
Using Planning Domain Features to Facilitate Knowledge Engineering∗

Gerhard Wickler
Artificial Intelligence Applications Institute

University of Edinburgh
Edinburgh, Scotland

Abstract

This paper defines a number of features that can be used to
characterize planning domains, namely domain types, rela-
tion fluency, inconsistent effects and reversible actions. These
features can be used to provide additional information about
the operators defined in a STRIPS-like planning domain. Fur-
thermore, the values of these features may be extracted au-
tomatically; efficient algorithms for this are described in this
paper. Alternatively, where these values are specified explic-
itly by the domain author, the extracted values can be used
to validate the consistency of the domain, thus supporting
the knowledge engineering process. This approach has been
evaluated using a number of planning domains, mostly drawn
from the international planning competition. The results
show that the features provide useful information, and can
highlight problems with the manual formalization of planning
domains.

Introduction

Specifying a planning domain and a planning problem in a
formal description language defines a search space that can
be traversed by a state-space planner to find a solution plan.
It is well known that this specification process, also known
as problem formulation [Russell and Norvig, 2003], is es-
sential for enabling efficient problem-solving though search
[Amarel, 1968].

The Planning Domain Definition Language (PDDL) [Fox
and Long, 2003] has become a de-facto standard for speci-
fying STRIPS-like planning domains and problems with var-
ious extensions. PDDL allows for the specification of some
auxiliary information about a domain, such as types, but this
information is optional.

∗This work has been sponsored by the Air Force Office of Sci-
entific Research, Air Force Material Command, USAF, under grant
number FA8655-09-1-3090. The University of Edinburgh and re-
search sponsors are authorized to reproduce and distribute reprints
and on-line copies for their purposes notwithstanding any copy-
right annotation hereon. The views and conclusions contained
herein are those of the author and should not be interpreted as nec-
essarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific Research
or the U.S. Government.

Domain Features
In this paper we will formally define four domain features
that can be used to assist knowledge engineers during the
problem formulation process, i.e. the authoring of a plan-
ning domain which defines the state space. These features
may also be exploited by a planning algorithm to speed up
the search, but this possibility depends on the actual plan-
ning algorithm used and will not be evaluated in this paper.
The features defined here are: domain types, relation flu-
ency, inconsistent effects and reversible actions. These fea-
tures are not new, at least at an informal level. Their specifi-
cation is either already part of PDDL or could easily be added
to the language.

The values these features take for a given domain can also
be computed independent of their explicit specification. A
comparison of the computed features to the ones specified in
the formal domain definition can then be used to validate the
formalization, thus supporting the domain author in produc-
ing a consistent domain. Applying this approach to various
planning domains shows that the features defined here can
be used to identify certain representational problems.

Related Work
Amongst the features mentioned above, domain types have
been discussed most in the planning literature. A rigorous
method for problem formulation in the case of planning do-
mains was presented in [McCluskey and Porteous, 1997].
In the second step of their methodology types are extracted
from an informal description of a planning domain. Types
have been used as a basic domain feature in TIM [Fox and
Long, 1998]. Their approach exploits functional equiva-
lence of objects to derive a hierarchical type structure. The
difference between this approach and our algorithm will be
explained in the relevant section below. This work has later
been extended to infer generic types such as mobiles and re-
sources that can be exploited to optimize plan search [Coles
and Smith, 2006].

The distinction between rigid and fluent relations [Ghal-
lab et al., 2004] is common in AI planning and will be dis-
cussed only briefly. Inconsistent effects of different actions
are exploited in the GraphPlan algorithm [Blum and Furst,
1995] to define the mutex relation. However, this is applied
to pairs of actions (i.e. fully ground instances of operators)

rather than operators. Reversible actions, as a domain fea-
ture, are not related to regression of goals, meaning this fea-
ture is unrelated to the direction of search (forward from the
initial state or regressing backwards from the goal). The
reversibility of actions (or operators) does not appear to fea-
ture much in the AI planning literature. However, in generic
search problems they are a common technique used to prune
search trees [Russell and Norvig, 2003].

Preprocessing of planning domains is a technique that has
been used to speed up the planning process [Dawson and
Siklossy, 1977]. Perhaps the most common preprocessing
step is the translation of the STRIPS (function-free, first-
order) representation into a propositional representation. An
informal algorithm for this is described in [Ghallab et al.,
2004, section 2.6]. A conceptual flaw in this algorithm
(highlighted by the analysis of inconsistent effects) will be
briefly discussed in the conclusions of this paper.

Type Information
Many planning domains include explicit type information.
In PDDL the :typing requirement allows the specification
of typed variables in predicate and operator declarations. In
problem specifications, it allows the assignment of constants
or objects to types. If nothing else, typing tends to greatly
increase the readability of a planning domain. However, it is
not necessary for most planning algorithms to work.

