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Abstract 

In this paper we describe the information-gathering problem which can be characterized 

as transforming large amounts of data obtained from sensors into accurate, concise, 

timely and meaningful information that can be used by decision makers faced with a 

specific task and a number of options for performing that task. The approach to this 

information-gathering problem as described here consists of three phases: data validation, 

data aggregation and abstraction, and information interpretation. Each of these phases 

will be described in general, and for each of these phases we describe techniques that are 

reasonably generic to be applicable in many domains, but domain specific knowledge 

will of course always be needed too. 
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1. Introduction 

Effective action in any domain is necessarily founded on the availability of effective, 

timely and accurate decision-making information. In complex domains, however, the 

acquisition of such information is itself a complex task, and one that requires the 

application of specialised information-gathering processes performed by information-

gathering agencies. This need becomes particularly evident when the domain is highly 

dynamic, and raw data and the information derived from it must be filtered to extract just 

that information required to make the decisions the situation demands.  

At a geopolitical level, in military contexts and even in the business world the need for 

such information-gathering agencies (where they are termed ‘intelligence agencies’ or 

‘intelligence services’) has long been recognised; at a smaller scale, or in civilian 

contexts, while their need is no less pressing, lack of resources often leads to inadequate 

provision of these services. To redress this balance, the authors have, in the FireGrid 

project [1], been exploring the use of new technologies to provide (semi-) automated 

decision-making support for fire-fighters tackling an emergency incident within a 

complex, sensitive or otherwise high-value building. 

In the next section we will give a brief overview of the FireGrid system and the problem 

it addresses. We will then go on to describe the information-gathering problem as 

encountered in FireGrid in more detail. The contribution of this paper is the three phase 

approach to the information-gathering described next: data validation, abstraction and 

interpretation. We shall describe general techniques that we expect to be applicable in the 
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respective phases and illustrate these with examples from fire experiments conducted in 

FireGrid.  

2. FireGird: Emergency Response Support for Complex Fires 

The FireGrid project [1] represents a farsighted attempt to harness recent advances in a 

number of disparate fields for the express purpose of assisting responders to tackle 

emergency incidents, in particular (but not exclusively so), complex building fires. 

Currently fire-fighters, when they arrive on the site of an incident, generally have to rely 

on the information provided by their own senses, any information that can be provided by 

evacuated occupants of the building in question and their experiences of previous fires in 

order to decide on an intervention course. In the UK, the initial decision is one of 

choosing the appropriate tactical mode for tackling the fire: this may be either offensive 

or defensive [2]. The former often involves sending fire-fighters into the building, a 

decision that is taken if the potential benefits are felt to outweigh the risks – for example, 

if people are thought to be trapped within the building and fire-fighters are felt to have a 

reasonable chance of rescuing them while being exposed to an acceptable level of risk. 

Defensive mode, on the other hand, is adopted when the trade-off of the potential benefit 

against the likely risk of offensive mode is not thought favourable (or, in some situations, 

where the current lack of information means that the benefits or risks cannot yet be 

assessed). 

Hence, the intervention decision can be based on incomplete or faulty information; in 

particular, for large-scale and complex buildings, fire-fighters are rarely aware of the 

exact conditions within the building. Moreover, the lack of experience of complex fires 

that many fire-fighters have (simply because such fires occur relatively rarely), can mean 
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that, even when available, information is misinterpreted, and fire-fighters are placed in 

danger.  

Obviously this is an unsatisfactory state of affairs. However, recent advances in three 

areas of technology, when exploited together, suggest a possible solution to this problem: 

• Developments in sensor technology, along with a reduction in unit cost, offer the 

prospect of deploying large-scale, robust and cost-effective sensor networks 

within buildings; 

• Advances in the understanding of fire and related phenomena have resulted in 

sophisticated computer models which might be used to interpret sensor data; 

• The availability of Grid resources and infrastructure promises to enable these 

(usually extremely time- and resource-hungry) models to be run in real-time, 

making their use in emergencies a practical proposition. 

The FireGrid vision is to combine these technologies in a system, underpinned by 

concepts and techniques drawn from Artificial Intelligence, that essentially provides an 

‘intelligence service’ for fire-fighters. 

2.1 The FireGrid Software Architecture 

The architecture of the FireGrid system is presented from a command and control (C2) 

perspective here as this is the aspect that is intended to directly support decision makers. 

The role of the C2 layer of a FireGrid system is, in brief, to provide a means for users to 

interact with the system and steer it towards achieving their goal – which, in a deployed 

system, would be to help with the safe and successful management of fire incidents in the 
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building in question. The unique aspect of a FireGrid system is the capture of ‘live’ 

sensor data from the building and the use of this data by models to interpret the status and 

projected course of the incident for emergency responders. Figure 1 shows the 

components of the C2 layer. 

There are two primary human interfaces onto the C2 layer, namely the Building C2 

(BC2) interface, and the e-Response C2 (eRC2) interface. The role of these interfaces is 

to provide their human users with information about the current state of the system (and 

hence about the state of any incident and of the response to it), and to assist users to 

interact with system components to acquire additional information or actuate some 

response. 

