johansen, B.; and Ølberg, T. 1996. Well
activity scheduling - an application of constraint reasoning.
In Artificial Intelligence in the Petroleum Industry: Symbolic
and Computational Applications II. Technip. 209–228.
Hooker, J. N. 2004. A hybrid method for planning and
scheduling. Constraints 10:385–401.
IBM. 2010. ILOG CPLEX Optimization Studio 12.2 docu-
mentation for ODM Enterprise.
Jain, V., and Grossmann, I. E. 2001. Algorithms for hy-
brid MILP/CP models for a class of optimization problems.
INFORMS Journal on Computing 13(4):258–276.
Méndez, C. A.; Henning, G. P.; and Cerdá, J. 2000. Op-
timal scheduling of batch plants satisfying multiple product
orders with different due-dates. Computers and Chemical
Engineering 24:2223–2245.
Moura, A. V.; Pereira, R. A.; and de Souza, C. C. 2008.
Scheduling activities at oil wells with resource displace-
ment. International Transactions in Operational Research
15(25):659–683.
Pereira, R. A.; Moura, A. V.; and de Souza, C. C. 2005.
Comparative experiments with GRASP and constraint pro-
gramming for the oil well drilling problem. In Proceedings
of the 4th International Workshop on Experimental and Ef-
ficient Algorithms, 328–340. Springer.
Serra, T.; Nishioka, G.; and Marcellino, F. J. M. 2011. A
constraint-based scheduling of offshore well development
activities with inventory management. In Proceedings of the
43rd Brazilian Symposium on Operations Research.
Stefansson, H.; Sigmarsdottir, S.; Jensson, P.; and Shah, N.
2011. Discrete and continuous time representations and
mathematical models for large production scheduling prob-
lems: A case study from the pharmaceutical industry. Euro-
pean Journal of Operational Research 215:383–392.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 37

PELEA: a Domain-Independent Architecture for Planning, Execution and
Learning

1 César Guzmán, 2 Vidal Alcázar, 3 David Prior
1 Eva Onaindia, 2 Daniel Borrajo, 3 Juan Fdez-Olivares, 2 Ezequiel Quintero

1 Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
2 Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Spain

3 Universidad de Granada, Av. Hospicio, s/n, 18010 Granada, Spain
cguzman@dsic.upv.es, valcazar@inf.uc3m.es, dprior@decsai.ugr.es

onaindia@dsic.upv.es, dborrajo@ia.uc3m.es, faro@decsai.ugr.es and equinter@inf.uc3m.es

Abstract

One of the current limitations for large-scale use of
planning technology in real world applications is the
lack of software platforms to integrate the full spec-
trum of planning-related technologies: sensing, plan-
ning, executing, monitoring, re-planning and learning
from past experiences. In this paper, we present PELEA,
a domain-independent online planning architecture that
includes state-of-the-art components for performing a
wide range of (meta-)planning tasks, such as learning of
control knowledge or low-level planning among many
others. PELEA is conceived as a general-purpose archi-
tecture suitable for problems ranging from robotics to
emergency management. PELEA is also intended to pro-
vide a rapid prototyping life-cycle for building planning
applications and support planning practitioners with a
highly-configurable tool.

Introduction
Automated Planning (AP) has been successfully applied to
different real-world problems, such as space (Ai-Chang et
al. 2004), robot control (McGann et al. 2009), or fire ex-
tinction (Fdez-Olivares et al. 2006) among many others. The
process of developing a final application is an “ad-hoc” man-
ual process that requires expertise and techniques from sev-
eral fields as well as a careful definition of the underlying
architecture. Most applications rely on architectures that in-
clude the functionalities required for a continuous planning,
namely sensing the state, generating the problem at hand,
planning , executing the plan, monitoring the execution for
failures, etc. These applications are also based on replanning
when needed, and, possibly, learning from the interaction
to generate better models or control knowledge to improve
search. However, in most applications, specifically tailored
software had to be developed for the domain at hand, which
usually lacks generality and reuse possibilities.

There have been some attempts, though, to design generic
architectures used for different purposes. Examples can be
found in space and robotics applications of platforms as
Mapgen (Ai-Chang et al. 2004), APSI (Cesta et al. 2009),
PRS (Georgeff and Lansky 1987), or IxTeT (Ghallab and

Copyright c⃝ 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Laruelle 1994). However, these platforms have been de-
signed for specific problems and techniques, as timeline-
based planning (Ai-Chang et al. 2004; Cesta et al. 2009;
Ghallab and Laruelle 1994), hierarchical planning (Fdez-
Olivares et al. 2006), or reactive controllers (Georgeff and
Lansky 1987).

In this paper, we present PELEA, a domain-independent,
component-based architecture able to perform planning, ex-
ecution, monitoring. repairing and learning in an integrated
way, in the context of PDDL-based and HTN-based plan-
ning (Alcázar et al. 2010). PELEA follows a continuous
planning approach, i.e. an ongoing and dynamic process in
which planning and execution are interleaved but, unlike
other approaches (Myers 1999; Chien et al. 2000), it allows
planning engineers to easily generate new applications by
reusing and modifying the components as well as a high
flexibility to compare different techniques for each module
or even incorporate one’s own techniques.

One particular application domain suitable for testing a
continuous planning approach is robotics as it provides the
kind of plan generation and replanning capabilities required
for situated agents in highly dynamic environments. We use
the general-purpose, highly-configurable architecture PE-
LEA as an autonomous mobile robot control system. PELEA
allows controlling the execution of a given task indepen-
dently of the robot control platform and devices, monitor-
ing the correct plan execution, resolving uncertainty by re-
planning when needed, and learning additional knowledge.
To test PELEA as a robot control system we worked with the
Rovers domain from the International Planning Competition
(IPC1). This domain is a simplified version of the planning
tasks performed by the Mars Rovers.

This paper is organized as follows. First, we present an
overview of PELEA architecture. The next two sections re-
late the high-level and low-level planning in PELEA, respec-
tively. The following sections describe the learning module
and the goals and metrics module. Afterwards, a case study
showing the features of PELEA is shown. Finally, the last
section presents our conclusions.

1IPC: http://ipc.icaps-conference.org/

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 38

Overview of PELEA Architecture
A full description of PELEA architecture can be found in
(Alcázar et al. 2010). Here, we sketch the components and
main functionalities of PELEA.

PELEA architecture includes components that allow the
applications to dynamically integrate planning, execution,
monitoring, replanning and learning techniques. PELEA pro-
vides two main types of reasoning: high-level (mostly de-
liberative) and low-level (mostly reactive). This is common
to most robotics applications and reflects the separation be-
tween a reactive component and a deliberative component.
However, in our architecture, these are simply two plan-
ning levels. This offers two main advantages: both levels
can be easily adapted to the requirements of the agent; and
the differentiation allows the agent replanning at either level,
which grants a greater degree of flexibility when recovering
from failed executions.

Figure 1 shows a screenshot of PELEA’s web interface
and the current version of the architecture along with the
integration of the modules. As we can see, PELEA is com-
posed of eight modules that exchange a set of Knowledge
Items (KI) during the reasoning and execution steps. We
have chosen to use XML within the architecture to represent
those KIs, which are: (1) stateL, low-level state composed
of the sensory information; (2) stateH, abstracted high-level
state translated from stateL as an aggregation or a general-
ization of low level information; (3) goals: the set of high-
level goals to be achieved by the architecture; (4) metrics,
metrics that will be used in the high-level planning process;
(5) planH, high-level plan generated with any state-of-the-
art high-level planner (this is a configurable parameter in
PELEA); actions in planH can also be the goals for the low-
level planner (in case we want the low-level planner to act as
a dynamic translation mechanism for high-level actions); (6)
planL, low-level plan as a set of operational actions result-
ing from the low-level planning that are directly executable
in the environment; (7) domainH, definition of actions for
the high-level planning; (8) domainL, definition of behav-
iors (skills) for the low-level planning learning examples; (9)
heuristics, in different forms (control rules, policies, cases,
macro-actions, etc.) allow the planner to improve the effi-
ciency in solving future planning episodes; and (10) info
monitor, meta knowledge on the plan that helps perform the
plan monitoring (for instance, the generation time of a lit-
eral).

The high-level knowledge describes general information,
actions in terms of its preconditions and effects, and typ-
ically represents an abstraction of the real problem. High-
level knowledge is concerned with the description of the
high-level domain, problems, goals and metrics, and they
are required for the purpose of planning sequences of ac-
tions, and for the modifications of these sequences (repair
or replanning). We use PDDL to represent this information.
However, high-level knowledge descriptions are rarely di-
rectly executable, if ever, and they must be complemented
by the low-level knowledge, which specifies how the opera-
tions are actually performed in terms of continuous change,
sensors and actuators. Low-level knowledge describes the
more basic actions in the simulated world, and it is typically

concerned with specific rather than general functions, and
how they operate. Now, the main components of PELEA are
described.

Execution Module. The starting point of PELEA is the
initialization of the Execution Module to capture the cur-
rent problem state (stateL). This module also receives a
high/low-level domain, and a problem. The Execution Mod-
ule keeps only the static part of the initial state, given that the
dynamic part, stateL, is read from the environment through
sensors. The environment is either a hardware device, a soft-
ware application, a software simulator, or a user. The Exe-
cution Module is in charge of receiving the new stateL and
sending out the low-level actions (planL) that have to be ex-
ecuted at each step to the actuators.

Monitoring Module. Both the problem and the domain
definitions and, optionally, a metric, are sent to the Mon-
itoring Module to obtain a high-level plan (planH). Then,
planH is translated into a low-level plan (planL) whose ac-
tions are finally sent to the Execution Module. In PELEA,
it is not necessary to work at the two knowledge levels. One
can just work at the high-level, so that converting knowledge
from high-level into low-level with the LowToHigh mod-
ule or using the Low-level planner module are not required.
The Monitoring Module calls the Decision Support, which
in turn calls the High-level replanner, to obtain planH. If
the low level is being used, planH is converted into planL;
otherwise, (some) actions in planH are directly sent to the
Execution Module. Once the actions are executed, the Mon-
itoring Module receives the necessary knowledge (current
state, problem and domain) from the Execution Module and
it starts the plan monitoring process. The first step is to check
whether the problem goals are already achieved in the re-
ceived state (goalsL and goalsH in case we are dealing with
the two processes). If so, the plan execution finishes; other-
wise, the Monitoring Module checks whether the received
state matches the expected state or not and determines the
existence or lack of a plan failure.

Low-level planner. The Monitoring Module, with the
help of the Low-level planner module, generates a set of ex-
ecutable low-level actions (planL). An example of low-level
knowledge would be “the coordinates of a robot” or “degrees
of motion of a robot arm”. If the Low-level planner module
is not used, the Monitoring Module assumes that actions in
planH are executable, and they are directly sent to the Exe-
cution Module.

Decision Support Module. It selects the variables to be
observed by the Monitoring Module during the plan mon-
itoring, and takes the decision of repairing or re-planning
through an Anytime Plan-Adaptation approach (Garrido,
Guzman, and Onaindia 2010) when the Monitoring detects
a failure in the plan monitoring. It also communicates the
Monitoring Module with the High-level replanner Module
and retrieves training instances from the execution and the
plans to be sent to the Learning module.

High-level replanner. It receives a problem and a high-
level domain (domainH) and generates a high-level plan
(planH). This module is also invoked when the Decision
Support has to fix (repair/replan) a plan. In this latter case,
the initial state of the problem will be the current observed

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 39

Figure 1: Screenshot of PELEA’s web interface showing the architecture of the system. It shows the execution of a simple
problem in the Driverlog domain.

state. Several planners have been successfully used for this
module: LPG-TD (Gerevini, Saetti, and Serina 2003), SG-
PLAN (Hsu et al. 2007), CRIKEY (Coles et al. 2009) and
TFD (Eyerich, Mattmller, and Rger 2009).

Learning Module. It infers knowledge from a training set
sent by the Decision support module. The knowledge can
be used either to modify the domain planning model or to
improve the planning process (heuristics). Apart from the
different levels of reasoning, PELEA can also learn from past
executions and reason about the current problem to improve
its efficiency.

The components run as separate processes and commu-
nicate through sockets. The inputs are defined by either
the PDDL or HTN domain/problem specification at the
high level. The knowledge exchanged among components
follows the domain-independence principle with domain-
independent APIs (through XML). Here lies the generality
of PELEA; one can exchange a component and PELEA will
continue working as it is, maintaining the XML APIs and
their semantics, which are the standard ones in planning: ac-
tions, goals, states and plans.