In this section we will show how type information can
be inferred from the operator descriptions in the planning
domain definition. If the planning domain includes explicit
type information the inferred types can be used to perform
a consistency check, thus functioning as a knowledge engi-
neering tool. In any case, type information can be used to
simplify parts of the planning process. For example, if the
planner needs to propositionalize the planning domain, type
information can be used to limit the number of possible val-
ues for variables, or a ground backward searcher may use
this information to similar effect.

The formalism that follows is necessary to show that the
derived type system is maximally specific given the knowl-
edge provided by the operators, that is, any type system that
further subdivides a derived type must necessarily lead to a
search space that contains type inconsistent states.

Type Consistency
The simplest kind of type system often used in planning is
one in which the set of all constants C used in the planning
domain and problem is divided into disjoint types T . That is,
each type corresponds to a subset of all constants and each
constant belongs to exactly one type. This is the kind of type
system we will look at here.
Definition 1 (type partition) A type partition P is a tuple
〈C, T, τ〉 where:
• C is a finite set of n(C) ≥ 1 constant symbols C =
{c1, . . . , cn(C)},
• T is a set of n(T) ≤ n(C) types T = {t1, . . . , tn(T)},

and
• τ : C → T is a function defining the type of a given

constant.

A type partition divides the set of all constants that may
occur in a planning problem into a set of equivalence classes.
The availability of a type partition can be used to limit the
space of world states that may be searched by a planner. In
general, a world state in a planning domain can be any subset
of the powerset of the set of ground atoms over predicates P
with arguments from C.
Definition 2 (type function) Let P = {P1, . . . , Pn(P)}
be a set of n(P) predicate symbols with associated ar-
ities a(Pi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for predicates is a function

argP : P × N→ T
which, for a given predicate symbol Pi and argument num-
ber 1 ≤ k ≤ a(Pi) gives the type argP (Pi, k) ∈ T of that
argument position.

This is the kind of type specification we find in PDDL do-
main definitions as part of the definition of predicates used
in the domain, provided that the typing extension of PDDL is
used. The type function is defined by enumerating the types
for all the arguments of each predicate.
Definition 3 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Pi ∈ P be a predicate symbol and let
c1, . . . , ca(Pi) ∈ C be constant symbols. The ground first-
order atom Pi(c1, . . . , ca(Pi)) is type consistent iff τ(ck) =
argP (Pi, k). A world state is type consistent iff all its mem-
bers are type consistent.

Thus, for a given predicate Pi there are |C|a(Pi) possible
ground instances that may occur in world states. Clearly, the
set of type consistent world states is a subset of the set of all
world states. The availability of a set of types can also be
used to limit the actions considered by a planner.
Definition 4 (type function) Let O = {O1, . . . , On(O)}
be a set of n(O) operator names with associated ar-
ities a(Oi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for operators is a function

argO : O × N→ T
which, for a given operator symbol Oi and argument num-
ber 1 ≤ k ≤ a(Oi) gives the type argO(Oi, k) ∈ T of that
argument position.

Again, this is exactly the kind of type specification that
may be provided in PDDL where the function is defined by
enumeration of all the arguments with their types for each
operator definition.
Definition 5 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Oi(v1, . . . , va(Oi)) be a STRIPS opera-
tor defined over variables v1, . . . , va(Oi) with precondi-
tions precs(Oi) and effects effects(Oi), where each pre-
condition/effect has the form Pj(vPj ,1, . . . , vPj ,a(Pj)) or
¬Pj(vPj ,1, . . . , vPj ,a(Pj)) for some predicate Pj ∈ P . The
operator Oi is type consistent iff:
• all the operator variables v1, . . . , va(Oi) are mentioned in

the positive preconditions of the operator, and
• if vk = vPj ,l, i.e. the kth argument variable of the op-

erator is the same as the lth argument variable of a pre-
condition or effect, then the types must also be the same:
argO(Oi, k) = argP (Pj , l).

The first condition is often required only implicitly (see
[Ghallab et al., 2004, chapter 4]) to avoid the complication
of “lifted” search in forward search. We will use this condi-
tion shortly to show that a type consistent system is closed.

Given a type partition 〈C, T, τ〉 and type functions argP

and argO, we can define a most general state-transition sys-
tem over all type consistent states as follows:

Definition 6 (state-transition system Σ∗) Let 〈C, T, τ〉 be
a type partition. Let P = {P1, . . . , Pn(P)} be a set of pred-
icate symbols with associated type function argP and let
O = {O1, . . . , On(O)} be a set of type consistent operators.
Then Σ∗ = (S∗, A∗, γ) is a (restricted) state-transition sys-
tem, where:

• S∗ is the powerset of the set of all type consistent ground
atoms with predicates from P and arguments from C,
• A∗ is the set of all (type consistent) ground instances of

operators from O, and
• γ is the usual state transition function for STRIPS actions:

γ(s, a) = (s− effects−(a))∪ effects+(a) iff action a is
applicable in state s1.