The two types of C2 interfaces differ in their applicability, coverage and scope. A BC2 

interface is specific to a particular FireGrid system, and is tailored towards that system 

and the building it relates to. Its projected user is someone who has responsibility for 

monitoring the state of the building in question and, in the event of an incident, for 

instigating initial response activities (such evacuating the building), but would not be 

expected to tackle anything but the most trivial of fires. 

The eRC2 interface, on the other hand, contains knowledge of agents (such as fire-

fighters) and resources (such as standard operating procedures) that are external to any 

specific FireGrid system, and which may be required when the response to incident has to 

be escalated beyond the local (that is, BC2) level. The eRC2 interface is intended to be 

installed on, for instance, the computer system in an emergency response command 

vehicle; when the vehicle arrives at the site of the incident, it ‘taps into’ the in situ 
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FireGrid system to access and request information about the incident. The projected user 

of the eRC2 interface is (using UK terminology) a Fire Incident Commander, or – more 

likely – a Support Officer detailed to assist the Incident Commander. The Incident 

Commander is responsible for the management of the incident, including tactical 

planning, coordination and resource deployment [2]. 

2.2 Decision Support using Intelligent Agents 

Underlying the C2 interface components in FireGrid are intelligent agents that are based 

on the I-X framework [4][7]. I-X provides a generic systems architecture (and tool suite) 

for multi-agent process support, structured upon an abstract activity-centred ontology for 

expressing information and communications within the system. While this approach has 

its foundations in work in AI planning, it is intended for use in systems of collaborating 

human and computer agents. 

The “intelligence” of an I-X agent stems from a set of standard operating procedures 

encoded by domain experts. These procedures correspond to the structures called 

methods in the planning literature [3]. Methods formally describe how a specific task can 

be broken down into sub-tasks. The definition of a method consists of four main parts: 

task pattern, name, constraints and network. 

The task pattern of a method is used for matching methods to items in the activity list, the 

“to-do” list of the user that describes the current problems that must be addressed. The 

name can be used to refer to the method and thus to distinguish the different methods 

available to address the same task. Methods applicable to the same task are options which 
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require a decision from the user. The network contains the list of sub-tasks that will be 

added as activities when the method is chosen.  

The constraints are used to decide whether a method is applicable in the current context. 

Hence, the constraints provide a formal way for the experts in the field to stipulate the 

conditions under which a method/standard operating procedure is valid, and as such they 

form part of the information about the environment and state of the task required by the 

decision maker in order to decide how to tackle a given problem. Furthermore, since 

these constraints have been provided by an expert we can assume that they will be at a 

level of abstraction that is relevant and meaningful to the task in hand. Thus, we shall 

assume that such constraints describe the kind of information that is the objective of 

information-gathering – in other words, it is the target output of the information-

gathering process. 

3. The Information-Gathering Problem 

In our approach, the information that needs to be gathered is described by the constraints 

associated with different methods in an I-X agent’s library of standard operating 

procedures. In FireGrid one source of the information that is available about the 

environment comes in the form of sensor readings that provide large amounts of 

dynamically changing data. In this case, then, the information-gathering process needs to 

bridge this gap, taking as input this sensor data and generating as output the information 

relevant to a decision maker.  
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The data generated by the sensors and the information required by the decision maker can 

differ in a number of ways that need to be addressed by the information-gathering 

process; specifically they can differ in terms of: 

• Accuracy: decision makers require accurate information whereas sensors might 

fail and result in false readings. This is further complicated in a situation such as a 

fire incident in which sensors can be destroyed while information-gathering is 

taking place.  

• Concision: decision makers require concise information whereas large numbers 

of sensors can result in large numbers of sensor readings that directly reflect the 

quantities the sensors are measuring. 

• Timeliness: decision makers would like to base their decisions on the latest state 

of the environment; however, sensors operate only at a specific frequency, 

meaning that the data they provide might be out of date. 

• Meaningfulness: decision makers usually require information that corresponds to 

some generalised and task-specific interpretation of the current state of the 

environment whereas sensors provide objective ‘point-data’ that effectively 

constitute task-neutral, specific and localised truths. 

4. From Sensor Data to Decision Support 

In this section, we will describe our view of this information-gathering process, and our 

approach to the information-gathering problem. The process will be described in the 

abstract, regardless of context or domain, or even whether the actors in this process are 
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human or automated. We shall illustrate this approach through examples drawn from the 

FireGrid project and experiments conducted. In our approach the information-gathering 

process can be divided into three phases as follows: 

• Phase 1: Data validation 

Observations or facts are collected; and these must be verified. In the context of 

FireGrid these ‘observations’ are provided by the individual sensors within the 

building; since sensor data may be noisy, and faulty and failed sensors can 

provide incorrect readings (which will invariably happen in devastating fires as 

sensors are destroyed), these observations need to be ratified before they are 

passed onto the next phase. Similarly, in other contexts, ‘facts’ may be provided 

by humans, and attempts such should be made to validate or corroborate these 

before accepting their veracity. 