Plan Monitoring and Decision Support
The info monitor parameter, provided by the Decision Sup-
port Module, comprises the information that needs to be
monitored to guarantee a successful plan execution. Specif-
ically, it includes: i) the variables to be monitored, i.e. those

that are directly related to the plan, ii) the time at which
the variable is generated, and the earliest and latest time at
which the variable will be used, respectively; and iii) the
value range for each variable, denoting the set of correct
values that the variables can take on. The Decision Support
Module computes the variables to be monitored through an
extension of the goal regression method proposed in (Fritz
and McIlraith 2007), which is inspired by the mechanism
used in triangle table defined in (Fikes, Hart, and Nilsson
1972). This mechanism is only used so far to monitor the
high-level information.

The Monitoring Module receives planH and the info mon-
itor parameter and sends a set of executable actions from
planH at a time instant t to the Execution. For example, in
figure 2, at t = 0.0003 actions a1 and a2 can be executed in
parallel. The Monitoring sends these two actions to the Ex-
ecution and requests the execution state at the time in which
variables are generated and used, most typically at the end
of the execution of the actions. In this example, the Monitor-
ing, with the help of the Execution, senses the dynamic state
variables from the environment at t = 2.0003.

Once the information of the observed state is received by
the Monitoring at time t, it checks the values of the variables
are within the value range specified in info monitor parame-
ter. If so, the Monitoring continues with the plan execution,
sending the next set of actions to the Execution (action a3
in figure 2). Otherwise, a discrepancy between the expected

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 40

Figure 2: Example of a parallel plan.

and the observed state is found, in which case the anomaly is
reported to the Decision Support, which determines whether
the discrepancy is relevant to the plan execution or not. At
this point, if reactivity is needed, the low-level planner is
invoked to find the most immediate actions as this module
typically stores predefined policies or courses of actions de-
signed to reach particular goals. In the anomaly entails the
plan is no longer executable, the Decision Support is called
to take a decision between repairing the current plan or re-
planning from scratch.

The decision between repairing or replanning is done via
the application of a regressed goal-state heuristic (Garrido,
Guzman, and Onaindia 2010). A regressed goal state is a tu-
ple of the form GS = ⟨L, t⟩ where L is the set of atoms, i.e.
values of the state variables, and t is the time of GS, which
usually coincides with the start time of one action (sequen-
tial planning) or more than one action (parallel planning).
The heuristic estimates the best GS according to parame-
ters as the cost or stability of the estimated plan. Then a new
problem from S0 to the selected regressed goal state is gen-
erated and the planner is invoked. Note that the first GS is
the one from which the whole original plan can be reused;
the subsequent goal states represent reachable states from
which to reuse ever decreasing parts of the original plan;
and the final GS entails no reuse of the plan at all.

Temporal plan monitoring
When monitoring a temporal plan, the classical definition
of a regressed goal state, GS, to guarantee the executabil-
ity of the plan tail from t is no longer sufficient. A temporal
regressed goal state has now to include actions concurrent
with the state variables at t, and the timing of those actions
relative to the variables (Haslum 2006). That is, when com-
puting GS = ⟨L, t⟩, the algorithm must take into account
the actions that are being executed at time t. We will call
these actions ongoing actions.

A temporal regressed goal state is a tuple GS = ⟨L, t, A⟩
where L is the values that the variables should take on at
t and A = {(a1, δ1), . . . , (an, δn)} is the set of ongoing
actions, a set of actions ai with time intervals δi, meaning
that each action (ai, δi) in A has started δi time units earlier.
In other words, a plan achieves the temporal regressed state
GS iff the plan achieves L at t and schedules action ai at
time t− δi for each (ai, δi) ∈ A.

For example, consider the temporal regressed goal state
GS1 = ⟨Ls1, 5.0012, {(a3, 3)}⟩ in figure 3 (a sketch of a
plan from a rovers problem). Since t = 5.0012 is the starting
point of the action a4, the preconditions of a4 are subgoals
(variables) to be achieved by t. Additionally, the action that
achieves those conditions must be compatible with the on-

Figure 3: Temporal plan example - planH solution.

going action a3, which starts 3 time units earlier. Ongoing
actions are automatically computed by the Decision Support
and encoded as special PDDL actions in the new planning
domain file. Particularly, an ongoing action ai of a temporal
regressed state GSj has the same specification as the orig-
inal action except that the at end effects are ignored and
that the duration is δi. The at start effects of the original
action are included as variables in GSj .

Analogously to the temporal regressed goal states, there
may be actions that are actually being executed at the cur-
rent time in the observed state (S0). In this case, the ongoing
actions have already been executed for a certain time so it
is only necessary to execute them during the remaining time
up to the completion of the action. See for example figure
3 where two time units of action a2 have already been exe-
cuted at S0. Now, the current observed state is specified as
follows: S0 = ⟨L, t, A⟩, where L is the observed variables,
t is the current time and A = {(a1, σ1), . . . , (an, σn)} is
the set of ongoing actions at t, a set of actions ai with time
intervals σi, meaning that each action (ai, σi) in A remains
σi time units to complete. In other words, a plan from S0

must schedule action ai at current time t with a duration σi

for each (ai, σi) ∈ A. Ongoing actions of the observed state
are encoded as special PDDL actions with: i) preconditions
equal the overall preconditions and at start effects
of the original action, ii) effects equal the at end effects
of the original action and iii) a duration of σi time units.
Replanning vs. Plan Repair The Decision Support is
capable of deciding between replanning or repairing in a
timely fashion. It uses an algorithm with anytime capabil-
ities whereby a first solution plan is rapidly returned, and
the solution quality may improve if the algorithm is allowed
to run longer (Garrido, Guzman, and Onaindia 2010). The
heuristic takes a balanced response between metric (cost,
makespan) and plan stability (part of the original plan that
can be reused in the new solution plan) (Fox et al. 2006).
Plan stability is one of the principal reasons for claiming the
preference of plan repair over the alternative of replanning.

The heuristic estimates an approximate plan Πreplan (a
plan from S0 to the GSn discarding the whole original plan),
and a plan Πrepair (a plan from S0 to the GS1 keeping the
whole original plan). If cost(Πreplan) < cost(Πrepair) or
stability(Πreplan) > stability(Πrepair) then replanning is
chosen as the preferred option. Otherwise, the algorithm an-
alyzes the cost and stability of the subsequent regressed goal

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 41

states (GS2, . . . , GSn−1) and maintains the best regressed
goal state computed so far until time expires. Once a goal
state GSi is selected, the High-level replanner is invoked
with the initial state S0 and goal state GSi. The returned
plan is concatenated with the plan tail of the original plan
taking into account the causal links and time constraints.

Closer to the Real World: Low Level
Actions in low-level plans (planL) are atomic actions that
are executed directly in the environment. The low-level rea-
soning components are often required to come up with a so-
lution in a short time. In this section, we present in detail the
PELEA modules that implement the low level behaviour.

Execution Module
The Execution Module deals with the communication be-
tween PELEA and the environment, which can be repre-
sented by a simulator, a hardware device (robot), a third-
party software, or a user. Currently, the Execution Module
works as a wrapper over anything external to PELEA, tack-
ling with low-level details that depend on the kind of envi-
ronment PELEA is working with. Issues like communication
protocols and data formats are responsibility of the Execu-
tion Module.

Low-level states (stateL) are sent to the Monitoring Mod-
ule upon request. Similarly, actions in planL are sent to
the actuators when they are received from the Monitoring.
This is usually interleaved, although PELEA may ask asyn-
chronously for stateL without sending any action to monitor
the execution. Currently, the Execution Module provides in-
tegration with the following environments:

• MDPSim: PPDDL (Younes and Littman 2004) simula-
tor employed in the past probabilistic tracks of the In-
ternational Planning Competition (IPC)2 which generates
states stochastically as actions are received. It works with
a probabilistic version of the regular PDDL domains,
PPDDL, in which the effects of the actions depend on a
series of probabilities.

• In-house temporal probabilistic simulator: we have built
a new simulator that is able to work with temporal prob-
abilistic domains. The domain definition is similar to the
temporal version of PDDL, augmented with probabilistic
effects as in PPDDL.

• Stage/Player (Gerkey, Vaughan, and Howard 2003): free-
ware platform for robot independent control.

• Microsoft Robotics Studio: a robot independent platform
similar to Player.

• Freeware software suite for robotics applications, re-
search and education, which also offers the possibility to
simulate various kinds of robots.

• AIlife: open platform for simulating social and emotion
oriented games.

• Planning framework designed to simulate and solve real-
life logistic problems.

2Except for the last one held on 2011.

Low-Level Planner
The Low-Level Planner generates planL composed of
atomic actions that can be directly executed in the environ-
ment. It receives stateL and a high-level action (the next one
from the current planH). This high-level action conforms
the low-level goal. The low-level actions of the planL gener-
ated by the Low-level Planner are then sent to the Execution
Module. Thus, high-level plans can be decomposed into sev-
eral low-level actions, keeping the reasoning at both levels
distinct. The Low-level planner does not have to be a regular
PDDL-based planner. We have implemented several types of
low-level planners:

• HighToLow translators, that simply decompose a high-
level action into low-level ones with no reasoning. They
can be seen as small programs that take as input a high-
level action and the low-level state and generate as output
a set of low-level actions

• A policy, either learned or manually created. For instance,
based on a states-actions table (as in most reinforcement
learning approaches).

Suppose we have a domain in which a robot can move
along a building and turn around to change its orientation. A
high-level plan may contain the (move location1 location2)
action as the current one, so it is sent to the Low-level plan-
ner. The other input would be stateL that includes informa-
tion on the x and y coordinates of the robot position and
its orientation. Then, the Low-level planner solves the path-
planning problem and returns a sequence of atomic actions
to be sent to the robot; for instance, the sequence (advance
10), (turn 45 right), (advance 5).

LowToHigh Module
The task of the LowToHigh Module is to translate a stateL
into a stateH. In most cases it is just a mapping function be-
tween the low and the high level, although more complex
functionalities can also be implemented. The requirement
of being able to generate a stateH from a stateL is justified
by the necessity of monitoring at both low and high levels.
Thus, replanning and repairing can be performed during the
high-level execution as well.

Learning in PELEA

The Learning Module is in charge of inferring knowledge
from the training data sets sent by the Decision Support
module. So far, machine learning techniques have been used
to improve the planning process by learning domain models,
low-level policies and heuristics. We will shortly describe
them here as a summary of the kinds of techniques that PE-
LEA integrates into its core, since most of them have already
been published elsewhere.

Learning domain models
The generation of accurate robot control PDDL or PPDDL
models for planning is complex. To alleviate this, machine
learning has been used to support model generation. As an
example, a relational learning approach was developed as

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 42

part of the Learning Module of PELEA to learn more ac-
curate robot-action execution durations than the originally
modeled ones (Quintero et al. 2011). PELEA starts with a
deterministic version of a robotics domain and then executes
actions and observes the results of those executions in terms
of the function whose effects we want to learn (e.g. navi-
gate). We used TILDE (Blockeel and Raedt 1998) to learn
the duration of actions of the Rovers domain using regres-
sion trees. Finally, the duration models were later compiled
into the PDDL domain specification. The experiments were
performed using a Pioneer robot that traveled through differ-
ent terrain types, generating the learning examples from the
type of terrain and the time it took the robot to move from
one waypoint to another.

Learning low-level policies

Also, as part of the Learning Module, domain-specific learn-
ing techniques can be used at the low-level. As a proof of
concept, a policy made to substitute the low-level planner
was inferred using reinforcement learning. This was done
for the case study described later, in which training ex-
amples of the form ⟨state, action, state, reinforcement⟩
were employed to create a state-action table.

Learning heuristics

The Learning Module is also able to learn heuristics for im-
proving the planner’s efficiency. Relational decision trees
were used again to learn how to generate look-ahead states to
improve forward search algorithms (De la Rosa et al. 2011).
This was done by creating training examples that take into
account the helpful actions of previous heuristic evaluations
of states belonging to smaller problems of the same domain.
The learning system is domain-independent, but planner-
dependent, so in the future we would like to include other
planner-independent techniques.

Goals and Metrics Generation
The Goal&metric generation Module is designed to auto-
matically select the new goals and metrics to be used ac-
cording to the current state of the execution. A common use
of this module is for oversubscription problems, where not
all goals can be satisfied. This problem is generally solved
by choosing some goals and discarding others either online
or offline. An algorithm that computes an estimation of the
cost of achieving a goal from every other goal was imple-
mented so a set that maximizes the number of goals that will
be likely achieved can be easily found (Garcı́a-Olaya, de la
Rosa, and Borrajo 2011).