This state-transition system forms a super-system to a
state-transition system defined by a planning problem con-
taining a type consistent initial state, and a set of type con-
sistent operator definitions, in the sense that the states of that
system (the reachable states from the initial states) must be
a subset of S∗ and the actions must be a subset A∗. It is
therefore interesting to observe that Σ∗ is closed:

Proposition 1 (closed Σ∗) Let s ∈ S∗ be a type consistent
state, i.e. a type consistent set of ground atoms. Let a ∈ A∗

be a type consistent action that is applicable in s. Then the
successor state γ(s, a) is a type consistent state in S∗.

To show that the above is true, we need to show that ev-
ery atom in γ(s, a) is type consistent. Each atom in γ(s, a)
was either in the previous state, s, in which case it was type
consistent by definition, or it was added as a positive ef-
fect. Since the action is an applicable instance of a type con-
sistent operator Oi there must be a substitution σ such that
σ(precs+(Oi)) ⊆ s. Furthermore, this substitution grounds
every operator variable because type consistency requires all
of them to occur in the positive preconditions. Given the
type consistency of s, all arguments in σ(precs+(Oi)) must
agree with argP . Given the type consistency of Oi, all argu-
ments of a must agree with argO, and therefore so must the
effects σ(effects(Oi)). Hence, all positive effects are type
consistent, meaning every element of γ(s, a) must be type
consistent. �

Derived Types
The above definitions assume that there is an underlying
type system that has been used to define the planning do-
main and problems in a consistent fashion. We shall con-
tinue to assume that such a type system exists, but it may
not have been explicitly specified in the PDDL definition of

1See the definition of a STRIPS operator in [Ghallab et al., 2004,
page 28] and the discussion of inconsistent effects below.

the domain. We shall now define a type system that is de-
rived from the operator descriptions in the planning domain.

Definition 7 (type name) Let O = {O1, . . . , On(O)} be a
set of STRIPS operators. Let P be the set of all the predicate
symbols used in all the operators. A type name is a pair
〈N, k〉 ∈ (P ∪O)× N.

A type name can be used to refer to a type in a derived
type system. There usually are multiple names to refer to the
same type. The basic idea behind the derived types is to par-
tition the set of all type names into equivalence classes, and
then assign constants used in a planning problem to different
equivalence classes, thus treating each equivalence class as
a type.

Definition 8 (O-type) Let O = {O1, . . . , On(O)} be a set
of STRIPS operators over operator variables v1, . . . , va(Oi)

with conds(Oi) = precs(Oi)∪ effects(Oi) and all operator
variables mentioned in the positive preconditions. Let P be
the set of all the predicate symbols used in all the operators.
An O-type is a set of type names. Two type names 〈N1, i1〉
and 〈N2, i2〉 are in the same O-type, denoted 〈N1, i1〉 ≡O

〈N2, i2〉, iff one of the following holds:
• N1(v1,1, . . . , v1,a(N1)) is an operator with precondition

or effect N2(v2,1, . . . , v2,a(N2)) ∈conds(N1) which share
a specific variable: v1,i1 = v2,i2 ,

• N2(v2,1, . . . , v2,a(N2)) is an operator with precondition
or effect N1(v1,1, . . . , v1,a(N1)) ∈conds(N2) which share
a specific variable: v1,i1 = v2,i2 , or

• there is a type name 〈N, j〉 such that 〈N, j〉 ≡O 〈N1, i1〉
and 〈N, j〉 ≡O 〈N2, i2〉.

Definition 9 (O-type partition) Let (si, g, O) be a STRIPS
planning problem. Let C be the set of all constants used in
si. Let T = {t1, . . . , tn(T)} be the set of O-types derived
from the operators in O. Then we can define the function
τ : C → T as follows:
τ(c) = ti : ∀R(c1, . . . , ca(R)) ∈ si : (cj = c)⇒ 〈R, j〉 ∈ ti

Note that τ(c) is not necessarily well-defined for every
constant mentioned in the initial state, e.g. if a constant is
used in two relations that would indicate different derived
types (which rely only on the operator descriptions). In this
case the O-type partition cannot be used as defined above.
However, if appropriate unions of O-types are taken then
this results in a new type partition for which τ(c) is defined.
In the worst case this will lead to a type partition consisting
of a single type. Given that this approach is always possible,
we shall now assume that τ(c) is always defined.

Definition 10 Let T = {t1, . . . , tn(T)} be the set of O-types
for a given set of operators O and let P = {P1, . . . , Pn(P)}
be the predicates that occur on operators from O. We can
easily define type functions argP and argO as follows:

argP (Pi, k) = ti : 〈Pi, k〉 ∈ ti and
argO(Oi, k) = ti : 〈Oi, k〉 ∈ ti

Proposition 2 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. Then every state that is reachable from the initial
state si is type consistent.

