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Abstract

This paper investigates the implications of using con-
cepts of collaboration as part of a planning architecture,
which intends to support hierarchical coalition operations.
Such concepts are mostly based on Teamwork approaches
and they were integrated into the planning architecture via
the same constraint-based framework, already in use by the
architecture. The approach intends to maintain the plan-
ning and collaboration mechanisms independent of each
other, providing a general rather than specific environment
for the development of coalition support applications. Ad-
vantages, limitations and open issues of this approach are
discussed through a practical demonstration in a disaster
relief domain based on the RoboCup Rescue simulator.

1. Introduction

Coalition, from Latin coalescere (co-, together +
alescere, to grow) is a type of organisation where joint
members work together to solve mutual goals. One of the
principal features of a coalition is the existence of a global
goal, which motivates the activities of all coalition mem-
bers. However, normally such members are not directly
involved in the resolution of this goal, but in subtasks as-
sociated with it.

The use of intelligent planning as a resource to support
coalition operations brings several advantages to these or-
ganisations, such as prediction of failures, resource alloca-
tion, conflict identification and so on. The planning process
in coalitions is naturally distributed because each coalition
member is a decision-maker. In this context, the use of hi-
erarchies is a natural way to arrange coalition members in
decision-making levels, where such members deal with dif-
ferent details and knowledge associated with a plan in de-
velopment.

The I-X project [Tate, 2004] has created a planning ar-
chitecture that can be applied to the configuration and sup-
port of hierarchical coalitions. I-X plans are specified ac-
cording to � I-N-C-A � (Issues - Nodes - Constraints - An-
notations) [Tate, 2003], a general-purpose constraint-based
ontology that can be used to represent plans in the form of
a set of constraints on the space of all possible plans in the
application domain. The planning development is based on
constraint manipulation and carried out as a two-cycle pro-
cess (constraint addition and propagation), which aims to
build a plan as a set of nodes (activities) with their associ-
ated detailed constraints.

This work investigates the integration of collaboration
concepts into this architecture, discussing its implications,
advantages and limitations. An important aim is to avoid
additional requisites to the development of plans, so that
existent I-X plans, for example, can take advantages of the
new collaboration features without additional changes in
their structures.

The remainder of this paper is structured as follows:
Section 2 employs the I-X approach in a search and res-
cue domain called I-Kobe, which is based on the RoboCup
Rescue simulator [Kitano and Tadokoro, 2001], highlight-
ing the limitations of this application. Section 3 presents
the Teamwork Theory, a formal framework for collabora-
tion that can be used to cope with such limitations. Section
4 details how we are integrating the collaboration concepts
with the planning architecture. Section 5 discusses the re-
sults of applying this collaborative version in the previous
search and rescue domain, while Section 6 concludes with
final remarks and directions.

2 I-Kobe

The I-Kobe application uses a disaster relief domain,
based on the RoboCup Rescue simulator. The experi-
ment discussed here focuses on the performance of a sub-



coalition ��� composed of one police office (operational
level) and ten police forces (tactical level) during a period
of 150 cycles, which corresponds to 150 minutes in the real
world. The objective of � � is to clear the roads that are
blocked by collapsed buildings. A good performance of � �
is very important to the fire brigades, for example, because
they need clear paths to quickly reach the fire points and
water refill places.

The tactical agents use a simple plan. Each police force
has a list of blocked roads, indicated by the police office,
that is ordered by the closest distance from the blockage to
the current agent position. Then, if an agent is clearing a
road, it remains doing that until one of the passable lines
becomes clear. Otherwise, it accesses its list to know the
next blocked road. If the list is empty, the agent tries to find
(search action) other blockages around the scenario.

Using the I-X architecture, agents are provided with a co-
ordination structure where they can report execution, com-
pletion or failure of activities. In addition it is possible to
implement handlers to deal with specific activities. For this
experiment we have implemented a handler called “Sim-
pleAllocation” that uses reports and information about the
environment to generate an efficient delegation of activities
to police forces. The results for this experiment are shown
in follow (Figure 1).

Figure 1. I-Kobe simulation results.

The curves in the graphic represent the average be-
haviour of the police forces. The Move curve, for example,
has a peak around the cycle 70 and after that starts to de-
crease. This means that the police forces are mostly dealing
with the delegated activities until the cycle 70 (they are go-
ing to blocked positions specified by the police office). The
Search curve has the opposite behaviour, showing that the
police forces are going back to search actions as soon as
they complete the delegated activities. The experiment also
highlights some limitations of this approach. The principal
examples are:

� Police forces only report completion or failure of ac-
tivities. Reports associated with activity commitments
and progress are also important because they provide,
for example, useful information to be used by handlers;

� In situations where the police office allocates a clear
activity to n agents, n sub-nodes are created to repre-
sent such allocations. These nodes are typically exam-
ples of or-activities where only one of them needs to
be completed for the overall clear activity be finished.
However this does not happen in this experiment.

The next sections show how the design of the I-X plan-
ning framework can cope with these and other problems
if such a framework is developed considering fundamental
concepts of collaboration.

3 Teamwork as Basis for Collaboration

The teamwork research [Cohen and Levesque, 1991] in-
volves a set of ideas that support the implementation of col-
laborative systems. Joint Intentions [Levesque et al., 1990]
was the first teamwork proposal to formally define such
ideas. A joint intention of a coalition � is based on its joint
commitment, which is defined as a Joint Persistent Goal
(JPG). A JPG( � ,p,e) to carry out a proposition p while e is
relevant, requires all coalition members to mutually believe
that p is currently false and want p to be eventually true. In
addition, a JPG ensures that coalition members cannot de-
commit until p is mutually known to be achieved, unachiev-
able or irrelevant.