A Case Study: Rovers domain
In this section, we show an instance of the Rovers domain
which replicates the expected behavior of the autonomous
explorers sent to Mars by NASA in past experiments. It was
simulated both by using Player/Stage (Gerkey, Vaughan, and
Howard 2003), and two real robots, two Pioneers P3-DX,

Figure 4: Execution of PELEA: real robot and simulator.

which interacted in a recreated physical space that repre-
sented the Mars environment 3.

Both the robot and the simulation were managed using
Player/Stage, so there was a single implementation for both
cases. The actuators/sensors management was implemented
in the Execution Module as a set of basic control skills.
The communication was performed using sockets, acting
Player/Stage as the server and PELEA as the client. Both the
Low-Level Planner and the LowToHigh Module were im-
plemented as an ad-hoc translator adapted for the example.

Description of the case study
We have used the Rovers domain introduced in the IPC in
2002. In this domain, a collection of Rovers navigate on
Mars’ surface, looking for samples/images data which they
should communicate back to Earth. In this case, the STRIPS
version of the domain was used for the sake of simplicity. In
the executed instance two different Rovers are used, and the
goal is to communicate a set of samples taken from rocks
in the environment. In the trace example we will refer to
one of these two Rovers, named Curiosity. During the ex-
ecution, both the physical Pioneer robots and the simulator
provided by Player/Stage are used. Figure 4 shows the real
robot during execution and a screenshot of the simulator at
that instant.

Trace of execution
Now, we show the execution of the action (navigate
curiosity waypoint00 waypoint01). First, sta-
teL is requested to the Execution Module. Curiosity will re-
trieve its current stateL, indicating that the position of Cu-
riosity is (x = 0.00, y = 0.00, z = −1.50), no bumper
detected a collision, and no object is detected to be close by
its sonar ring.

Once stateL is retrieved, the PELEA flow continues. sta-
teL is translated into stateH and checked by the Mon-
itoring module. After the monitoring process is done,
the Low-level planner is executed in order to generate
the next planL. The high-level action being executed (in
our example : (navigate curiosity waypoint00
waypoint01)) is sent to the Low-Level Planner and the
corresponding planL is generated.

For the case of our (navigate curiosity
waypoint00 waypoint01) action, the corresponding

3Currently, we have already uploaded PELEA with ROS into
two humanoid robots, NAOs, and we are using PELEA to control
them for simple tasks

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 43

1 <plan id="navigate">
2 <action-plan name="turnleft">
3 <term name="robot" value="curiosity"/>
4 </action-plan>
5 <action-plan name="movetowardsy">
6 <term name="robot" value="curiosity"/>
7 <term name="y" value="0.00"/>
8 </action-plan>
9 </plan>

Figure 5: planL returned

planL for the actuators is shown in Figure 5. Curiosity has
to change its orientation turning left. And then it has to
move towards the position y = 1.0. Now that the planL has
been generated, the robot can execute the set of commands
to achieve the complete level action. First, Curiosity turns
left and then moves towards position y = 1.00 (PELEA
sends a command movetowardsy as the one shown in
Figure 5). Once the action is executed, the resulting stateL
is returned by the EM. This state is translated into stateH
that should look like the fragment on Figure 6.

1 <atom predicate="at">
2 <term name="curiosity"/>
3 <term name="waypoint01"/>
4 </atom>
5 <atom predicate="full">
6 <term name="curiositystore"/>
7 </atom>
8 <atom predicate="calibrated">
9 <term name="logitechsph"/>

10 <term name="curiosity"/>
11 </atom>
12 ...

Figure 6: stateH

Related Work
In the late 80’s and beginning of the 90’s there was a pro-
fusion of architectures for autonomous mobile robot sys-
tems which heavily drew upon the popular three-layer SPA
(sensing-planning-acting) architecture. Most of these early
approaches (RAP (Firby 1987), PRS (Georgeff and Lansky
1987), SHAPIRA (Saffiotti, Konolige, and Ruspini 1995))
developed reactive behaviors, fixed pre-compiled patterns
of actions which are selected depending on the actual situa-
tion of the executor. Other architectures smoothly integrate
planning and reacting running asynchronously a classical AI
planner in conjunction with a reactive control mechanism
(Gat 1992; Hayes-Roth 1995). An alternative direction is to
generate plans to solve the entire planning task and mon-
itor their execution afterwards, resorting to re-planning or
plan repairing in case of execution failures (Currie and Tate
1991). The Continuous Planning and Execution Framework
CPEF (Myers 1999) is an asynchronously working archi-
tecture that interleaves planning and execution. CPEF can
generate plans to arbitrary levels of refinement and then
be manipulated at runtime by the executor component. PE-
LEA gathers many of the features of the aforementioned
architectures, namely reactive execution, continuous plan-
ning approach, re-planning and repairing techniques but it

also features a learning module and the ability to change
goals as new information is acquired during plan execution
(Goal&metric generation module).

PELEA also has some features in common with the Task
Control Architecture TCA (Simmons 1992). TCA was de-
veloped to handle robot control problems and was specifi-
cally tested with Ambler, a robot designed for planetary ex-
plorations, which required a rather deliberative architecture.
TCA provides a general framework of hierarchical task de-
composition augmented with reactive behaviors. Since TCA
was specifically thought of as a high-level robot operating
system, it allows for the definition of task-specific modules.
This contrasts with the more general PELEA behavior, which
has been designed to tackle any type of planning-execution
problem, from the most proactive to the most reactive do-
mains. PELEA also uses PDDL and HTN definitions that are
currently the standards in deliberative planning, so it can
more easily be used by planning practitioners.

IDEA (Intelligent Distributed Execution Architecture)
(Aschwanden et al. 2006) is a real-time architecture that
departs from the three-layer SPA architecture and proposes
instead to unify deliberation and execution under a single
planning technology and model representation. Like T-Rex,
IDEA is composed of self-contained planning systems, each
with a deliberation latency and planning horizon. IDEA uses
XIDDL, a XML encoding of IDEA domain definition lan-
guage, but it does not allow for PDDL or HTN-based model
representation. Additionally, this unified view that permits
the planner to be embedded within the executor usually al-
lows only for a strict and controlled interleaving of the plan-
ning and execution phases (Vidal and Nareyek 2011), mak-
ing it difficult to have a general-purpose planner for different
types of executor systems.

As a whole, PELEA boosts flexibility, modularity, gener-
ality and interoperability. PELEA allows practitioners to re-
place (and reuse) any module of the architecture as long as
the new module is able to read the corresponding XML in-
put file, thus requiring much less effort to easily generate
new interleaved planning-and-execution applications.

Conclusions
In this paper, we have introduced a domain-independent
architecture, PELEA, that integrates planning related pro-
cesses, such as sensing, planning, execution, monitoring, re-
planning and learning. We have shown examples of the two
levels of reasoning in a temporal and no-temporal domains.
High level as in a regular automated planning task; and low
level, composed by atomics actions that are executed di-
rectly in the environment. PELEA is conceived as a flexible
and modular architecture that can accommodate state of the
art techniques that are currently used in the overall process
of planning. This kind of architectures will be a key resource
to build new planning applications, where knowledge engi-
neers will define some of the components, parameterize oth-
ers, and reuse most of the available ones. This will allow en-
gineers to easily and rapidly develop applications that incor-
porate planning capabilities. We believe this kind of archi-
tecture fills part of the technological gap between planning
techniques and applications.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 44

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.-
J.; Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Ygle-
sias, J.; Chafin, B.; Dias, W.; and Maldague, P. 2004.
MAPGEN: Mixed-initiative planning and scheduling for
the Mars Exploration Rover mission. IEEE Intelligent Sys-
tems 19(1):8–12.
Alcázar, V.; Guzmán, C.; Prior, D.; Borrajo, D.; Castillo,
L.; and Onaindia, E. 2010. PELEA: Planning, learning and
execution architecture. In PlanSIG’10, 17–24.
Aschwanden, P.; Baskaran, V.; Bernardini, S.; C. Fry,
M. M.; Muscettola, N.; Plaunt, C.; Rijsman, D.; and Tomp-
kins, P. 2006. Model-unified planning and execution for
distributed autonomous system control. In Workshop on
Spacecraft Autonomy: Using AI to Expand Human Space
Exploration. AAAI Press.
Blockeel, H., and Raedt, L. D. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285–297.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proceed-
ings of the 21st Innovative Applications of Artificial Intel-
ligence Conference, Pasadena, CA, USA.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In AIPS, 300–
307.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence Jour-
nal 173(1):1–44.
Currie, K., and Tate, A. 1991. O-Plan: the open planning
architecture. Artificial Intelligence 52(1):49–86.
De la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo,
D. 2011. Scaling up heuristic planning with relational
decision trees. Journal of Artificial Intelligence Research
40:767–813.
Eyerich, P.; Mattmller, R.; and Rger, G. 2009. Using the
context-enhanced additive heuristic for temporal and nu-
meric planning. In Proc. ICAPS 2009.
Fdez-Olivares, J.; Castillo, L.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
experiences in SIADEX. In Proc. ICAPS 2006. Awarded
as the Best Application Paper of this edition.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelli-
gence 3:251–288.
Firby, R. J. 1987. An investigation into reactive planning
in complex domains. In AAAI, 202–206.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proc. ICAPS
2006, 212–221.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In ICAPS, 144–151.

Garcı́a-Olaya, A.; de la Rosa, T.; and Borrajo, D. 2011. Us-
ing relaxed plan heuristic to select goals in oversubscrip-
tion planning problems. In Advances in Artificial Intelli-
gence.
Garrido, A.; Guzman, C.; and Onaindia, E. 2010. Anytime
plan-adaptation for continuous planning. In PlanSIG’10,
62–69.
Gat, E. 1992. Integrating planning and reacting in a het-
erogeneous asynchronous architecture for controlling real-
world mobile robots. In AAAI, 809–815.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive rea-
soning and planning. In Proceedings of AAAI-87 Sixth Na-
tional Conference on Artificial Intelligence, 677–682.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
player/stage project: Tools for multi-robot and distributed
sensor systems. In ICAR 2003.
Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In 2nd International
Conference on AI Planning Systems.
Haslum, P. 2006. Admissible Heuristics for Automated
Planning. Ph.D. Dissertation, Linkopings Universitet.
Hayes-Roth, B. 1995. An architecture for adaptive intelli-
gent systems. Artif. Intell. 72(1-2):329–365.
Hsu, C.-W.; Wah, B. W.; Huang, R.; and Chen, Y. 2007.
Constraint partitioning for solving planning problems with
trajectory constraints and goal preferences. In IJCAI’07.
McGann, C.; Py, F.; Rajan, K.; and Olaya, A. G. 2009.
Integrated planning and execution for robotic exploration.
In Procs. of International Workshop on Hybrid Control of
Autonomous Systems.
Myers, K. L. 1999. Cpef: A continuous planning and exe-
cution framework. AI Magazine 20(4):63–69.
Quintero, E.; Alcázar, V.; Borrajo, D.; Fdez-Olivares, J.;
Fernndez, F.; Ángel Garcı́a-Olaya; Guzmán, C.; Onaindia,
E.; and Prior, D. 2011. Autonomous mobile robot control
and learning with pelea architecture. In PAMR’11, 51–56.
AAAI Press.
Saffiotti, A.; Konolige, K.; and Ruspini, E. H. 1995. A mul-
tivalued logic approach to integrating planning and control.
Artif. Intell. 76(1-2):481–526.
Simmons, R. 1992. Concurrent planning and execution for
autonomous robots. In IEEE International Conference on
Robotics and Automation, 46–50.
Vidal, E. C. J. E., and Nareyek, A. 2011. A real-time con-
current planning and execution framework for automated
story planning for games. In Intelligent Narrative Tech-
nologies.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 45

Digital Cityscapes: Challenges and Opportunities for Planning & Scheduling

Ming C. Lin and Dinesh Manocha
University of North Carolina at Chapel Hill

Abstract
In this position paper, we examine the algorithmic and com-
putational challenges in the applications of planning and
scheduling for real-time modeling and simulation of digital
cityscapes. We outline the areas of research challenges in dig-
ital cityscapes that can benefit from more advanced planning
and scheduling algorithms and techniques. We briefly sur-
vey some of our recent progress as part of our early attempt
in adopting multi-agent planning and scheduling for digital
cityscapes and highlight some of the remaining challenges.