To show this we first show that the initial state is type
consistent. Since the definition of τ is based on the argument
positions in which they occur in the initial state, this follows
trivially.

Next we need to show that every action that is an instance
of an operator in O is type consistent. All operator variables
must be mentioned in the positive preconditions according to
the definition of an O-type. Furthermore, if a precondition
or effect share a variable with the operator, these must have
the same type since≡O puts them into the same equivalence
class.

Finally we can show that, if action a is applicable in a
type consistent state s, the resulting state γ(s, a) must also
be type consistent. Every atom must come either from s
in which case it must be type consistent, or it comes from a
positive effect, which, given the type consistency of a means
it must also be type consistent. �

This shows that the type system derived from the opera-
tor definitions is indeed useful as it creates a state space of
type consistent states. However, the question that remains
is whether it is the best or even only type system. Clearly,
there may be other type systems that give us type consistent
state space. The system that consists just of a single type is
a trivial example. A better type system would divide the set
of constants into more types though, as this reduces the size
of a type consistent state space. We will now show that the
above type system is maximally specific given the knowl-
edge provided by the operators.

Theorem 1 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. If two constants c1 and c2 have the same type
τ(c1) = τ(c2) then they must have the same type in every
type partition that creates a type consistent search space.

The first step towards showing that the above holds is the
insight that operators can be used to constrain types in both
directions, forward and backward. If an operator variable vi

appears in a precondition and an effect, then the type of the
position of the predicate in the effect must be subset of the
type of the position in the precondition or the application of
the operator may lead to a state that is not type consistent.
Since types are defined by an equivalence relation, however,
the two types must actually be the same type. Hence the type
in the effect also constrains the type in the precondition.

Now, for two type names to be in the same O-type, there
must be a connecting chain 〈R0O1R1 . . . OnRn〉 of alter-
nating first order literals and operators such that Ri−1 and
Ri are conditions of Oi which share an operator variable as
the ji−1th and jith argument respectively. The variable that
is shared may vary along the chain. For each step along the
chain, if a constant may occur in the ji−1th position in Ri−1

it may also occur in the jith position in Ri. Thus, there may
be two type consistent states that are connected by Oi and
which contain instances of Ri−1 and Ri. Since both states
are type consistent, both instances must be type consistent,
too.

Now let us assume that c1 appears as j0th argument in R0

and let c2 appears as jnth argument in Rn. Furthermore, let
us assume these exists a type partition that assigns c1 and c2

to different types. Since c1 is the j0th argument in R0 there
may be another state in which c1 appears as jnth argument
in Rn. Thus it appears in the same position of the same
predicate as c2, which means it must have the same type to
be type consistent. �

An Efficient Algorithm

The algorithm to derive domain types td treats types as sets
of predicate and argument-number pairs. That is td ⊆ 2P×N.
Each domain type td corresponds to exactly one type t ∈
T . The only argument taken by the algorithm is the set of
operator definitions O.

function extract-types(O)
pTypes← ∅
vTypes← ∅
for every op ∈ O do

extract-types(op, pTypes, vTypes)
return pTypes

The variable pTypes contains the O-types that have been
discovered so far. Initially there are no O-types and the set
is empty. vTypes is a set of pairs of variables (used in op-
erator definitions) and O-types, best implemented as a map
and also initially empty. The procedure then analyzes each
operator in the given set, thereby building up the type system
incrementally.

function extract-types(op, pTypes, vTypes)
for every p ∈ pre(op) ∪ eff(op) do

for i = 1 to a(p) do
tpi ← td ∈ pTypes : 〈rel(p), i〉 ∈ td
〈v, tv〉 ← vt ∈ vTypes : ∃td : vt = 〈arg(i, p), td〉
if undef(〈v, tv〉) do

if undef(tpi) do
tpi ← {〈rel(p), i〉}
pTypes← pTypes ∪ tpi

vTypes← vTypes ∪ 〈arg(i, p), tpi〉
else

if undef(tpi) do
tv ← tv ∪ {〈rel(p), i〉}

else
merge-types(tv, tpi, pTypes, vTypes)

The analysis of a given operator goes through every
precondition and effect of the operator, looking at every
argument position in turn. The next steps of the algo-
rithm depend on whether the predicate-position combination
has been used before (in which case it will appear in the
pTypes) and whether the variable at that position has been
used before (in which case it will be a key in the vTypes).
If only one or neither have been used, the algorithm simply
adds the relevant elements to the pTypes and the vTypes.
If both have been used it may be necessary to merge the re-
spective O-types.

function merge-types(t1, t2, pTypes, vTypes)
if t1 = t2 do

return
pTypes← pTypes− {t1, t2}
tnew ← t1 ∪ t2
pTypes← pTypes ∪ {tnew}
for every 〈v, tv〉 ∈ vTypes do

if (tv = t1) ∨ (tv = t2) do
vTypes← vTypes− 〈v, tv〉
vTypes← vTypes + 〈v, tnew〉

Of course, no action is required if the type of the variable
and the type for the predicate-position combination is the
same. Otherwise we replace the two sets representing the
(previously different) types in pTypes with a new type that
is the union of the two sets. Also we need to update the pairs
in vTypes to ensure that keys that previously had one of the
now removed types as value will now get the new type as
their new value.