• Phase 2: Data aggregation and abstraction 

Usually – but not always – the observations/facts provided by phase 1 will need to 

be processed to provide information. In the context of FireGrid, the task during 

this phase is to condense the sheer quantity of sensor data into abstractions that 

are meaningful in the context. In computational terms, this is achieved by 

applying different analytical algorithms to the data; these algorithms can range 

from the simple – for example, selecting the maximum value from a 

contemporaneous set of readings from a co-located set of sensors – through more 

advanced data fusion algorithms, up to the highly complex – in the case of 

FireGrid, the application of models of the physics of fire spread to make 

predictions about the course of the fire. This phase is necessary when there is a 
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discrepancy between the content or expression of the data from phase 1 and the 

content or expression of the information required for decision support in phase 3; 

in complex or open systems, this will invariably be the case. The algorithms 

applied at this phase will typically be domain-dependent, and may well be 

formulated with the general task (such as emergency response) in mind, but will 

be independent (and oblivious) of the wider context for which the information is 

required. 

• Phase 3: Information interpretation 

The information derived from phase 2 (or, where appropriate, directly from phase 

1) must be further interpreted in the context of the state of the current activity and 

the available choices in order to select viable courses of action. Hence the 

information needs to be interpreted (and presented) in such a fashion as its 

relevance to the decision-maker and the task in hand is readily apparent, and 

which takes into account his/her particular knowledge and capabilities along with 

the specific circumstances and pressures under which he/she operates. In 

FireGrid, we support this task by providing a custom interface and underlying 

reasoning engine tailored to the needs of a particular decision-maker, representing 

graphically the afflicted building and onto which we superimpose relevant 

information. 

In any application, we would expect these phases to be applied cyclically (or, more 

likely, concurrently) until such time as all the goals of the decision-makers have been 

achieved. For our purposes we assume that the communication of data and information 

from phase to phase is noise- and error-free; obviously to make such an assumption in 
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any real situation would be dangerous. The last phase should be seamlessly integrated 

with the I-X system and its operating methodology as described above.  

4.1 Phase 1: Data Validation using Constraint Networks 

The first phase involves the gathering of data about the situation. For building fire 

incidents, fire-fighters will be continually taking in direct sensory perceptions of the 

incident, collecting and cross-checking statements by eye-witnesses, and so on. To 

augment this, a FireGrid system is intended to provide information about the state of the 

incident based on readings supplied periodically by a number of sensors of different types 

located within the building. These sensors can include, for instance, fire alarms, smoke 

detectors, thermocouples (for reading temperatures), CO and CO2 meters. Typically, 

these sensors will be polled in batch mode periodically by one or more data loggers, 

physical devices with which groups of sensors have some communications link; in this 

device and its accompanying software, the signals produced by the sensors will be 

converted into their corresponding quantities (so, for instance, the voltages read from the 

thermocouples will be converted into degrees Celsius). In modern systems, these steps 

are automatic, and at this point, these data values can be accessed and stored in a 

database. To do this, however, would be to mistakenly assume that all data values are 

correct. Since sensors (or their lines of communication) can be noisy or can fail because 

of manufacturing flaws or the extremes of the fire incident itself, the data first needs to be 

verified: this is the sensor grading task.  

In this section we will describe an algorithm that can be used for real-time sensor 

grading. The expected input is a batch of ‘raw’ sensor readings at some specific point in 

time. The algorithm then uses previously asserted constraints on the values of the 
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different sensors to find a set (which may be empty) of sensors that are considered to 

have failed or to be failing at that point in time (a sensor might cease to be reliable when 

conditions move outside its normal operating range; however, it is not necessarily the 

case that any subsequent reading from that sensor from that time onwards will be 

unreliable). Thus, the output of the algorithm is a binary value for each sensor, indicating 

whether the sensor reading is considered correct or not. 

To illustrate the algorithm we shall use a controlled fire experiment that was conducted at 

the University of Edinburgh in February 2008. In this experiment a tray containing a fuel 

source was placed in the middle of a small room. Around this fire were placed four 

vertical ‘trees’, each equipped with 10 thermocouples, allowing the measurement of the 

gas temperatures at different heights. The layout of the experiment and the sensors is 

shown in Figure 2. 

Thermocouple readings were taken at a rate of 2Hz and written to a file and database. 

The initial grading was performed by running some preliminary tests before the fire 

experiment and having a fire-engineering expert look at the resulting data. The expert 

then identified four of the 40 sensors as failing and they were excluded manually from 

further processing – in other words, in advance of the experiment these sensors were 

flagged so that their values would be ignored by the computational models that were to 

be applied to the data during the experiment. Clearly, this is not a satisfactory approach 

for a system that can support decisions during real fires, partly because it is not feasible 

to expect that sensors have been thoroughly tested just prior to a fire breaking out, and 

also because one should not assume sensors will remain undamaged during a fire. 
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The ungraded output from all the sensors at one time point consists of 40 floating point 

values representing temperatures in degrees Celsius. Table 1 illustrates the output from 

the sensors, the data arranged in columns corresponding to each sensor tree, and with 

each sensor identified by the unique label shown. Each tree contains 10 thermocouples, 

with the first sensor located 40cm above the ground and the others spaced evenly above 

this to the ceiling of the room (note how the values of the readings increase as we move 

‘up’ each sensor tree, a result of the hot gases rising from the fire towards the ceiling). 