1 Introduction
With industrial revolution, recent economic and social de-
velopment, increasingly more people are leaving rural areas
and migrating to cities, thereby leading to rapid urbanization
of the world population in the last century. Today, more than
50% of the global population live in urban areas, with the
figure projected to rise to 60% by 20301. Given the ubiqui-
tous urban development across all advanced and developing
countries, modeling and simulation of cityscapes is clearly
emerging as an important topic for city planning and urban
development that require interactive visualization to evalu-
ate various alternatives and options for design and planning.
The scale and complexity of the problem demand a new set
of algorithms and methodologies for visualizing rich, intri-
cate, and dynamic urban landscapes with constant flows of
crowds and traffic.

Numerous efforts have been devoted in acquiring and vi-
sualizing “urbanscape”. Over the last decade, there has been
considerable progress on multiple fronts: acquisition of im-
agery and 3D models using improved sensing technologies,
real-time rendering, and procedural modeling. For exam-
ple, aerial imagery of most cities is used in Google Earth
and Microsoft Virtual Earth. The problem of reconstructing
3D geometric models from videos and scanners has been
an active area of research in computer vision and related
areas. Similarly, many efficient techniques have been pro-
posed to stream the imagery and geometric data over inter-
net and display them at real-time rates on high end work-
stations or handheld devices. However, all these efforts are

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1“World Urbanization Prospects” by United Nations Population
Division, Department of Economic and Social Affairs, 2005.

Figure 1: An example of simulated crowds at Shibuya crossing in Japan

limited to capturing, displaying, or modeling predominantly
static models of urbanscapes and do not include dynamic
elements, such as crowds or traffic. In many aspects, the re-
alism of models shown in Google Earth or Microsoft Virtual
Earth is lacking due to the absence of dynamic behaviors.

In addition to high-rise buildings and architectural scenes
on city landscapes, moving pedestrians and vehicle traffic
are an integral part of any metropolitan region, yet they have
not received sufficient attention. Aggregates of numerous
entities, such as a group of people and fleet of vehicles, form
complex systems that exhibit interesting biological, social,
cultural, and spatial patterns observed in nature and in so-
ciety. Modeling of the collective behaviors remains an open
research challenge in artificial intelligence, computer vision,
architecture, physics, psychology, social sciences, and civil
and traffic engineering, as complex systems often exhibit
distinct characteristics, such as emergent behaviors, self-
organization, and pattern formation, due to multi-scale inter-
actions among individuals and groups of individuals, despite
of decades of observation and studies.

2 Research Challenges
The challenges in real-time modeling and simulation of dig-
ital cityscape stem from its extremely large scale, i.e. in the
range of hundreds of thousands or even millions, crowds and
vehicle traffic commonly encountered in metropolitan areas
across the globe. We refer to such a physically vast scale
of computational challenges as “metropolitan scale.” Below
we briefly list a few problems in realizing this vision and
provide pointers to some recent progress toward this goal:

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 46

Figure 2: An example of reconstructed traffic in an European cityscape

• Modeling of intricate pedestrian dynamics that leads
to better understanding of complex crowd pheonom-
ena: Recently we have developed a new trajectory plan-
ning algorithm for virtual humans. Our approach focuses
on implicit cooperation between multiple virtual agents in
order to share the work of avoiding collisions with each
other. Specifically, we extend recent work on multi-robot
planning to better model how humans avoid collisions by
introducing new parameters that model human traits, such
as reaction time and biomechanical limitations. We vali-
date this new model based on data of real humans walking
captured by the Locanthrope project. Extending such ap-
proach to many thousands or millions of people in a large
crowd remains a significant challenge. See:

http://gamma.cs.unc.edu/RCAP

http://gamma.cs.unc.edu/PLE

• Real-time reconstruction metropolitan-scale traffic
flows given discrete temporal-spatial sensor data: We
introduce a novel concept, Virtualized Traffic, to visualize
reconstructed continuous traffic flows from traffic sensor
datas. Given the positions of each car at two recorded
locations on a highway and the corresponding time in-
stances, our approach can recreate the traffic flows (i.e.
the dynamic motions of multiple cars over time) in be-
tween the two locations using a priority-based scheduling
scheme for multiple agents. Our algorithm is applicable
to high-density traffic on highways with a small number
of lanes and takes into account the geometric, kinematic,
and dynamic constraints on the cars. Although our frame-
work can process a continuous stream of input data in
real time by reducing the search space for planning, ex-
tending such approaches to a large number of lanes with
finer discretization to better approximate contiuous mo-
tion makes this approach quickly intractable. More effi-
cient techniques would be needed. See:

http://gamma.cs.unc.edu/TRAFFIC-RECON

• Data-driven personality models based on perceptual
studies for simulating crowd and driver behaviors: To

generate heterogeneous crowd behaviors using personal-
ity trait theory, we adopt results of a user study to derive
a mapping from crowd simulation parameters to the per-
ceived behaviors of agents in computer-generated crowd
simulations. We establish a linear mapping between
simulation parameters and personality descriptors corre-
sponding to the well-established Eysenck Three-factor
personality model. Furthermore, we propose a novel
two-dimensional factorization of perceived personality in
crowds based on a statistical analysis of the user study
results. Extension to this approach to establish dynamic
mappings and factorizations for generating heterogeneous
crowd behaviors in settings with external factors (such
as interaction with other agents, environments, and other
stress factors) would need to be considered as well. See:

http://gamma.cs.unc.edu/personality

• Applications to traffic rerouting and congestion man-
agement: While state-of-the-art systems take into ac-
count current trafc conditions or historic trafc data, cur-
rent planning approaches ignore the impact of their own
plans on the future trafc conditions. We introduce a
novel algorithm for self-aware route planning that uses
the routes it plans for current vehicle traffic to more ac-
curately predict future traffic conditions for subsequent
cars. Our planner uses a roadmap with stochastic, time-
varying traffic densities that are defined by a combina-
tion of historical data and the densities predicted by the
planned routes for the cars ahead of the current trafc.
We have applied our algorithm to moderate-scale traf-
fic route planning, and demonstrated that our self-aware
route planner can more accurately predict future traffic
conditions, which results in a reduction of the travel time
for those vehicles that use our algorithm. Extension of
such planning and scheduling framework to metropolitan-
scale traffic that incorporates dynamic sensing and real-
time traffic prediction would introduce new challenges to
planning and scheduling. See:

http://gamma.cs.unc.edu/TROUTE

Other applications including emergency response and
planning, architecture and engineering design evaluation,
etc. should also be investigated. In addition, validation of
such techniques should be also addressed in the context
of applications.

3 Conclusion
We have suggested a list of problems in developing digi-
tal cityscapes that can benefit from applications of more ad-
vanced planning and scheduling algorithms and techniques.
Addressing these problems can lead to attaining plausible
explanations of the behavior and motivation of individual
agents (e.g. pedestrians or vehicles) and how they inter-
act with each other under different settings, across varying
scales and levels of social organizations, from individuals to
groups, with applications ranging from urban planning, civil
and traffic engineering, transportation system design, archi-
tectural layout, training of first-responders electronic com-
merce, to education and entertainment.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 47

Planning Task Validation

M. Viviane Menezes and Leliane N. de Barros
Department of Computer Science

Institute of Mathematics and Statistics
University of São Paulo, Brazil

{mariavm,leliane}@ime.usp.br

Silvio do Lago Pereira
Department of Information Technology

FATEC-SP\CEETEPS
São Paulo, Brazil

slago@pesquisador.cnpq.br

Abstract

A planning agent should be able to deal with different
situations and goals, while performing a task. However,
in a real-world planning application, the agent can fail
in many different ways. In special, failure to find a plan
is an important type of situation to reason about both,
for debugging planning systems and for planning task
validation (including the validation of the planning do-
main model and the task specification). Unfortunately,
the validation of planning tasks is still a poorly devel-
oped area and has few tools providing this kind of func-
tionality. In this paper we are interested in discussing
existing solutions for the planning task validation prob-
lem and present promising ideas for the development of
new validation tools.

Introduction
A planning agent should be able to deal with different situa-
tions while performing a task. However, in a real-world plan-
ning application, the agent can fail in many different ways,
e.g.:

• Fail to execute a plan. This can happen since the agent is
not perfect or because the environment has changed, e.g.,
the agent can fail to take an object or drop a holding object
(which can be repaired by executing the same action or a
new one that takes the object from the floor). In the case
the environment has changed in such way that no plan
repair can be performed, replanning is usually possible,
otherwise, the planner fails to find a new plan.

• Fail to find a plan. In this case, a small change in the
planning task would allow the agent to find a plan.

The first type of failure is related to plan repair and re-
planning research area and the second one to planning sys-
tem debugging and planning task validation, which includes
validating the planning goal, initial state (also including
the domain objects) and domain action descriptions. While
in the plan repair and replanning research areas there are
many works (Fox et al. 2006; Yoon, Fern, and Givan 2007;
Brenner and Nebel 2009), unfortunately, the planning task
validation area is still poorly developed and has few tools

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

providing this kind of functionality (Penix, Pecheur, and
Havelund 1998; Howey, Long, and Fox 2004; Göbelbecker
et al. 2010). That is because it is a complex problem: do-
main models and planning tasks are often composed of a
large number of conditional constraints and dependencies.
In fact, the modeling and the validation of a new critical task
(e.g., a mission planning application) require an intensive
interaction with human expert. A good supporting system
for modeling and validating a new planning task should be
a mixed-initiative system composed of a number of support-
ing tools. In this paper, we are interested in discussing solu-
tions for the planning task validation problem.

Consider the planning domain named Keys where a robot
can navigate among rooms opening doors using specific
keys. Figure 1 shows a problem in this domain containing: a
robot, three rooms, two doors and two keys. In this example,
key1 opens door1 and key2 opens door2. The robot goal is
to reach room1. Considering the initial state depicted in Fig-
ure 1, it is impossible for the robot to reach room1, since the
door1 is locked and both keys are locked inside the room2.
To fix that, we can change the initial state of the planning
task by: (i) locating the robot at room2 or; (ii) putting a new
key to open room2 in room0 or; (iii) creating a new action to
call a floor guard to open the door.

Figure 1: Unsolvable planning task in the Keys domain. The
agent goal is to reach room1 that is locked and whose key
(key1) is in the locked room2 (Göbelbecker et al. 2010).

Göbelbecker et al. (2010) proposed a method, called in
this paper as Giving-Excuses method, that automatically
finds excuses for an unsolvable classical planning task. In

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 48

order to find excuses, the method uses two structures: the
causal graph of the planning domain and the domain transi-
tion graph of each variable 1. Based on them, the proposed
method creates new actions (called change-value actions),
that can actually change the value of a single variable. The
method also creates the add-object actions, to add new ob-
jects in the planning task (e.g., a new key in room0). By
using an out-of-shelf planner, and considering the set of
change-value and add-object actions to be applied in the
initial state s0, the method returns a new initial state (from
which is possible to find a solution), i.e., an excuse for the
planning failure.

Note that the change-value and add-object actions are
only used during the process of defining a new initial state
and are not considered as part of the planning domain. Thus,
the Giving-Excuses method cannot be used to, automatically,
propose changes in the set of planning domain actions.

In this paper we briefly describe the Giving-Excuses
method, and show how it can be formalized in propositional
logic (to be implemented using Binary Decision Diagrams
(BDDs) (Bryant 1992)). One of the advantages of this for-
malization is that we do not need to construct and use the
causal and domain transition graphs. We also discuss pos-
sible extensions of this method to allow changes in the do-
main action specification for planning task validation. We
also resume the Planning as Model Checking work and dis-
cuss how to propose changes in the initial state based on
these techniques, and how to modify the domain actions.

Planning Task Validation Problem
We define a planning task validation problem V as a tuple
〈∆,Γ〉 where ∆ is the planning domain specification and Γ
is a set of planning tasks. The validation of V is successful
if all µ ∈ Γ can be solved, otherwise, the validating system
returns a set of minimal possible changes for each planning
task µ ∈ Γ that cannot be solvable and\or the set of domain
actions that forces µ to be solvable. The minimal changes
for a planning task can be either a change in the initial state
and\or in the set of domain objects.

Changes in domain actions can be: relax (or constrain) an
action precondition and relax (or constrain) an action effect.

Giving these possible changes, an user of a planning task
validation system should be able to choose among them.
I.e., having defined a metric to find minimal changes (possi-
bly more than one), the system could return all the minimal
changes and it is up to the user to decide for one of them,
according to his preferences or beliefs.

In the next section, we describe an approach, the Giving-
Excuses method, that is able to return minimal possible
changes for a given planning task. We also discuss how we
can formalize this method to implement its symbolic ver-
sion using BDDs and briefly discuss how it can be modified
to also return minimal possible changes for domain actions
to force a planning task to have a solution.