It is easy to see that the algorithm runs in polynomial time.
Furthermore, the analysis performed by the algorithm uses
only the operator descriptions, and thus its run time does not
depend on the problem size.

This algorithm shares the input with TIM [Fox and Long,
1998], namely the operator specifications. Both algorithms
use the argument positions in which parameters occur in pre-
conditions and effects as the basis for their analysis. TIM
uses this information to construct a set of finite state ma-
chines to model transitions of objects, whereas our algo-
rithm builds the equivalence classes directly. The result pro-
duced by TIM is a hierarchical type system that is used to
derive state invariants. In contrast, the type system derived
by our algorithm is flat, meaning it may be less discriminat-
ing than the structure derived by TIM. However, we could
show that the types derived by our algorithm are maximally
specific for given operator descriptions. In addition, a flat
type system can be used to enrich the operator definitions
explicitly by simply adding unary predicates as type precon-
ditions.

Evaluation
To evaluate the algorithm we have applied it to a small num-
ber of planning domains. To avoid any bias we used only
planning domains that were available from third parties,
mostly from the international planning competition. Since
the algorithm works on domains and the results have to be
interpreted manually only a limited number of experiments
was possible. Random domains are not suitable as they can-
not be expected to encode an implicit type system. The al-
gorithm has been used on random domains, but this did not
result in any useful insights.

A planning domain on which the algorithm has been used
is the DWR domain [Ghallab et al., 2004]. In this domain
types are defined explicitly, so it was possible to verify con-
sistency with the given types. The algorithm produced the
following, listing the argument positions in predicates where
they are used (the pTypes):

type: [loaded-0, unloaded-0, at-0]
type: [attached-0, top-1, in-1]
type: [occupied-0, attached-1, belong-1,
adjacent-1, adjacent-0, at-1]

type: [belong-0, holding-0, empty-0]
type: [loaded-1, holding-1, on-1, on-0,
in-0, top-0]

The first type states that it is used as the first argument
in the loaded, unloaded and at predicate. This cor-
responds exactly to the robot type in the PDDL specifica-
tion of the domain. Similarly, the other types correspond to
pile, location, crane and container, in this order.
The main difference is that the derived types do not have
intelligible names.

The other domains that were used for testing did not
come with type information specified in the same way as
the DWR domain. However, they all use unary predicates
to add type information to the preconditions (but not ev-
ery unary predicate is a type). The domains used are the
following STRIPS domains from the international planning
competition: movie, gripper, logistics, mystery,
mprime and grid. The algorithm derives between 3 and
5 types for each of these domains which appears consistent
with what the domain authors had in mind. The only do-
main that stands out is the first, in which each predicate has
its own type. However this appears to be appropriate for this
very simple domain.

Static and Fluent Relations
Another domain feature that is useful for the analysis of
planning domains concerns the relations that are used in the
definition of the operators. The set of predicates used here
can be divided into static (or rigid) relations and fluent (or
dynamic) relations, depending on whether atoms using this
predicate can change their truth value from state to state.

Definition 11 (static/fluent relation) Let O =
{O1, . . . , On(O)} be a set of operators and let
P = {P1, . . . , Pn(P)} be a set of all the predicate
symbols that occur in these operators. A predicate Pi ∈ P
is fluent iff there is an operator Oj ∈ O that has an effect
that uses the predicate Pi. Otherwise the predicate is static.

The algorithm for computing the sets of fluent and static
predicate symbols is trivial and hence, we will not list it here.

There are at least two ways in which this information can
be used in the validation of planning problems. Firstly, if
the domain definition language allowed the domain author
to specify whether a relation is static or fluent then this could
be verified when the domain is parsed. This might highlight
problems with the domain. Secondly, in a planning problem
that uses additional relations these could be highlighted or
simply removed from the initial state.

The computation of static and fluent relations has been
tested on the same domains as the derived types. As is to
be expected, nothing interesting can be learned from this ex-
periment.