In addition to the readings for each sensor, the data grading algorithm takes as input a 

constraint network that expresses the expected relations among the sensor readings at any 

particular time. The simplest type of constraint is the unary constraint which can be used 

to express ranges in which a sensor is expected to operate (it is a unary constraint since it 

refers to the values of that sensor alone). For example, each of the thermocouples used in 

our fire experiment was expected to return values confined to the range 0°C to 2000°C, 

and this can be expressed through the following constraint (where ‘s’ is the reading of 

any particular sensor, i.e. of s1001, s1002…s1040.): 

(0 < s) and (s < 2000) 

The data grading algorithm starts by first evaluating each of the unary constraints against 

the latest batch of readings. If one of the constraints is violated, the corresponding 

reading is graded as unreliable. In the example data set, the reading provided by sensor 

s1009 in the first tree can be identified in this way as unreliable since its value (9.9E+37) 

breaks this constraint. 
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In addition to the unary constraints the algorithm can take more complex constraints that 

express relations involving more than one sensor value. For example, since the trees were 

equidistant from the fire, it is expected that sensors at the same height in the room will 

provide similar temperature values. This can be expressed by a set of binary constraints 

such as: 

(similar s1001 s1011) and  

(similar s1011 s1021) and  

(similar s1021 s1031) and  

(similar s1031 s1001) 

where the sensor identifiers, s1001 etc., refer to the readings of those sensors at some 

particular point in time. This constraint expresses the knowledge that all the sensors that 

are 40cm off the ground should have similar values. Respective constraints can be added 

for the 9 other heights, resulting in 40 different constraints. Note that this partially 

exploits the transitivity of the similarity relation as there is no constraint connecting 

s1001 with s1021 or s1011 with s1031. 

Another set of constraints can be used to express the fact that temperature is expected to 

rise as we move up each tree. This can be expressed by the following binary constraints: 

(s1001 < s1002) and  

(s1002 < s1003) and  

…  

(s1008 < s1009) and  

(s1009 < s1010) 
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That is, the reading of s1001 at some point in time should be less than that of s1002, 

which in turn should be less than that of s1003 and so on. The data grading algorithm will 

now attempt to use these binary constraints to derive which readings are unreliable. 

While the last set of constraints appears to be sufficient, the transitivity of the ‘<’ relation 

is not known to the algorithm and this leads to a minor issue. In the example above the 

values for the sensors s1002, s1003, and s1004 are 22.9, 21.5, and 26.2 respectively, 

meaning that temperature is not rising as expressed by the constraints. However, only one 

of the constraints is violated, namely (s1002 < s1003). The other constraint, 

(s1003 < s1004), is satisfied. In general, with only one constraint violated it is not 

possible to tell which of the two sensor readings involved is unreliable. This can be fixed 

by adding more domain specific knowledge or by adding more constraints. We have 

solved the problem by adding more constraints, making the transitivity relation more 

explicit: 

(s1001 < s1003) and  

(s1002 < s1004) and  

…  

(s1007 < s1009) and  

(s1008 < s1010) 

After processing the unary constraints, the algorithm now proceeds with the n-ary 

constraints. It first evaluates all those constraints that do not involve sensors whose 

readings at this time have already been identified as unreliable. If one such constraint is 

violated the algorithm collects the sensor labels in a set along with the number of times 

each is involved in a constraint violation. The reading of the sensor that violates the most 
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constraints is then graded as unreliable and the process is repeated until no more 

constraints are found to be violated. 

In the example used here, after having identified the reading of s1009 to be unreliable 

using the unary constraints, the algorithm now finds the readings of sensors s1013, s1007, 

and s1040 to have violated 4 constraints each. After their readings have been graded as 

unreliable, the reading of sensor s1036 is found to violate 2 constraints and is graded 

unreliable. As a result no more constraints are violated and the algorithm terminates, with 

the overall result as shown in Table 2 where unreliable readings are highlighted. 

This compares to sensors s1007, s1009, s1032, and s1040 that were identified by the 

expert as failing. The reading of sensor s1009 is clearly out of range and requires no 

further discussion. The readings of s1007, s1032, and s1040 appeared to the expert to be 

stuck at just over 20°C. The algorithm did not identify s1032 as faulty as this could well 

be correct in the situation given (but perhaps only by coincidence). The algorithm did 

however mark as unreliable the readings of two other sensors that were not identified by 

the expert. Comparing the reading of s1013 to the neighbouring values shows that it is 

indeed suspect. It may have worked better during the preliminary experiments or it may 

be correct and just show some unexplained random temperature peak – this cannot be 

verified now. Sensor s1036 only violates 2 constraints, indicating some lower degree of 

confidence on the part of the algorithm. The problem here is probably that this sensor is 

located at a height at which during this stage of the experiment the temperature is rapidly 

changing, making this reading look suspicious in the current context. 
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The overall algorithm can be summarized in pseudo-code as shown in Figure 3 (with a 

grading of 0 being used to indicate that a reading is unreliable). 

This algorithm could be improved further by adding a dynamic component to it. 