1The causal graph and the domain transition graph are used by
the Fast Downward planning algorithm (Helmert 2006)

move(room ?from, room ?to, door ?d)
pre: robot-pos = ?from ∧ locked(?d) = ⊥ ∧

connects(?from ?to ?d) = >
eff : robot-pos = ?to

Figure 2: An example of action SAS+ for the Keys domain.
Move the robot from a room ?from to another room ?to
through a door ?d.

The Giving-Excuses Method with SAS+

Language
The Giving-Excuses method assumes that the domain is de-
scribed in SAS+ (Bäckström and Nebel 1995), a language
to describe planning domains using multi-valued variables
with finite domain. This language is used by the Fast Down-
ward planning system (Helmert 2006), winner of the classi-
cal track of the 4th IPC, which uses hierarchical decompo-
sitions of planning tasks for computing a heuristic function,
based on the causal graph of the domain.

Definition 1. (Planning Domain SAS+) The planning do-
main SAS+ is a tuple ∆ = 〈C∆,V,A, 〉 where:

• C∆ is the set of domain constant symbols;
• V is the set of fluent and predicate symbols, with associ-

ated arities and typing schemata and;
• A is the set of actions.

Definition 2. (Action SAS+) Each action SAS+ a ∈ A
is composed by preconditions and effects with multivalued
variables.

Figure 2 shows the description of the action SAS+ move
from the Keys domain, wich is responsible to conduct the
robot from a room to another. The move action has three
parameters: the room where the robot is (source room), the
room where the robot intends to go (destination room) and
the door that connects both rooms. The action will be exe-
cuted if the robot is in a source room, if the door connecting
the source room with destination room is unlocked and if the
rooms are connected. The effect of the action is to change the
localization of the robot to the destination room.

Definition 3. (Planning Task SAS+) The planning task
SAS+ is a tuple Π = 〈∆, s0, s

∗〉 where:

• ∆ is the planning domain;
• s0 is the description of the initial state and;
• s∗ is the goal specification.

Definition 4. (Domain of a SAS+ Variable) A SAS+ vari-
able is a ground fluent f ∈ V or a ground predicate p ∈ V.
The domain of a ground fluent f is the set dom(f) ⊆ C. The
domain of a ground predicate p is the set dom(p) ⊆ {⊥,>}.

Given an unsolvable SAS+ planning task, an excuse is
a pair 〈CX , sX 〉 that implies a solvable task, where CX is a
new set of objects and sX a new initial state (Göbelbecker
et al. 2010). The pair 〈CX , sX 〉 takes a view that an excuse
is a counter-factual statement: the task has a solution if we
add objects CX and have sX as initial state. An excuse can

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 49

be classified as acceptable, good or perfect. Given two ex-
cuses X = 〈sX , CX 〉 and X ′ = 〈sX ′ , CX ′〉 we say that X
is at least as acceptable as X ′ (X 4 X ′) iff CX ⊆ CX ′ and
s0 \ sX ⊆ s0 \ sX ′2. A minimal element under the order-
ing 4 is called an acceptable excuse. Given two acceptable
excuses X = 〈sX , CX 〉 and X ′ = 〈sX ′ , CX ′〉, we say that
X is at least as good as X ′ (X v X ′) if X subsumes X ′,
i.e., changes caused by X ′ can be explained by X (e.g., in
the Keys domain X can lead to a state where key2 is with the
robot and X ′ can lead to a state in which door2 is unlocked).
Good excuses with minimal cost are called perfect excuses.

The Giving-Excuses method is able to find good excuses
for an unsolvable planning task by analyzing two struc-
tures: two structures: the causal graph and domain transi-
tion graphs to the domain description.
Definition 5. (Causal graph) The causal graph (S,E)
(Helmert 2006) is a structure that captures the causal depen-
dencies between variables of the planning domain: (i) each
vertex represents a variable and (ii) an edge between two
vertex represents a causal dependence between the value of
these variables. An edge (u, v) ∈ E iff u 6= v and there
is a ∈ A such that u ∈ pre(a) and v ∈ eff(a) or both
u, v ∈ eff(a). We say either u causes v or v depends on u.

Definition 6. (Variable Dependents) Given the causal graph
(S,E), the set of variables u on which v depends is given by:

dependentsOf(v) = {u | ∃(u, v) ∈ E}.

Figure 3 shows the causal graph for the Keys domain with
multi-valued variables. Each state variable is represented by
a vertex and the dependencies between the variables is rep-
resented by edges.

robot-pos connects(room x, room y, door d)

locked(door d))key-pos(key k) key-opens(key k)

Figure 3: Causal graph for the Keys domain with multi-
valued variables.

Definition 7. (Domain transition graph) The domain transi-
tion graph (Helmert 2006) of a variable represents the pos-
sible ways that this variable can change its values and the
necessary conditions for that change to occur.

Figure 4 shows the domain transition graph for the multi-
valued variable robot-pos of the Keys domain. In this graph,
each vertex is a possible value that the variable can assume
and the edges are labeled by the necessary conditions for
that variable to change its value. Variable robot-pos can as-
sume three possible values (room0, room1 and room2) and
its value can be changed if the specific door is unlocked and
the related rooms are connected.

Among all the possible values that a SAS+ variable v
can assume (dom(v)), there are those relevant to the agent
to reach its goal. The set of these values is called relevant
domain of a variable.

2The symbol “\” denotes the symmetric set difference.

room0

room1

room2

locked(door1) ∧
connects(room1, room0, door1)

locked(door1) ∧
connects(room0, room1, door1)

locked(door2) ∧
connects(room2, room0, door2)

locked(door2) ∧
connects(room0, room2, door2)

Figure 4: Domain transition graph for the SAS+ variable
robot-pos from the Keys domain.

Definition 8. (Relevant domain) The relevant domain of a
variable is the set of values necessary to achieve the goal.

Definition 9. (Variable contributing to the goal) A variable
v contributes to the goal if adding or deleting an assignment
to v from a state can make the goal true. Formally, v 3 con-
tributes to s? iff there exists a state s with s ≤ s? such that
s ∪ {v := x} for some value x (Göbelbecker et al. 2010).

The relevant domain of a variable v ∈ V , domrel(v), can
be calculated using a fix-point iteration (Göbelbecker et al.
2010):
• If v := x contributes to the goal, then x ∈ domrel(v);
• For each variable v′ in dependentsOf (v), domrel(v

′) con-
tains the subset of dom(v′) which is (potentially) required
to reach any element of domrel(v).

Creating Fictitious Actions
The Giving-Excuses method tries to make the planning task
solvable by two distinct ways:
• introducing actions that add new objects in a planning

problem (add-object actions);
• introducing actions that change a variable value to x such

that x ∈ domrel(v) (change-value actions).
We call both change-value and add-object actions as ficti-

tious actions, once they are not domain actions (i.e., actions
specified in the planning domain).

Two variables are introduced: started and unused. The
variable start is responsible for distinguishing domain ac-
tions from fictitious actions. This variable is false in the ini-
tial state and all the fictitious actions have ¬started as pre-
condition and all the regular actions have started in their
effects. The variable unused is responsible for controlling
the new objects introduced. This variable is true in the ini-
tial state to indicate that the object was not yet used and
each action have ¬unused in its preconditions (including the
change-value actions).

Note that change-value action is responsible for modify-
ing the value of a single variable. In order to find what are
the change-value actions that should be created, we have to
generate the relevant domain for each variable by traversing
the causal graph, starting with the goal symbols. Then, we
check in the domain transition graph if some relevant value
is not being reached. For each variable v, every element x ∈

3We are using the symbol := to indicate a variable assignment.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 50

Action Precondition Effect
add(obj) unused(obj) ∧

¬started
¬unused

setvx ¬started ∧
v(p1, · · · , pn) = x∧n

i=1 ¬unused(pi)

v(p1, · · · , pn) = x′

Table 1: Description of the fictitious actions (Göbelbecker et
al. 2010).

s0

· · ·
sX

· · ·
s?

Ψ0: fictitious actions ΨΠ regular actions

Figure 5: A plan solution for the plan task µ composed of
fictitious actions and regular actions.

dom(v) from which domrel(v) is not reachable is stored in
a set called changes(v). Thus, for each variable v and x ∈
changes(v), a new change-value action setvx is introduced.
In Table 1 we have the description of the fictitious actions.

Without loss of generality we can add a certain fix number
of new objects (add the corresponding add-objects actions)
before starting the process of creating the set of change-
value actions, in order to also consider variables involving
the extra objects.

Selecting Fictitious Actions for Giving Excuses
To finally find excuses, a SAS+ planner (e.g., fast downward
planner) is used to solve the original problem. This planner
considers s0 as the initial state and s∗ as the goal state and
applies only fictitious actions in the prefix of the plan until
achieving a new state sX (called excuse state) from which it
can reach the goal state s∗ (only using domain actions).

Thus, the variable started will divide the plan into two
parts:
• Ψ0, before started become true, is a plan composed only

by fictitious actions and;
• ΨΠ, after started become true, is a plan composed only

by domain actions.

Giving-Excuses Method with a
Propositional Language

The Giving-Excuses method can be formally defined based
on a propositional planning task description (instead of us-
ing SAS+ language). This new approach relies on the ideas
of symbolic model checking (Clarke et al. 1996).

Therefore, we start by describing the planning task de-
scribed in a relational STRIPS-like language (Fikes and
Nilsson 1972), such as PDDL (with STRIPS requirement) to
induce a correspondent propositional planning task, i.e., in-
volving a set of propositional state variables and proposi-
tional actions.

Let O be the set of PDDL operators of a given domain
(with typed variables). A PDDL planning task can be written
as in Figure 7.

(define (problem 〈problem name〉)
(:domain 〈domain name〉)
〈PDDL code for objects〉
〈PDDL code for initial state〉
〈PDDL code for goal specification〉)

Figure 6: A PDDL problem (task) file scheme (Helmert).

add-object-objectnumber
pre: unused-objectnumber ∧ ¬started
eff : = ¬unused-objectnumber

Figure 7: The description of the propositional add-object ac-
tion.

A propositional planning can be induced from a PDDL

planning task, according Definition 10.

Definition 10. (Propositional Planning Task) A proposi-
tional planning task is a tuple Π = 〈V,A, s0, s

∗〉 where:

• V is the set of propositional variables;
• A is the set of actions, with pre-conditions and effects.
• s0 is the description of the initial state and;
• s∗ is the goal specification.

Creating propositional add-object (fictitious)
actions
As in the Giving-Excuses method, we can start the whole
process by adding new extra objects (candidates for ex-
cuses). We then add the fictitious actions of type add-object-
objnumber, directly in the PDDL code for objects (Figure 7)
with the following description:

• STEP 1: Add a set of extra objects X to the list of objects
in the PDDL code for objects (Figure 7);

• STEP 2: To each included extra object, add to the initial
state a fact unused-objnumber;

• STEP 3: Add¬unused-objnumber to each action involving
variables of the same type of the objnumber.

Creating propositional change-value (fictitious)
actions
This section formalize most of the work done by the Giving-
Excuses method. As we will show, we generate the change-
value set of actions without explicitly constructing the
causal graph and the domain transition graphs. I.e. they are
used implicitly in the logical operators described bellow.

We define a new set of propositional variables P = V ∪
{v′ : v ∈ V} where v represents the variable before the
execution of an action and v′ represents the variable after
the action execution. This means that, in our representation,
the variables v will occur in the action preconditions and
variables v′, in the action effects.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 51

ϕa ≡ robot-pos-room0 ∧ robot-pos-room2’ ∧
¬locked-door2 ∧ connects-room0-room2-door2

Figure 8: An example of a propositional action a (move-
room0-room2-door2) from the Keys domain. Primed vari-
ables indicate the variable value in the next state.

Definition 11. (Propositional Actions) An action a ∈ A can
be represented as a boolean formula ϕa

ϕa ≡
∧

v ∈ pre(a)

v ∧
∧

v′ ∈ eff(a)

v′

where pre(a) is the precondition of the action a and eff(a),
its effect.

Figure 8 shows a propositional action move-room0-room2-
door2 that moves the robot from room0 to room2 through the
door2. This action can be written as a boolean formula where
the preconditions are represented by the variables v and the
effects, by the variables v’.
Definition 12. (Constraining the variable values in a
boolean formula) Let ϕ be a boolean formula and v a vari-
able. We denote ϕ[v\ ⊥] (or ϕ[v\>]) as a boolean formula
obtained by replacing all occurrences of v in ϕ by⊥ (or>).