Inconsistent Effects
In a STRIPS-style operator definition the effects are specified
as and add- and delete-lists consisting of a set of (function-
free) first-order atoms, or a set of first-order literals where
positive elements correspond to the add-list and negative el-
ements correspond to the delete-list. Normally, the defini-
tion of an operator permits potentially inconsistent effects,
i.e. a positive and a negative effect may be complementary.

Operators
Definition 12 (potential inconsistency) Let O be a plan-
ning operator with positive effects ep

1, . . . , e
p
n(ep) and neg-

ative effects en
1 , . . . , en

n(en), where each positive/negative ef-
fect is a first-order atom. O has potentially inconsistent ef-
fects iff O has a positive effect ep

i and a negative effect en
j for

which there exists a substitution σ such that σ(ep
i) = σ(en

j).

It is fairly common for planning domains to define oper-
ators with potentially inconsistent effects. For example, the
move operator in the DWR domain is defined as follows:
(:action move

:parameters (?r ?fr ?to)
:precondition (and (adjacent ?fr ?to)

(at ?r ?fr) (not (occupied ?to)))
:effect (and (at ?r ?to) (occupied ?to)

(not (occupied ?fr)) (not (at ?r ?fr))))

This operator has a positive effect (at ?r ?to) and a
negative effect (at ?r ?fr). These two effects are unifi-
able and represent a potential inconsistency. Since this is
a common feature in planning domains there is no need to
raise this to the domain author. Effects that are necessarily
inconsistent may be more critical.

Definition 13 (necessary inconsistency) Let O be a plan-
ning operator with positive effects Ep = {ep

1, . . . , e
p
n(ep)}

and negative effects En = {en
1 , . . . , en

n(en)}, where each
positive/negative effect is a first-order atom. O has neces-
sarily inconsistent effects iff O has a positive effect ep

i and
a negative effect en

j such that ep
i = en

j .

None of the domains used in the experiments above
specified an operator with necessarily inconsistent ef-
fects. Given the definition of the state-transition func-
tion for STRIPS operators [Ghallab et al., 2004] as

γ(s, a) = (s− En) ∪ Ep

it should be clear that the negative effect en
j can be omitted

from the operator description without changing the set of
reachable states. If en

j /∈ s then its removal from s will not
change s, and the addition of ep

i ensures that en
j ∈ γ(s, a)

because ep
i = en

j . If en
j ∈ s it will be removed in γ(s, a),

but it will subsequently be re-added. Thus, the presence of
the negative effect does not change the range of the state-
transition function.

From a knowledge engineering perspective this means
that an operator with necessarily inconsistent effects indi-
cates a problem and should be raised to the domain author.
However, this is only true for simple STRIPS operators where
actions are instantaneous and thus, all effects happen simul-
taneously. If effects are permitted at different time points

then only those that are necessarily inconsistent at the same
time point must be considered a problem.

Actions
Since actions are ground instances of operators, there is no
need to distinguish between necessarily and potentially in-
consistent effects. All effects must be ground for actions
and therefore inconsistent effects are always necessarily in-
consistent. Even if necessarily inconsistent operators are not
permitted in a domain, actions with inconsistent effects may
still occur as instances of operators with potentially incon-
sistent effects.

Whether it is desirable for the planner to consider such
actions depends on the other effects of the action. For exam-
ple, in the DWR domain no action with inconsistent effects
needs to be considered. However, if an action has side ef-
fects then it may make sense to permit such actions. For
example, circling an aircraft in a holding pattern does not
change the location of the aircraft, but it does reduce the
fuel level. If such side effects are important actions with in-
consistent effects may need to be permitted. And, of course,
every action has the side effect of taking up a step in a plan.

If actions with inconsistent effects are considered by the
planner, this may lead to further complications. This is be-
cause the definition of the state-transition function first sub-
tracts negative effects from a state and then adds positive
effects. For actions that have no inconsistent effects this
order is irrelevant. However, if actions with inconsistent
effects are permitted the result may be surprising. For ex-
ample, returning to the move operator in the DWR domain,
this has been defined with a positive effect (occupied
?to) and a negative effect (occupied ?fr). Thus,
the action (move r loc loc) will result in a state in
which (occupied loc) holds. Now suppose the do-
main had been defined using the predicate free instead
of occupied. In this case the result of (move r loc
loc) would result in a state in which (free loc) holds.
This problem occurs only with inconsistent effects.