Currently, it looks at each batch of readings independently of the ones before and the 

ones after. However, a sensor that has been destroyed in a fire at one point in time is 

likely to remain destroyed for the future. Also, there are trends over time, e.g. a rise in 

temperature at a given sensor that could be used to grade its readings. Thus, it would 

make sense to carry such information from one batch to the next.  

4.2 Phase 2: Data Aggregation and Abstraction 

The problem for data grading is to identify in real time sensor readings that are 

unreliable. While this may reduce the amount of data available, this is not the aim. Data 

aggregation aims to reduce the amount of data by eliminating redundancy and lifting it to 

a higher level of abstraction. What this means is that a number of functions will be 

applied to derive new features from the given data. Often these features will be – or be 

very close to – information that is meaningful to the user. 

For example, one of the features that fire modellers (and fire-fighters) could be interested 

in is the smoke layer height in a room such as that used in the experiment described 

above. The smoke layer is the body of hot gas that collects near the top of a room. The 

smoke layer height is the distance from the ground to the bottom of the hot layer; when 

this descends too low, occupants are endangered and fire-fighting operations in the room 

become perilous. Given the sensor data above, the rise in temperature can be visualized 
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as shown in Figure 4Error! Reference source not found. (before data grading) and 

Figure 5Error! Reference source not found. (after data grading). 

In the case of the smoke layer height, then, the aim of data aggregation would be to 

process this data to derive a single number corresponding to the height of the layer. The 

first step in the data aggregation phase usually exploits and then eliminates any redundant 

data that is collected in order to corroborate values and so reduce noise.  

In our example we can use each group of four sensors that are located at the same height 

to compute the average temperatures at the ten different heights (once again with the 

underlying assumption that the trees are equidistant from the fire). The result is shown in 

Figure 6. The height of the smoke layer corresponds to the transition from the cooler 

temperatures of the lower region to the higher temperatures of the hot gases accumulating 

at the ceiling. For this example this point is reasonably easy to pinpoint visually in the 

graph of the averages; and in practice, we are looking for a ‘significant’ rising inflexion 

in the graph. This point is estimated using the second derivative of the average values 

with respect to height; with allowances made for local deviations in the averages, in this 

example the ‘most significant’ zero crossing of the second derivative is found to occur at 

approximately 1.48m– which gives us a value for the smoke layer height. 

This example illustrates how averaging can be used to remove redundancy from the data 

and the use of mathematical models to derive new features that are not directly available 

from the data. The result of this phase should still be numeric data, but the amount of data 

should be much lower and describe the situation in terms of features that are much closer 
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to the features needed by the decision maker – the preconditions in the I-X activity 

model. 

4.3 Phase 3: Information Interpretation for Decision Support 

The third phase of our intelligence gathering model involves interpreting the information 

that is provided from the earlier phases in the very particular context of the task in hand. 

This interpretation is performed to establish what – if anything – this information means 

for the task, what effect it has, and how it constrains current and future actions. This task 

obviously requires intelligence (in information processing terms) in order to understand 

what the relevance of the information and the implications it has for activity in this 

domain. In many contexts this intelligence will be human in nature, relying on the 

knowledge and experience of the decision-makers and their support teams to relate the 

information to their own situation. An alternative or supplementary approach is to 

augment this human intelligence with computational tools; this becomes increasingly 

relevant as the amount or complexity of the incoming information grows. In this section 

we will illustrate this phase of the intelligence gathering task through the example of a 

computer system based on artificial intelligence ideas. 

For the FireGrid project, this decision-support functionality is provided through a 

purpose-built Command, Control, Communications and Intelligence (C3I) tool intended 

for use by the fire incident commander (or, more likely, by a fire-fighter acting in a role 

supporting the commander). The interface provided by this tool, developed with advice 

from serving fire-fighters, displays the interpretations of incoming information in a 

manner that is intended to make their relevance to the task of continuously determining 

the most appropriate tactical mode immediately apparent. Note that other interfaces, 
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intended for other groups of people (say, medical staff, or occupants of the building) with 

other tasks (treatment of casualties or safe evacuation of the building) could be developed 

that would interpret and present the same information in entirely different ways; this is an 

important point, and goes some way to justifying the division – in theory if not always in 

practice – between the second and third phases of the intelligence gathering model 

presented here. 

The primary role of this interface, then, is to convey succinctly and rapidly to the incident 

commander the current ‘hazard level’ at each location within the building. ‘Hazard level’ 

is a concept we introduce that is intended to express an integrated measure of the degree 

of risk to which a fire-fighter operating within that location would be exposed. The 

hazard level is expressed using a ‘traffic light’ for each location, where a green light 

should be interpreted as “the system is unaware of any specific hazard to fire-fighters 

operating under normal safe systems of work at this location”, amber as “additional 

control measures may need to be deployed to manage hazards at this location” and red as 

“this location may be dangerous for fire-fighters”. Each of these indicators is relevant to a 

particular location; the definition and extent of a location will be determined by the 

standard practice and procedures deployed by the task in hand; these may not correspond 

to the physically differentiated spaces (rooms, corridors, stairwells) within the building 

itself. In addition to the current hazard level, a traffic light may also concurrently display 

a second colour, when information is received to the effect that the hazard level in that 

location is predicted to worsen. When this happens, the ‘worse’ of the two lights shown 

indicates the predicted future hazard level (so, for instance, a traffic light simultaneously 

showing both amber and red lights indicates that the current hazard level at that location 
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is “amber”, and that it is predicted to become “red” at some time in the future). In this 

manner, the traffic light system adopted expresses both the current state of a location and 

how this state is expected to develop in time, vital information for assessing the 

appropriateness of current activities and for planning future activities. In addition to this, 

the floor of locations where fire has been detected is coloured red to provide the 

fundamental information of the fire position and spread. Figure 7 shows this interface. 