For example, if we restrict the value of variable robot-
pos-room2’ to true (>) in the boolean formula ϕ of Fig-
ure 8, we have: ϕa[robot-pos-room′2\>] = robot-pos-room0

∧ ¬locked-door2 ∧ connects-room0-room2-door2.
Definition 13. (Relaxing the constraint for a variable in a
boolean formula) We denote ∃v.ϕa as the formula ϕa with
the constraint on the value v relaxed, i.e., ∃v.ϕa = ϕa[v\ ⊥
] ∨ ϕa[v\>].

For example, if we relax the restriction of the variable
locked-door2 in the boolean formula ϕa of Figure 8, we
have: ∃ locked-door2. ϕa = robot-pos-room0 ∧ robot-pos-
room2’ ∧ connects-room0-room2-door2.

Now we have to extract the relevant domain (Defini-
tion 14) for the variables on which the sub-goal gi = xi
depends, i.e. dependentsOf (v) (Definition 6). As we will
show, by using the boolean formula representation for ac-
tions, and the constraining and relaxing operations (Defini-
tions 12 and 13) we can obtain the relevant domain without
having to generate and use the causal and the domain transi-
tion graphs (Definition 6 and 7, respectively).

Let ϕa be a boolean formula that represents the action a ∈
A and let v := x be an assignment for the variable v ∈ V ,
with x ∈ {>,⊥}. Note that if v := x occurs in the a effects,
the variable v′ does not occur in the constrained formula,
i.e., ϕa[v′\x]. Thus, to know which variables are involved in
the preconditions and effects of a and their relevant values,
it is necessary also to relax the constraint of v in the formula
ϕa.
Definition 14. (Relevant domain) Let a subgoal gi := xi
be one of the effects of an action a ∈ A. For each assign-
ment v := x that occurs in the preconditions and effects of
a (excepting the variable gi), we have to define:

domrel(v) =
⋃
a∈A

domrel(v)a

where
domrel(v)a = {x}

is the relevant domain of v according to an action a and is
composed by the x of the resulting formula:

∃gi.ϕa[g′i\xi] =
∧

(v := x)

In a next step, we recursively repeat the process of con-
structing the relevant domain for each subgoal v := x until
it is not changed anymore (fix-point iteration).

For example, giving the goal robot-pos-room2 we can
extract the relevant domain for each variable v on which
robot-pos-room2 depends according to the action move-
room0-room2 (formula ϕ in the Figure 8). The relevant
values for the variables robot-pos-room0, locked-door2 and
connects-room0-room2-door2 (according the action move-
room0-room2) are respectively true, false, true.

Knowing the relevant domain for each variable, we can
now verify if all relevant values can be reached using the
regular actions of the planning domain (which is done in the
previous section using the domain transition graphs). Since
now all variables v are propositions if, e.g., the relevant do-
main of v is equal to >, then we only have to verify if some
action modifies its value from ⊥ to >. If there is no action
doing such modification, it is necessary to create a change-
value action for this change.

Let x be the relevant value of v. If an action a ∈ A has
v := x̄ in its preconditions4 and v′ := x in its effects, then
the formula ϕa[v\x̄][v′\x] has two variables less than ϕa.
This restriction will be done for each variable v, value x ∈
domrel(v) and action a ∈ A and its result is verified. If there
is some relevant value of the variable v that is not reach-
able, then we create the change-value action setvx such that
pre(setvx) = x̄ and eff (setvx) = x. Notice that the action setvx
has yet to be modified in order to respect domain constraints,
e.g., “if the robot location changes to room1 it should no
longer be in any other room”).

The set of setvx actions generated as we have just de-
scribed, corresponds to the set of change-value actions gen-
erated by the SAS+ Giving-Excuses method. By calling a
propositional planner, we can finally return the same set of
excuses X = 〈CX , sX 〉.

Implementation and Empirical Results
We have developed a symbolic implementation of this
propositional Giving-Excuses method, using a BDD library
called JAVABDD (Whaley 2010). Basically, two BDD opera-
tions are used in the algorithms: restrict(x, v,B) that applies
the constraint on the variable v to a boolean value x in the
BDD B and; (ii) exist(v,B) that performs the relaxation of
the constraint of v on the BDD B.

As the results in Table 2 shows, the generation of the ficti-
tious actions has consumed reasonable time to generate ex-
cuses to the problems of the Logistics domain (IPC’00).

4The notation x̄ means the inverse of the value x, i.e., if x := >
then x̄ =⊥ and if x :=⊥ then x̄ := >.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 52

problem propositions fictitious actions time
logistics-04 180 212 0.275s
logistics-06 180 212 0.409s
logistics-08 207 202 1.082s
logistics-10 328 329 2.135s
logistics-12 328 329 1.969s
logistics-14 526 520 5.782s

Table 2: Results for creating fictitious actions on Logistics
domain. All experiments were conducted on a 2.0 GHz Intel
core i7 processor.

Planning as Model Checking
Model Checking consists in solving the problem

(M, s0)
?

|=ϕ

whereM is a formal model of a system, represented by
a Kripke structure (Kripke 1963), s0 is an initial state and ϕ
is a CTL (Clarke and Emerson 1982) (Computational Tree
Logic) property to be verified in this system. Essentially, a
model checker is an algorithm that receives (M, s0, ϕ) as
input and systematically visits the states of the modelM, in
order to verify if the property ϕ holds from the initial state
s0. If (M, s0) satisfies property ϕ, the model checker re-
turns success; otherwise, it returns a counter-example (e.g.,
a state in the modelM where the property ϕ is violated).

planner
domainM

s0

goal ϕ
plan or

fail

Figure 9: Planning as model checking approach.

In the planning context, the formal model can represent
the planning domain model and the property ϕ, the goal for-
mula. In this case, symbolic model checking can be used to
solve the problem:

(M, s0) |= ¬ϕ
and the returned counter-example is a plan Ψ for ϕ. This

planning technique is known as planning as model checking
(Figure 9) (Cimatti et al. 2003). As a logical consequence
we have that the plan satisfies ϕ:

(Ψ, s0) |= ϕ

An important model checking technique is the computa-
tion of the pre-image to a set of states, as in Definition 15.
We claim that the same technique can be used to generate a
new initial state for an unsolvable planning problem, without
having to generate fictitious actions, neither calling a plan-
ner.
Definition 15. (Pre-image) Given a Kripke structureM =
〈S,L, T 〉, the pre-image of a set of states Y ⊆ S is given
by:

pre-image(Y) = {s : s ∈ S, a ∈ A and T (s, a) ∩ Y 6= ∅}
where S and T sets are, respectively, the states and transi-
tions of the Kripke structure.

Minimal possible changes in the initial state based
on model checking
We can use model checking techniques as an alternative way
to propose changes in the initial state of a given problem for
which we do not find a plan. For that, we apply the pre-image
(Definition 15) (with fixpoint iteration) in order to find out
the set of reachable states (for an unsolvable planning task,
this set obviously does not include the initial state). The
states with minimal difference w.r.t the original initial state
corresponds to acceptable excuses states.

Algorithm 1 describes this process. Initially, we have a
planning domain model M = 〈S,L, T 〉, an initial state
s0 ∈ S and a formula ϕ specifying the goal. The algorithm
starts computing the pre-image of the set of goal states (i.e.,
the states satisfying the formula ϕ, which can be returned
by a model checking algorithm, as the SAT function (Huth
and Ryan 2004)). This is done until a fix-point is achieved
(in this case, X = Y). If the problem has a solution, it is
possible to reach the initial state s0 (line 6). Otherwise, the
set of reachable states Y is returned (line 7). Furthermore,
the set of states Z ⊆ Y that has a minimal difference w.r.t
s0 are acceptable excuses states.

Algorithm 1 GIVINGEXCUSES(M, s0, ϕ)

1: X ← S
2: Y ← SAT(ϕ)
3: while X 6= Y do
4: X ← Y
5: Y ← Y ∪ preImage(Y)
6: if s0 ∈ Y then
7: return “solvable problem”
8: return Y

In order to find the good excuses states, we have to select
(for each path) a farthest acceptable excuse state from the
goal. In Figure 10, for example, if the states s1 and s3 are
both acceptable states, the algorithm has to return only s1 as
a good excuse state.

s0 s1 s2

s3

s4

s5
a

b

c

d

e
f

g

Figure 10: Starting from the goal state s5, it is not possible
to reach the initial state s0. The GIVINGEXCUSES algorithm
returns a set of states, where the minimal ones w.r.t s0 are
acceptable excuses states.

Modifying domain actions
The algorithm GIVINGEXCUSE can be modified to return not
only the reachable states but also a set of pairs state-action.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 53

Because the task is unsolvable there is no way (using the
domain actions) to connect s0 to some state in a path con-
taining sX . An alternative way is to modify the planning do-
main actions. For this, we can use an approach called Plan-
ning Domain Update (Menezes, Pereira, and Barros 2010),
which is able to relax or constrain preconditions and effects
of the domain actions. By doing so, it is possible to connect
s0 to some path containing sX . Planning Domain Update
is useful when we assume that the initial state is correctly
specified and the domain actions are not.

Conclusion
In this paper, we have discussed the planning task valida-
tion problem. We summarized the Giving-Excuses method
based on SAS+ language, which is able to find excuses for
an unsolvable planning task (i.e., generating a new initial
state). This method constructs the fictitious actions based on
the causal graph and the domain transition graphs for the
planning domain. Our contributions are both theoretical and
practical. On the theoretical side, we have formalized the
Giving-Excuses method using propositional logic. On the
practical side, we have implemented this formalization using
Binary Decision Diagrams, resulting in a system that is ca-
pable of constructing the fictitious actions for propositional
planning tasks. As in the Giving-Excuses method, these fic-
titious actions can be used by a planner in order to find a new
initial state or a new set of objects. We also discussed how
to generate the excuse states based on model checking tech-
niques. By doing so, it is not necessary to generate fictitious
actions neither call a planner. Finally, we briefly showed that
when the initial state is correctly specified, we can use model
update techniques to change the domain actions specifica-
tion, in order to connect the initial state to some good excuse
state.

Acknowledgements
This research is supported by FAPESP under grant no.
2010/10845-0.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Bryant, R. 1992. Symbolic boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Surveys
(CSUR) 24(3):293–318.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1-2):35–84.
Clarke, E. M., and Emerson, E. A. 1982. Design and synthe-
sis of synchronization skeletons using branching-time tem-

poral logic. In LNCS - Logic of Programs, Workshop, vol-
ume 131, 52–71. London: Springer-Verlag.
Clarke, E.; McMillan, K.; Campos, S.; and Hartonas-
Garmhausen, V. 1996. Symbolic model checking. In Com-
puter Aided Verification, 419–422. Springer.
Edelkamp, S., and Mehler, T. 2005. Knowledge acquisi-
tion and knowledge engineering in the ModPlan workbench.
International Competition on Knowledge Engineering for
Planning and Scheduling 26–33.
Fikes, R., and Nilsson, N. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proc. ICAPS,
212–221.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. In Proc. ICAPS, 81–88.
Helmert, M. An introduction to pddl. 16th AI Planning.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In Proc. ICTAI, 294–301. IEEE.
Huth, M., and Ryan, M. 2004. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge Univ
Pr.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proceedings of the 10th European conference on Artificial
intelligence, 359–363.
Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Verifi-
cation of plan models using UPPAAL. Formal Approaches
to Agent-Based Systems 114–122.
Kripke, S. 1963. Semantical Considerations on Modal
Logic. J. Acta Philosophica Fennica 16.
Lewis, D. 1973. Counterfactuals and comparative possibil-
ity. Journal of Philosophical Logic 2(4):418–446.
Menezes, M. V., and Barros, L. N. 2011. Model update for
automated planning. In AAAI/SIGART Doc. Consortium.
Menezes, M. V.; Pereira, S. L.; and Barros, L. N. 2010.
Model updating in action. Workshop on Knowledge Engi-
neering for Planning and Scheduling (ICAPS).
Menezes, M. V.; Pereira, S. L.; and Barros, L. N. 2011.
System design modification with actions. LNAI–Advances
in Artificial Intelligence–SBIA 2010 31–40.
Penix, J.; Pecheur, C.; and Havelund, K. 1998. Using model
checking to validate AI planner domain models. In the Pro-
ceedings of the 23rd Annual Software Engineering Work-
shop, NASA Goddard. Citeseer.
Pereira, S. L., and Barros, L. N. 2008. A logic-based agent
that plans for extended reachability goals. Jornal of Au-
tonomous Agents and Multi-Agent Systems 16:327–344.
Van Der Krogt, R., and De Weerdt, M. 2005. Plan repair
as an extension of planning. In Proc. of the Int. Conf. on
Automated Planning and Scheduling.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 54

Whaley, J. 2010. JavaBDD-java binary decision diagram
library.
Yoon, S.; Fern, A.; and Givan, R. 2007. Ff-replan: A base-
line for probabilistic planning. In ICAPS, volume 7, 352–
359.
Zhang, Y., and Ding, Y. 2008. CTL Model Update for
System Modifications. Journal of Artificial Intelligence Re-
search 31:113–155.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 55

EmergencyGrid – Planning in Convergence Environments

Natasha C. Queiroz Lino, Clauirton de A. Siebra and Manoel Amaro
Center of Informatics, Federal University of Paraíba

[natasha,clauirton]@ci.ufpb.br, manoel.amaro@lavid.ufpb.br

Austin Tate
Artificial Intelligence Applications Institute, School of Informatics, University of Edinburgh

a.tate@ed.ac.uk

Abstract
Government agencies are often responsible for event
handling, planning, coordination, and status reporting
during emergency response in natural disaster events such
as floods, tsunamis and earthquakes. Across such a range of
emergency response scenarios, there is a common set of
requirements that distributed intelligent computer systems
generally address. To support the implementation of these
requirements, some researchers are proposing the creation
of grids, where final interface and processing nodes perform
joint work supported by a network infrastructure. The aim
of this project is to extend the concepts of emergency
response grids, using a convergence scenario between web
and other computational platforms. Our initial work focuses
on the Interactive Digital TV platform, where we intend to
transform individual TV devices into active final nodes,
using a hierarchical planning structure. We describe the
architecture of this approach and an initial prototype
specification that is being developed to validate some
concepts and illustrate the advantages of this convergence
planning environment.