None of the domains used in the tests above require ac-
tions with inconsistent effects and thus, they can be ignored
by the planner. The following algorithm can be used to
find the applicable actions (without inconsistent effects) in
a given state.

function addApplicables(A, o, p, σ, s)
if not empty(p+) then

let pnext ∈ p
for every sp ∈ s do

σ′ ← unify(σ(pnext), sp)
if valid(σ′) then

addApplicables(A, o, p− pnext, σ
′, s)

else
for every pnext ∈ p− do

if falsifies(s, σ(pnext)) then return
for every ep ∈ effects+(o) do

for every en ∈ effects−(o) do
if ep = en then return

A← A + σ(o)

The algorithm adds all instances of operator o that are ap-
plicable in state s to the set of actions A. The parameter p
represents the remaining preconditions (initially empty) and
a substitution σ (also initially empty) will be built up by the
algorithm. It first deals with the remaining positive precon-
ditions and uses those to construct the substitution for all the
parameters of the operators. Note that we require an oper-
ator to mention all its parameters in the positive precondi-
tions. When the positive preconditions have been tested, the
algorithm checks the negative preconditions under σ which
must now be fully ground. Finally, the algorithm tests for in-
consistent effects by doing a pairwise comparison between
positive and negative effects. This algorithm can also be
used to generate the actions for the next action layer in a
planning graph. A goal regression version is slightly dif-
ferent as it is no longer guaranteed that all the operator pa-
rameters will be bound after the unification with a goal (and
possibly static preconditions).

Reversible Actions
A common feature in many planning domains (and in many
classic search problems) is that they contain actions that can
be reversed by applying another action. There is usually no
need to consider such actions during the search process.

Reversible Operators
The idea here is to apply the concept of reversibility to op-
erators: an operator may be reversed by another operator
(or the same operator), possibly after a suitable substitution
of variables occurring as parameters in the operator defini-
tion. Note that this definition is somewhat narrow as it de-
mands this pattern to be consistent across all instances of the
two operators, i.e. it excludes the possibility of an operator
sometimes being reversed by one operator, and sometimes
by another, depending on the values of the parameters.

Definition 14 (reversing operators) An action a that is ap-
plicable in a state s is reversed by an action a′ if the state
that results from applying the sequence 〈aa′〉 in s results in
s, i.e. the state remains unchanged. An operator O is re-
versed by an operator O′ under substitution σ′ iff for every
action a = σ(O) that is an instance of O:

• if a is applicable in a state s then a′ = σ(σ′(O′)) is ap-
plicable in γ(s, a) and
• γ(γ(s, a), a′) = s.

For example, consider the (move ?r ?l1 ?l2) op-
erator from the DWR domain. This can be reversed by
another move operation with different parameters, as de-
fined by the substitution σ′ = {?l1←?l2,?l2←?l1},
i.e. (move ?r ?l1 ?l2) is reversed by σ′((move ?r
?l1 ?l2)) =(move ?r ?l2 ?l1).

While this definition captures the idea of a reversing oper-
ator, it is not very useful from a computational point of view.
Another way to avoid exploring states that are the result of
the application of an action followed by its reverse action is
to store all states in a hash table and test whether the new
state has been encountered before, an approach that is far

more general than just testing for reversing actions. Com-
putationally, it is roughly as expensive as the test suggested
by the above definition. The key here is that both are state
specific. A definition of reversibility that does not depend
on the state in which an action is applied would be better.

From a domain author’s perspective, it is often possible to
specify which operators can be used to reverse another op-
erator, as we have shown in the DWR move example above.
If this information is available during search then there is
no need to apply the reverse action, generate the state, and
compare it to the previous state. Instead a relatively simple
substitution test would suffice: a′ = σ(σ′(O′)).

Proposition 3 Let O1 be an operator with positive effects
Ep

1 and negative effects En
1 that is reversed by O2 with pos-

itive effects Ep
2 and negative effects En

2 under substitution
σ′. Then the two sets of positive/negative effects must cancel
each other:

Ep
1 = σ′(En

2) and En
1 = σ′(Ep

2)

Suppose there is a positive effect in Ep
1 that is not in

σ′(En
2). Now suppose an instance of O was applied in a

state in which the effect in question does not already hold.
The effect would then be added by the instance of O but it
would not be deleted by the reversing action, and thus the
original state and the state resulting from the two actions in
sequence would not be the same. A similar argument holds
for an effect in En

1 that is not in σ′(Ep
2). �

This means we can let the domain author specify revers-
ing operators and then use the above necessary criterion for
validation. Or we could treat the above criterion as sufficient
and thus exclude a portion of the search space. This may
lead to an incompleteness in the search, but the domains we
have used for our evaluation do not show this problem.

Unique Reversibility
In fact we have made an even stronger assumption to carry
out some experiments with the domains mentioned above:
we have assumed that there is at most one operator that re-
verses a given operator. We have then, for each domain,
done a pairwise test on all the operators defined in the do-
main to see whether the necessary criterion holds. This re-
sulted in discovering that the move operator can be reversed
by itself with a substitution automatically derived from the
operator definition, and similarly it discovered the reversibil-
ity between the take and put operators and the load and un-
load operators in the DWR domain.