The hazard level measure represents an abstract attribute integrating the various 

individual current and future hazards that can be inferred to exist from the incoming 

information. The secondary role of the interface is to provide textual (and hyperlinked) 

information about these individual hazards, and, more generally, about the state of each 

location in the building in a pop-up window. A ‘time-slider’ provides the user with a 

means of exploring predicted hazards; by dragging the slider to any point within a 15-

minute timeframe, he/she can see the hazards that are predicted to be occurring at that 

time. (15 minutes is chosen for the timeframe in this case as this is the furthest time that 

the available models look into the future.) Figure 8 and Figure 9 show this pop-up 

display. 

Consideration of these individual present and future hazards leads us to a consideration of 

the reasoning underpinning this interface. The reasoning engine operates with two basic 

concepts: beliefs, propositions about some time at some location which are held by the 

system to be true, and rules, general expressions of the inferences that can be deduced 

from believed premises. The reasoning works in the following manner: 

1. models send messages to the C3I tool; 
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2. the C3I tool revises its beliefs in the light of the information contained in each 

new message; 

3. the C3I tool applies its set of rules to its revised beliefs to draw new conclusions; 

4. the C3I interface is updated to reflect any changes. 

Alongside this continual cycle of revising and updating, the tool must periodically revise 

its beliefs in the light of the passage of time. 

To explain what this all means, we first consider the content of these messages. A 

message describes its source and the time it was created along with some content which 

will be the description of the state of some location at some time. An example might be 

“message from smoke-layer-height-model at 12:54:32: smoke-layer-height = 1.2m in 

room-A at 12:54:32”. The state description here consists of a value (expressed in 

conventional units) for a given state parameter (smoke-layer-height), one of a number of 

such state parameters. Instead of a state parameter, this description might have referred to 

the occurrence of an event (such as collapse); state parameters and events are defined in 

the ontology for the system. An ontology is a formal, agreed definition of the concepts 

that occur in the context of the task in hand, along with descriptions of relationships 

between these concepts. For building a system such as that described here, which ranges 

over a number of different fields of expertise – sensor technology, fire modelling, fire 

fighting – an ontology becomes an almost vital tool for establishing the appropriate 

terminologies, for defining relationships between the different areas of expertise and later 

for integrating the various technologies into a coherent whole (for example by providing 

a formal language for expressing messages). In most cases, ontology construction 
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requires manual knowledge engineering to establish the terms and achieve consensus 

among available experts. 

For FireGrid, the ontology contains terms related to the physical phenomena surrounding 

fire, and, important in this case, how these relate to space and time. This gives us the 

high-level distinction between state parameters, quantities that are (in theory at least) 

continuously measurable for some place and time, and events, instantaneous occurrences 

at some location. The subclasses of these two categories (such as smoke layer height and 

collapse respectively) correspond to concepts that are both potentially of interest to fire-

fighters and that can be derived from the available data with the use of models. In 

addition, the hazard levels (and their definitions) constitute part of this ontology, and the 

rules that relate them to values of state parameters or events represent “axioms” of the 

ontology. 

The name and time of the message help the C3I tool to assess the effect that the message 

content should have on its current beliefs. A belief is a state description or hazard level 

that is taken by the tool to be true for some location and over some durations (hence, 

beliefs have start and end times). In addition, every belief must have one or more 

justifications, indicating the rationale for believing it. A justification might be a message 

(if that is the basis for the belief) or the combination of the rule and the beliefs which, 

taken together, allowed the belief to be deduced. 

When a new message arrives, it has to be considered in the context of existing beliefs. If, 

for example, the tool currently believed nothing about the smoke-layer-height in room-A 

and received the example message given above at 12:54:32 (or, more likely, some time 
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soon after this, since there will be delays due to information processing and message 

passing) and assuming that the source of the message (that is the smoke-layer-height-

model) is trusted, this message would be the justification for the tool believing the 

contents of the message. Moreover, since nothing else is known about the values of this 

state parameter in this location, the reasoning would assign a duration to this belief 

stretching from the current time to some indefinite time in the future (that is, since the 

reasoning engine does not believe otherwise, it assumes that the values of state 

parameters persist, and hence in this case the smoke layer height is believed to remain at 

1.2m indefinitely). 

If, on the other hand, something is already believed either about the current or future 

values of the smoke-layer-height, then a more complex train of reasoning begins, which 

attempts to reconcile this message with the existing belief(s). This may involve adjusting 

durations of beliefs or, where there seems to be a contradiction, choosing to adopt one or 

other of the possibilities and disregarding the other. This might be done on the basis of, 

say, one source being ‘more trusted’ than another or due to the general principle of 

favouring beliefs based on more recent information as being more likely to be true. 