Introduction

We have seen, in recent decades, a steady increase in
natural catastrophes resulting in loss of life and physical
damage. The earthquake in Haiti (2010, over 300,000
victims) and tsunami in Japan (2011, over 20,000 victims)
are examples of such events. In fact, weather related events
are expected to increase in number and severity in the
future, due to the impacts of climate changes.
 Nowadays, modern technologies could effectively
impact the ability to plan, coordinate and respond to such
disasters. These technologies are related, for example, to
emergency communications, earth observation and events
monitoring. Interactive Digital TV (IDTV) is one of these

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved. The authors, their
organizations, project funders and collaborators are authorized to
reproduce and distribute reprints and on-line copies for their purposes
notwithstanding any copyright annotation hereon.

technologies that are being used in the emergency domain
as a way to warn people about emergency on time. The
IDTV platform enables the configuration of an emergency
warning broadcast system and the sending of alerts
(earthquake, tsunami, etc.) to each device in the area
covered. The alert signal uses some data space in one of
the segments of the data stream, turns on all receivers, if
turned off, and presents the alert information. An example
of such alert is the Earthquake Early Warning (EEW),
which was well-utilized with alert sound and emergency
box superimposed on TV screen at time of the 2011
Tohoku earthquake and tsunami and many aftershocks in
several days. In April 2011, the Chilean Subsecretary of
Telecommunications also released a similar alert system.
 With the planned coverage of 95% of the worldwide
population with digital television, there are in fact
opportunities for prompt deployment of public emergency
warning systems via satellite or terrestrial TV network.
This work proposes the extension of this IDTV use so that
they can bring more advanced information rather than
simple disaster warnings. In this new perspective, the idea
is to consider each IDTV device as final nodes of a
hierarchical planning and task support structure, so that all
the components can be seen as an emergency grid. This
grid should provide a convergence environment,
integrating IDTV, Web and mobile phone platforms, so
that they could change knowledge and services with each
other.
 To build such a grid, we have provided a semantic layer
to the IDTV middleware, so that intelligent process support
could be implemented on this layer, sharing knowledge
and planning information via ontological descriptions. The
central planning node is implemented using the Knowledge
as a Service metaphor, so that planning resources can be
accessed as a service.
 The remainder of this work is organized as follows: the
next section describes the main works about the use of
intelligent systems in emergency response scenarios. Then,
we discuss the general architecture of our approach and

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 56

technologies that we are using to create an emergency grid
that involves the IDTV platform. After that, we illustrate
the use of this architecture with the specification of an
emergency response application. Finally, we comment on
the main remarks and future research directions.

Intelligent Systems for Emergency Response

Recently, many projects and initiatives have been devoted
to provide intelligent computational support for emergency
management. The work of Wang et al. (2007), for
example, proposes an algorithm for optimal emergency
resource allocation scheme in order to solve collision
problems among multiple disaster places and multiple
resource suppliers. Also regarding resource manipulation,
Liu (2004) proposes a possibilistic Petri net-based resource
description language, and related matchmaking
mechanism, to search for relevant resources over the
Internet that can cooperate to prepare for and respond to
environmental emergency situations. Specifications of
multiagent architectures [Basak et al. 2011; Schoenharl
and Madey 2006] and decision making support systems
[Tufekci 1995; Hernandez and Serrano 2001] are also
important contributions from the research community to
disaster relief.
 These and other works highlight two research directions:
low level approaches (e.g. resource search and allocation
algorithms) and more general approaches (e.g.
architectures and decision support systems). A different
kind of approach aims to integrate previous solutions, or
systems from different parts, to create more sophisticated
disaster response solutions [Fortier and Volk 2006]. In this
context, we see the Grid metaphor as one of the main
research trends.
 A Grid is a geographically distributed computation
platform that can enable users to access various computing
resources via a uniform computational interface [Foster
and Kesselman 1999]. In grid computing, a single big task
is split into multiple smaller tasks which are further
distributed to different computing machines. Upon
completion of these smaller tasks, they are sent back to the
primary machine which in return offers a single output.
Examples of Grid applications in the emergency response
domain are the e-Response [Potter et al. 2004] and
FireGrid [Upadhyay et al. 2008] research programmes.
 e-Response is a simulated scenario in which a
distributed team of specialist scientists use CoAKTinG
(Collaborative Advanced Knowledge Technologies in the
Grid) [Buckingham Shum et al. 2002] tools to coordinate
emergency environmental protection activities. The
domain used was an oil spill in the Solent, a strait
separating the Isle of Wight from the mainland of England.
FireGrid is an integrated emergency response system for

fires in built environments. The broad objective is to
provide fire fighters with as much useful information as
possible that enables them to make sound and informed
judgments while tackling the fire. To achieve this goal, the
system provides the continuous assessment of the state of
the building, forecasting the likelihood of future events and
conveying this information to the responders at the scene.

Setting a Convergence Planning Environment

While all works discussed in the previous section are
targeted at providing support for emergency response
teams, we take a different approach, whose aim is to
support civilians in processes such as evacuations of unsafe
areas. In a similar way that FireGrid intends to provide fire
fighters with useful information to support their decisions,
our approach intends to also provide useful information to
civilians, so that they can save themselves. For that end,
common domestic devices, such as TVs and mobiles
phones, should be used. This paper, in particular, focuses
on the IDTV platform. The next sections discuss the
technologies that we are using to extend the use of
intelligent resources to this platform, creating a
convergence environment where planning activities and
their outcomes can be better delivered to normal civilians.

General Architecture

Figure 1 shows a conceptual view of the system. The
Planning and control center composes the main node of
the grid and it accounts for providing the planning services.
To that end, it is being implemented in accordance with the
Knowledge as a Service (KaaS) [Beijun 2010] metaphor.
When TV devices receive a broadcast that contains
warnings about a disaster, they inform their users about
this disaster using messages and sounds in the display. This
is the normal procedure in current emergency warning
systems. However, this message also asks users to press a
button on their remote control to get instructions about
disaster procedures and actions to be carried out. An
example is discussed latter on in this paper.

Figure1. Conceptual view of a convergence environment

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 57

 Note that we may have local planning nodes to provide
scalability to the system. In this case we can have three or
more levels in the planning hierarchy. Several works
present proposals about how to control and coordinate
components in a hierarchical planning structure [Durfee
and Montgomery 1991; Cox et al. 2005; Clement and
Durfee 2001]. In our case, we are using extensions based
on the I-X architecture [Tate 2000], which can be seen in
[Siebra and Lino 2006]. However this discussion is out of
the scope of this paper, so that we focus on the creation of
the convergence environment and its extension to other
platforms.

IDTV Architecture

To provide support to more advanced applications, we
have created a semantic layer as part of the IDTV
middleware. In fact, without this layer, the IDTV platform
suffers from the same limitations as the World Wide Web.
Current computational processes that run on the Web only
account for leading the information transport, so that they
do not have access to the meaning of the page content. The
main reason is the form in which the information is
structured, which is appropriate to the human user
manipulation rather than computational processes. Thus,
today we have a Web of documents rather than a Web of
information, where computers can only provide limited
assistance during the access and processing of information
 The Semantic Web [Shadbolt et al. 2006] is the main
W3C resultant technology for the problem discussed
above. Its aim is to enable machines to understand the
meaning of information on the Web. Some of its
advantages are: sharing and reuse of data in different
applications, automatic processing of data by computers,
and semantic connections between data and the real world.
 As we see, semantic representations are mainly
important for systems integration and information sharing.
Such features are the fundamental basis for a convergence
environment. The Coalition Search and Rescue Task
Support (CoSAR-TS) [Tate et al. 2006] is a good example
of planning integration to other web services, supported by
a semantic web environment. Emergency response
operations by nature require the kind of rapid dynamic
composition of available services making it a good use
case for Semantic Web technologies.

IDTV Semantic Data Format
In the current IDTV standards, transmission of
information, in a broadcast stream, is purely based on
metadata definitions of tables and information services.
The SI (Service Information) tables extend the PSI
(Program Specific Information) tables, of the MPEG-2
standard, defining a set of structures that have descriptive
data that transport specific IDTV information. Table 1

transcribes part of the MPEG-2 PSI/SI metadata table,
which shows the fields 41, 42 and 43 related to the
definition of an emergency alert.
 The use of such tables facilitates the creation,
processing, and rapid extraction of information. However,
the SI tables are considered rigid metadata. Many services
need more detailed information that cannot be
satisfactorily defined within the SI tables. To that end, we
have provided an ontological description to the IDTV
operational data, so that external processes can understand
the semantic meaning of their elements.

Table 1 - Part of the MPEG-2 PSI/SI metadata table

Metadata Source Description

… … … …

41 state_area_code NIT/PMT Target state to emergence

information transmission

42 microregion_area_cod NIT/PMT Target micro-region to

emergence information

transmission

43 signal_level NIT/PMT Specific emergency alert,

which is defined by

government

organizations

 In the proposed ontology, for example, we have the
EmergencyAlert class. This class represents a signaling
element that is transmitted by content providers to inform
the population of a specific region about an imminent
emergency situation. Another important element of this
ontology is the MMContent class that represents a generic
multimedia content entity and is the basis for all content
construction that is used in the IDTV platform. The
EmergencyAlert and MMContent are related by the
isEmergencyAlertTransmittedInto property. This property
indicates that a specific emergency alert is contained into a
specific multimedia content during the IDTV transmission.
Similarly the hasLocationAlertFor property relates the
EmergencyAlert and GeographicArea classes. It indicates
the scope of an emergency alert in terms of a geographic
area.

Planning as a Service

In the proposed architecture, planning activities are mainly
carried out in a server, rather than middleware. This
approach is justified because such planning activities
require a high processing power and data manipulation.
This is a constraining factor, since current set-top-boxes do
not have high processing power. In addition, another
reason is that the middleware native operations have
priority over computing resources usage. As a
consequence, for instance, if the middleware needs more
memory or processing power, it can demand computational

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 58

resources that are being used by an upper level application
and all data can be lost. Thus, the demanding part of
processes is being developed in accordance with the KaaS
[Beijun 2010] paradigm, so that set-top-boxes only need to
send and receive information from/to such services,
carrying out simple parts of the whole planning process.
Another motivation to allocate the whole demanding
process in a server is the easier access from/to any other
computational process and available data. For example, we
can integrate services from other computational platforms,
such as mobile and personal computers, and also compose
new services using other available web services.

Two main advantages of the KaaS paradigm can be
stressed. First, the models used by this paradigm are based
on formal semantic representations, so that we do not have
the same problems that are found in other web services.
Second, the knowledge servers have the capacity of
accessing data from different sources, instantiating their
representations and generating knowledge to be delivered
via intelligent process such as a distributed planning
algorithm. Figure 2 shows a conceptual view of a service,
according to the KaaS approach.