Perhaps surprisingly, the unique reversibility was not
given for all domains. The logistics domain contains
load and unload operators for trucks and airplanes. These
are specified as four distinct operators. However, in terms of
their effects the two load operators and the two unload op-
erators cannot be distinguished. The only difference lies in
the preconditions where the ?truck parameter is required
to be a truck and the ?airplane parameter is required to
be an airplane.

This result can be interpreted in two ways: one could ar-
gue that the necessary condition may not be used as suffi-
cient in this domain. Or one could argue that this domain
contains redundancy that can be removed by merging the

two load and unload operators, which would not change the
set of reachable states in this example but means the plan-
ner has fewer actions to consider. Either way, testing for the
necessary reversibility condition has highlighted this domain
feature.

Conclusions
This paper has defined four planning domain features that
can be used by knowledge engineers to provide information
about the domain they are encoding. The formal definition
of the features was used to design algorithms that can ex-
tract the actual feature values from the domain description.
The algorithms are based on the domain description only,
i.e. they do not require a planning problem as input. The ex-
tracted features can then be compared to the feature values
specified by the domain author to validate the domain de-
scription. This approach has been evaluated using domains
taken mostly from the international planning competition.
The result shows that features were consistent with those
available in the domains, where explicitly specified. Those
features that were not specified were extracted and manually
verified, to ensure they are consistent with the given set of
operators.

The first feature, the type system, is a rather simple, flat
division into equivalence classes. This may not be suitable
for very complex planning domains, but the domains we
have analyzed do not exhibit much hierarchical structure.
The advantage of such a type system is that it can be eas-
ily added to the operator descriptions in the form of unary
preconditions. Furthermore, we showed that the type system
derived by our algorithm is the most specific type system of
its kind based solely on the operator descriptions. An open
question is whether this is identical to the least general gen-
eralization [Plotkin, 1969] used in machine learning. The al-
gorithm could be refined to derive a hierarchical type system
if one takes into account the directionality of the operators,
but for a type system consisting of equivalence classes this is
irrelevant. Also, the algorithm described in this paper should
also be applicable to hierarchical task network domains, but
this has not yet been implemented.

Actions with inconsistent effects are another feature we
have defined. For most domains, such actions are proba-
bly not desirable. In fact, the admission of such actions
leads to a different planning problem as the state spaces
with or without such actions may be different for the same
planning domain and problem. Also, planners that trans-
late a STRIPS planning problem (with negative precondi-
tions) into a propositional problem (without negative pre-
conditions) need to be more careful if actions with inconsis-
tent effects are permitted. The translation method described
in [Ghallab et al., 2004, section 2.6] does not work in this
case as it introduces independent predicates for a predicate
and its negations, which can become true in the same state
if an action with inconsistent effects is applied. This would
render the planner potentially unsound.

The final feature which defines reversible actions is some-
what different as it can only be usefully used as a necessary
criterion to test whether one operator is the reverse of an-
other. The more strict, sufficient definition does not pro-

vide any computational advantage. The difference is simply
that the necessary criterion can be computed on the basis
of the operator descriptions, whereas the sufficient test re-
quires knowledge of the state in which an action is applied.
The difference is quite subtle though, and may not matter
in practice. The necessary criterion requires the positive and
negative effects to cancel each other. However, if a state con-
tains an atom that is also added by the first action, but then
deleted by the second action, then the state will be changed.
If an operator listed all the relevant atoms also as precondi-
tions, this exception would not hold.

Implementations of the algorithms described in this paper
(in Java) exist. They are currently being ported to PHP where
they can be used as part of an extension to MediaWiki that
allows the semi-formal specification of planning knowledge
to support distributed development and sharing of procedu-
ral knowledge.

References
Saul Amarel. On representations of problems of reasoning
about actions. In Donald Michie, editor, Machine Intelli-
gence 3, pages 131–171. Elsevier/North-Holland, 1968.
Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1636–
1642. Morgan Kaufmann, 1995.
Andrew Coles and Amanda Smith. Generic types and their
use in improving the quality of search heuristics. In Proc.
25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2006), 2006.
Clive Dawson and Laurent Siklossy. The role of preprocess-
ing in problem-solving systems. In Proc. 5th International
Joint Conference on Artificial Intelligence (IJCAI), pages
465–471. Morgan Kaufmann, 1977.
Maria Fox and Derek Long. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research, 9:367–421, 1998.
Maria Fox and Derek Long. PDDL2.1 : An extension to
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20:61–124, 2003.
Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning. Morgan Kaufmann, 2004.
T.L. McCluskey and J.M. Porteous. Engineering and com-
piling planning domain models to promote validity and effi-
ciency. Artificial Intelligence, 95:1–65, 1997.
Gordon Plotkin. A note on inductive generalization. In
Bernard Meltzer and Donald Michie, editors, Machine In-
telligence 5, pages 153–164. Edinburgh University Press,
1969.
Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition, 2003.