Contradictions of this sort occur when there exist inconsistent state descriptions about the 

same location at the same time; due to the inherent lags and delays between values being 

read at the sensors and processed information arriving at the C3I tool, the tool must adopt 

some fairly relaxed definition of what is meant by “same time” (in this case descriptions 

that have (start) times within 30 seconds of one another are assumed to be referring to the 

same time).  
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A further complexity arises since the content of a message may be a prediction – that is it 

purports to describe the state of some location at some future time. While this might be 

adopted as a belief with a duration as before, the inexorable flow of time will mean that, 

assuming this belief has not been retracted in the meantime, at some time the prediction 

will refer to the current time, and in the absence of other information a choice must be 

made about whether or not to accept the predicted value as an actual current value. While 

reasoning of this sort is difficult to justify on grounds of logical soundness, it can be 

justified on the basis of a cautious approach to the safety of fire-fighters. 

Assuming that the set of beliefs has been revised and is consistent, the next step is to 

apply the set of rules to these beliefs. There are, generally speaking, two types of rules: 

hazard rules and physical rules. Rules represent expert knowledge about fire-fighting 

capabilities and practice (hazard rules) and the nature and progress of fire and associated 

physical phenomena (physical rules). An example hazard rule might be: 

IF smoke-layer-height < 1.5m THEN hazard level = amber 

An example physical rule might be: 

 IF smoke-layer-height < 1.0m THEN max-temperature > 80°C 

In each case, a rule consists of one or more conditions and a single conclusion. In the 

case of a hazard rule, the conclusion is an interpretation of the conditions in terms of the 

hazard level for the time and place in question; in the case of a physical rule, the 

conclusion is a state description that should be consistent with the current set of beliefs 

for that time and place (where consistency, in this sense, may entail the addition or 



 27

modification of beliefs). In addition, a hazard rule – especially one that refers to less 

commonly encountered hazards – may have an associated explanation and 

recommendations. So, for instance, a rule referring to excessive CO levels may offer the 

explanation that CO levels in that range can “cause headache, fatigue and nausea” 

alongside the recommendation to “avoid prolonged exposure or consider the use of 

breathing apparatus”. 

For each rule, then, a search is made in the set of beliefs for subsets that both satisfy the 

conditions and are contemporaneous (that is, which have overlapping durations). If such a 

subset exists, then the conclusion of the rule can be drawn. An inferred hazard level 

results in a new belief (or in the modification of an existing hazard level belief with an 

additional justification), with a duration delimited by the latest start time and earliest end 

time among the subset of beliefs satisfying the conditions. An inferred state description 

results in a similar modification to the existing beliefs about state descriptions. 

Finally, since the application of the rules may have resulted in the inference of multiple 

simultaneous hazard levels, the inference engine must collate these into a single hazard 

level for each location at every time. This is a (relatively) straightforward matter of 

determining the ‘worst’ hazard level that is believed to apply. So, for instance, if from the 

state of room-A at the current time, two “amber” hazards and one “red” hazard had been 

inferred, then the current overall hazard level of room-A is “red”, and this is displayed in 

the corresponding traffic light (A similar search through future states provides future 

hazards for concurrent display on the traffic light and on the time slider.) 
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5. Conclusions 

In this paper we have characterized the information-gathering problem as bridging the 

gap between ‘raw’ sensor data and information used by decision makers. The input to the 

information gathering process is hence defined by the available sensors, and the desired 

output is defined by the precondition constraints to the standard operating procedures in 

an I-X agent’s domain model.  

We have described the information-gathering process as a three-phase procedure that 

decomposes the overall problem into phases requiring different types of knowledge and 

information processing capabilities. The first phase, data validation, aims to remove 

incorrect information from the input data, thereby creating a consistent view of the 

current situation. The second phase, data abstraction and aggregation, applies 

mathematical models to reduce the amount of data, remove noise from the data, and 

derive features that are closer to the terminology of the user. The third phase, information 

interpretation, uses a belief revision and rule-based approach to make the information 

actionable for the decision maker. 

In addition to this three-phase information-gathering process, we have identified 

reasonably general techniques that we expect to be applicable in general, not just in the 

FireGrid scenario we have used to illustrate our approach. In phase 1 the general idea is 

to specify constraints between sensors that must be satisfied for the resulting set of 

readings to be consistent. A greedy algorithm is used to grade sensor readings until 

maximally large and consistent set of values remains. Phase 2 requires mathematical 

modelling techniques that will often be domain specific, but statistical methods, for 

example, provide a toolset that can be expected to be applicable in many domains to 
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remove redundancy and noise. Finally, phase 3 is based on a rule-based system that 

reasons over space and time, maintaining a set of beliefs and their justifications to supply 

an application-specific user interface with relevant information. 

The evaluation of any system that provides support during large-scale emergencies is a 

difficult task, of course. This is because such emergencies happen relatively rarely and 

they tend to vary quite a lot. Setting up experiments on the same scale is very costly, if at 

all possible. Thus, we have used a number of small, controlled fires to evaluate our 

approach. The result shows that our system performs well and output corresponds to 

information generated by experts in hindsight.  