Figure 2. KaaS conceptual view [Xu and Zhang 2005].

 According to this figure, the KaaS framework defines
three logic components: (1) Data Providers, (2) Knowledge
Server (Knowledge Extractor and Intelligent Processing
algorithms) and (3) Knowledge Consumers. Considering
our approach, Data Providers are sources of useful
information that can assist the plan creation. For example,
if the planning aim is to allocate tasks for emergency
response teams, data providers could be represented by
police stations, fire brigade centers and hospitals. The
Knowledge Server runs a hierarchical multiagent planning
algorithm, which is discussed in the next section. Finally,
the Knowledge Consumers are represented by civilians,
which can access emergency procedures via domestic
devices, such as TVs and mobile phones.
 The work of Paik et al. (2006) discusses some issues
about the configuration of planning as a service and
describes a framework for intelligent semantic web
services that supports planning and scheduling aspects by a
combined HTN planner and CSP (Constraint Satisfaction
Problems) techniques. Note that the planning as a service
approach is different from other approaches, which use
planning mechanisms for the Web services composition
problem [Traverso and Pistore 2004; Bo and Zheng 2009].
In the former case, planning is in fact the service, while

this latter approach uses planning to compose the most
diverse kinds of services.

Planning Aspects

The planning server is being specified in accordance with
the I-X technology [Tate et al. 2006], which intends to
provide a well-founded approach to allow humans and
computer systems to cooperate in the creation or
modification of some product, such as a plan. The use of
I-X is justified because its planning representation is based
on a formal ontology, called <I-N-C-A> (<Issues – Nodes
– Constraints – Annotations>) [Tate 2003]. Thus, this
ontology can be represented in the IDTV semantic layer as
a domain ontology.

The main role of I-X planning agents is to provide
actions to decompose higher level; more abstract activities
until there are only executable activities. The important
point in this discussion is to know that each planning step
is implemented by an activity handler, which propagates
the components through constraint managers to validate
their constraints. Thus, all agents have a set of activity
handlers that they use to refine or perform their activities.
In a general way, the process follows these steps:

1. When an activity a is received, the agent’s controller
component selects a set H of activity handlers,
which matches the description of a;

2. Each handler h H uses one or more constraint
managers to return its status (possible, impossible or
not ready);

3. An optimal strategy, or an user, chooses one of the
proposed handlers, committing to the performance
of a;

4. During the execution, constraint managers are still
monitoring the constraints of a, warning in case of
problems, and maybe proposing continuations.

 The role of constraint managers in this process is to
maintain information about a plan while it is being
generated and executed. The information can then be used
to prune search where plans are found to be invalid as a
result of propagating the constraints managed by these
managers. The principal advantage of using constraint
managers is their modularity. We can design managers to
deal with specific types of constraints, such as the types
discussed here (e.g., temporal, resource, commitment, etc.)

Together, the constraint managers form the model
manager of the agent. Each constraint manager considers a
set of specific constraints in a well-defined syntax, based
on the support provided to a higher level of the planner
where decisions are taken. However, they do not take any
decision themselves. Rather, they are intended to maintain
all the information about the constraints they are managing
and to respond to questions being asked of them by the
decision making level [Tate et al. 2006].

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 59

IDTV Emergence Response Application

This section details how this approach will be evaluated
via a practical prototype that is in ongoing development.
The prototype scenario represents part of Joao Pessoa (JP),
the eastern-most city in Brazil. According to some
scientists, there is a small chance that a mega-tsunami,
originated from an earthquake close to Canary Islands, can
reach the coast of JP (Figure 3). This region has a high
population density, so that a simple emergency alert can
create serious problems. For instance, the disordered use of
the five coast evacuation routes may create big traffic jams.

Figure 3. Map of Joao Pessoa city coast.
 In the proximity of a tsunami event, the broadcasters
send warning messages (Figure 4, left hand side), which
are described via metadata, to be displayed by IDTV
devices. We intend that when users press the green remote
control button, an instance of the EmergencyAlert class is
created and sent to the planning server in the form of a
request, together with parameters that describe the users of
this device and support the planning process. At the
moment, we are considering only two parameters: user´s
address and locomotion type.

Figure 4. Examples of interfaces in IDTV platform.
 When the server receives a request, it tries to allocate the
best route from the user´s address to one of the safe areas,
considering the traffic already allocated. The planner also
returns the time that users must evacuate their homes. The
clock carries out a count down until zero. At this moment,

users must press the green button and evacuate their homes
(Figure 4, right hand side). Obviously, this process is only
valid to users whose locomotion way is defined as “car”.
Otherwise (walk, bus, taxi, bike, etc.), a simple message is
returned, asking an “as soon as possible” evacuation.
 The first activity of the planning server is to acquire
information, from Data Providers (Figure 2), about the
event. In this application, important data is related to
locations of safe areas and likely remainder time to
disaster. After that, the allocation is carried out on demand.
Sometimes we may have a route allocation that seems
longer and non optimal. This is an effect of the on demand
feature of this system. In order, we cannot have a pre-
defined plan in advance because the planning system does
not know how many civilians will be in the area at the
moment of the alert broadcast.
 Replanning activities are also limited in this scenario,
since civilians are not monitored and they lose the
communication channel after leaving their homes. This can
create serious problems. For example, consider that one of
the routes is blocked due to an accident. Consequently,
other routes should be generated for the vehicles that are
using the blocked route. This problem will only be
considered after the integration of the mobile phone
platform into this convergence scenario.
 While the IDTV semantic representation and
communication protocol between middleware and server is
complete, we are still working on the planning service,
mainly in the implementation of activity handlers. Three
main concepts of the I-X architecture are appropriate for
our implementation:
• Support for activity monitoring: we intend initially to

only use the green button feedback (Figure 4, right hand
side) as an indication that the plan is being followed.
Future versions, using the mobile phone platform, will
tend to use more advanced monitoring approaches;

• Support for Standard Operating Procedures: pre-
planned set of activities, which can be used in specific
situations, can be implemented as activity handlers;

• Modular implementation of activity handlers: at this
moment we have only one type of handler that is
AlllocateRouteAndStartTime. However we can have
several versions (algorithms) of this implementation,
each of them as a different activity handler.

 We intend to use a simulator, such as Hermes [Xithalis
2008] to evaluate different versions of this handler. This
application is a simple network simulator that allows us to
design a network for a city and observe the level of service
it can provide, i.e. number of vehicles and total trip time.

Conclusions and Research Directions

This work discusses a planning architecture where
emergency response activities are provided via a server,

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 60

according to the KaaS paradigm. This paradigm enables,
among other features, an appropriate semantic description
to data that comes from different platforms. Our main aim
is to use the KaaS metaphor as a form to enable
convergence among different computational platforms,
such as the IDTV, mobile phone and Web. Our initial
focus was on IDTV platform, where a complete semantic
model was defined for its data. However, future versions
intend to consider the mobile phone platform, mainly as a
way to extend re-planning strategies and monitoring
abilities.
 We are still implementing the planning server; however
some important requirements have already identified. The
principal question is how to implement an optimization
planning mechanism that can use the evacuation waiting
time to re-plan routes. This re-planning must be carried out
in real time and have low impact on unaffected users.

References

Basak, S., Modanwal, N., and Mazumdar, B. 2011. Multi-Agent
Based Disaster Management System: A Review. International
Journal of Computer Science & Technology, 2(2): 343-348.

Beijun, S. 2010. A Design Framework for Public Knowledge
Service Platform. Proceedings of the International Workshop on
Knowledge as a Service, Xiamen, China.

Bo, Y., and Zheng, Q. 2009. Semantic Web service composition
using Graphplan. Proceedings of the 4th IEEE Conference on
Industrial Electronics and Applications, Xian, China, pp. 459-
463.

Clement, B., and Durfee, E. 2001. Performance of Coordinating
Concurrent Hierarchical Planning Agents Using Summary
Information. Lecture Notes in Computer Science, Vol. 1986/2001,
pp. 214-230.

Buckingham Shum, S., De Roure, D., Eisenstadt, M., Shadbolt,
N. and Tate, A. 2002. CoAKTinG: Collaborative Advanced
Knowledge Technologies in the Grid. Proceedings of the Second
Workshop on Advanced Collaborative Environments, Eleventh
IEEE Int. Symposium on High Performance Distributed
Computing, Edinburgh, Scotland.

Cox, J., Durfee, E, and Bartold T. 2005. A distributed framework
for solving the Multiagent Plan Coordination Problem.
Proceedings of the Fourth International Joint Conference on
Autonomous agents and Multiagent Systems, Utrecht, The
Netherlands.

Durfee, E., and Montgomery, T. 1991. Coordination as
distributed search in a hierarchical behavior space. IEEE
Transactions on Systems, Man and Cybernetics, 21(6): 1363-
1378.

Fortier, S., and Volk, J. 2006. Defining Requirements for ad hoc
Coalition Systems during Disasters. Proceedings of the IEEE
International Conference on Computational Cybernetics.
Budapest, Hungary, pp. 1 – 6.

Foster, I., and Kesselman, C. 1999. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann.

Hernandez, J., and Serrano, J. 2001. Knowledge-based models for
emergency management systems. Expert Systems with
Applications, 20(2):173–186.

Liu, K. 2004. Agent-based resource discovery architecture for
environmental emergency management. Journal Expert Systems
with Applications, 27(1):77-95.

Paik, I., Maruyama, D., and Huhns, M. 2006. A Framework for
Intelligent Web Services: Combined HTN and CSP Approach.
Proceedings of the IEEE International Conference on Web
Services, pp. 959-962.

Potter, S., Tate, A., and Dalton, J. 2004. Collaborative Task
Support and e-Response, AISB Quarterly, No. 115, Winter 2004.

Schoenharl, T., and Madey, G. 2006. WIPER: A Multi-Agent
System for Emergency Response, Proceedings of the 3rd
International Conference on Information Systems for Crisis
Response and Management, Newark, NJ, USA.

Shadbolt, N., Berners-Lee, T., and Hall, W. 2006. The Semantic
Web Revisited. IEEE Intelligent Systems, 21(3): 96-101.

Siebra, C., and Lino, N. 2009. Aspects of Planning Support for
Human-Agent Coalitions. Journal of the Brazilian Computer
Society, 15(4):41-55, Rio de Janeiro, Brazil.

Tate, A. 2000. Intelligible AI Planning, in Research and
Development in Intelligent Systems. Proceedings of the
Twentieth International Conference on Knowledge Based Systems
and Applied Artificial Intelligence, Cambridge, UK, pp. 3-16.

Tate, A. 2003. <I-N-C-A>: a Shared Model for Mixed-initiative
Synthesis Tasks. Proceedings of the Workshop on Mixed-
Initiative Intelligent Systems at the International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, pp. 125-130.

Tate, A., Dalton, J., Bradshaw, J., and Uszok, A. 2006. Task
Support: Intelligent Task Achieving Agents on the Semantic
Web. Air Force Research Laboratory Technical Report AFRL-IF-
RS-TR-2006-91.

Traverso, P., and Pistore, 2004. Automated Composition of
Semantic Web Services into Executable Processes. Lecture Notes
in Computer Science, Vol. 3298/2004, pp. 380-394.

Tufekci, S. 1995. An integrated emergency management decision
support system for hurricane emergencies. Safety Science,
20(1):39–48.

Upadhyay, R., Pringle, G., Beckett, G., Potter, S., Han, L., Welch,
S., Usmani, A., and Torero, J. 2008. An Architecture for an
Integrated Fire Emergency Response System for the Built
Environment. Proceedings of the. 9th IAFSS International
Symposium on Fire Safety Science, Karlsruhe, Germany.

Wang, S., Wang, Y., and Sun, J. 2007. An Optimized Emergency
Resources Allocation Algorithm for Large-Scale Public
Emergency. Proceedings of the International Conference on
Machine Learning and Cybernetics, Hong Kong, pp. 119-123.

Xithalis, C. 2008. Synchronous Control Method for Persona
Rapid Transit Systems. Proceedings of the 10th International
Conference on Application of Advanced Technologies in
Transportation, Athens Greece.

Xu, S., and Zhang, W. 2005. Knowledge as a Service and
Knowledge Breaching. Proceedings of 2005 IEEE International
Conference on Services Computing, 1:87-94, Orlando, FL, USA.

ICAPS 2012

June 26th 2012 Proceedings of the Scheduling and Planning Applications woRKshop 61

	SPARK 2012 Front matter.pdf
	Organization
	Program Committee
	Contents
	Preface