We have argued that the results of the information-gathering process as described here, 

presented in the context of an activity-centric model of an incident, represent a vital 

source of the sort of accurate, concise, timely and meaningful information that decision 

makers need to make the right choices under difficult conditions. 
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Height Tree 1 
labels 

Tree 1 
readings 

(°C) 

Tree 2 
labels 

Tree 2 
readings 

(°C) 

Tree 3 
labels 

Tree 3 
readings 

(°C) 

Tree 4 
labels 

Tree 4 
readings 

(°C) 
0.4m s1001 22.9 s1011 24.8 s1021 22.4 s1031 20.5 
0.6m s1002 22.9 s1012 24.9 s1022 22.2 s1032 20.2 
0.8m s1003 21.5 s1013 34.2 s1023 21.5 s1033 20.5 
1.0m s1004 26.2 s1014 29.4 s1024 26.2 s1034 23.5 
1.2m s1005 29.4 s1015 30.6 s1025 26.6 s1035 27.9 
1.4m s1006 42.2 s1016 35.9 s1026 40.9 s1036 31.8 
1.6m s1007 21.1 s1017 69.8 s1027 77.9 s1037 84.6 
1.8m s1008 72.1 s1018 76.9 s1028 79.4 s1038 85.4 
2.0m s1009 9.9x1037 s1019 80.5 s1029 83.9 s1039 87 
2.2m s1010 82.2 s1020 90.6 s1030 88.7 s1040 21.9 

Table 1. Sample thermocouple (sensor) readings at a particular point in time for each of the sensors 
in each ‘tree’ of the fire experiment. 
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Height Tree 1 
labels 

Tree 1 
readings 

(°C) 

Tree 2 
labels 

Tree 2 
readings 

(°C) 

Tree 3 
labels 

Tree 3 
readings 

(°C) 

Tree 4 
labels 

Tree 4 
readings 

(°C) 
0.4m s1001 22.9 s1011 24.8 s1021 22.4 s1031 20.5 
0.6m s1002 22.9 s1012 24.9 s1022 22.2 s1032 20.2 
0.8m s1003 21.5 s1013 34.2 s1023 21.5 s1033 20.5 
1.0m s1004 26.2 s1014 29.4 s1024 26.2 s1034 23.5 
1.2m s1005 29.4 s1015 30.6 s1025 26.6 s1035 27.9 
1.4m s1006 42.2 s1016 35.9 s1026 40.9 s1036 31.8 
1.6m s1007 21.1 s1017 69.8 s1027 77.9 s1037 84.6 
1.8m s1008 72.1 s1018 76.9 s1028 79.4 s1038 85.4 
2.0m s1009 9.9x1037 s1019 80.5 s1029 83.9 s1039 87 
2.2m s1010 82.2 s1020 90.6 s1030 88.7 s1040 21.9 

Table 2. As Table 1, but now highlighting those sensor readings that the data validation algorithm 
has graded as unreliable. 
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Figure 1: The FireGrid system architecture from a C2 perspective. Arrows show principal 

communication flows only, with inter-agent communications indicated by solid arrows. 
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Figure 2: Layout of smoke-box with instrumentation. 
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for every unary constraint c(s) do 

if not holds(c(s)) then 

grade(s) = 0 

do 

for every n-ary constraint c(s
1
, …, s

n
) do 

if holds(c(s
1
, …, s

n
)) then 

continue with next constraint 

if exists s in (s
1
, …, s

n
) such that grade(s) = 0 then 

continue with next constraint 

for every s in (s
1
, …, s

n
) do 

increase violation-count(s) 

s = sensor with highest violation-count 

if violation-count(s) > threshold then 

grade(s) = 0 

until violation-count(s) • threshold 
 

 

Figure 3: Pseudo code for constraint-based data grading algorithm 
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Figure 4: Sensor readings from each tree in Table 1Table 1 plotted against sensor height. 

 

 



 38

 

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

height above floor (m)

te
m

pe
ra

tu
re

 (d
eg

C)

Tree 1
Tree 2
Tree 3
Tree 4

 

Figure 5: Graded sensor readings from each tree in Table 2 plotted against sensor height. 
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Figure 6: Processed sensor readings showing averages, first derivative and second derivative. 
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Figure 7: C3I tool interface for 4-room (and 4-location) building, with "traffic light" for each 

location: in this case the green traffic lights indicate that fire-fighters can operate in every location; 

however, the red floor in the room under the cursor indicates that a fire has been detected there. 
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Figure 8: At a later time, the user has selected more details about the state of the ‘fire’ room: the 

current hazard level is now “amber”, due to the combination of belief and rule shown. Moreover the 

traffic light (and the time slider) indicate that there is a future “red” hazard level predicted (for 

approximately 6 minutes into the future). 
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Figure 9: At a still later time, the hazard level is now “red” (and has deteriorated in the other 

locations), and the presence of multiple hazards is indicated by the rules. Note the explanation and 

recommendations attached to one of the rules. 

 

 