The Joint Intentions approach forms the basis to de-
fine when agents must communicate some important in-
formation (commitments and reports), collaborating in
this way with each other. However we are consider-
ing two extensions of this work, which are proposed in
the Joint Responsibilities [Jennings, 1992] and SharedPlans
[Grosz et al., 1999] theories.

The Joint Responsibilities Theory extends the Joint In-
tentions ideas to include the notion of plan states. Accord-
ing to this theory, an important reason for explicitly dis-
tinguishing between the goals of activities and plan states
becomes evident by examining what happens after the two
types of commitment failure. In the former case, the team’s
activity with respect to the particular goal is over. However
if the group becomes uncommitted to the common solution
(a plan) there may still be useful processing to be carried
out. For example, if the plan is deemed invalid, the agents
may try a different sequence of actions which produce the
same result. Thus dropping commitment to the common so-
lution plays a different functional role than dropping a goal.

The SharedPlans Theory considers also important for
collaboration, in addition to commitments and reports, the
idea of mutual support. In this way, this theory defines an



intentional attitude (INT.TH, intention-that) which enables
an agent to say to others which propositions need to hold
so that its activities can be performed. Thus, such attitudes
of an agent directly restrict the intentions that other agents
adopt, affecting their planning reasoning.

4 Integration Analysis

We can analyse the integration of teamwork ideas with
planning via an algorithm that considers the plan creation
PLAN( � ,p) as one of its functions. For that end, consider
that such an algorithm is carried out by an agent � , mem-
ber of a coalition �
	 , that receive an activity p � from its
superior agent sender. This algorithm is codified via the
“CollaborativePlanning” function in follow:

01. function CollaborativePlanning(sender,p � )
02. subplan � PLAN( � ,p � )
03. if(  subplan)
04. if (hasNodesToBeDelegated(subplan)) then
05. Delegate(subplan,subordinates) � WaitCommits()
06. if  s (s � subordinates) � ( � commits(s)) then
07. go to step 02
08. endif
09. endif
10. Report(sender,p � ,committed)
11. Broadcast( �
� ,subplan.conditions)
12. while ( � Complete(subplan))
13. if (JustReady(subplan) � Changed(subplan)) then
14. Report(sender,n � ,executing)
15. else if (Violated(subplan) � Receive(failure)) then
16. go to step 02
17. endif
18. end while
19. Report(sender,p � ,completion)
20. else
21. Report(sender,p � ,failure)
22. � s (s � subordinates) � HasCommitted(s,subplan � )
23. Report(s,subplan � ,failure)
24. endif
25. end function

This function entails some implications. First the func-
tion tries to generate a subplan to perform p � (step 02). If
a subplan is possible (step 03) and it does not depend of
anyone else (step 04) then the agent can commit to p � (step
10). However, if subplan depends on the commitment of
subordinates, then � must delegate the necessary nodes to
its subordinates and wait for their commitments (step 05).
This means that commitments are done between a superior
agent and their subordinates and, starting from the bottom,
an “upper-commitment” can only be done if all the “down-
commitments” are already stabilised.

Second, if some subordinate agent is not able to com-
mit (step 06), � returns (step 07) to generate other subplan
rather than sending a failure report to its superior. Such a
situation is similar to the cases where subplan is violated or
� receives a failure message of its subordinates (step 15).
This approach implements the idea of enclosing problems
inside the subteam where they were generated.

Third, if � is not able to generate a subplan for p � , it re-
ports a failure to its superior (step 21). In addition, it must
also alert their subordinates that p � has failed and conse-
quently its subnodes can be abandoned (steps 22 and 23).

After reporting a commitment (step 10), � must moni-
tor and report execution status until the completion/failure
of p � . Progress reports are associated with changes in the
plan, which are monitored and sent to superior as an ongo-
ing execution report (step 13). Constraint violations and
failure messages are also monitored (step 15) so that �
firstly tries to repair the problem by itself (step 16) be-
fore sending a failure report. Note that, using this function,
any activity p will have one of the following status: no-
ready,possible,impossible,complete and executing. The � I-
N-C-A � definition for activities contains a status attribute
that can be filled with one of these options.

We must note that, according to the Joint Intentions the-
ory, if � finds out a problem in subplan, all the commit-
ments previously associated with subplan should be can-
celled. Differently, the Joint Responsibilities Theory states
that if � 	 becomes uncommitted to subplan, there may still
be useful processing to be carried out. We are using this
idea when � tries a new subplan (steps 07 and 16).

A last step that must be explained is associated with the
idea of mutual support. The principal idea behind mutual
support is to enable that one agent has knowledge about the
needs of other agents. For example, � knows that a specific
road is clear so that it uses this constraint in its plan. How-
ever, as the world is dynamic, the road becomes blocked. If
any other agent finds out that such road is no longer clear,
it must inform this fact to � . Thus, this informer agent is
supporting the performance of � .

An easy option to implement this feature is to force that
agents broadcast any new fact to all coalition. Consequently
all agents will have their knowledge base updated and prob-
lems like that can be avoided. However, this is not a good
approach in terms of communication and agents will also
receive much useless information.

Consider now that subplan of � ( ����� 	 ) has a set of
conditional constraints C, which � desires to hold so that
subplan is still valid. In this case, each c ��� C is a constraint
that � believes to be true and hopes that it is still true. Then
� broadcasts C (step 11) for every agent ��������	 so that
other agents of its subteam know what it needs. A function
based on this idea, and applied by agents that receive C from
� , is defined as:



01. function MutualSupport( � ,C)
02. while (  c � c � � C )
03. if (  c � c � c��� C � c ��� BEL( � � ) �

Conflict(c� ,c � )) then
04. newactivity � CreateActivity(Goal(c � ))
05. if ( �! newactivity) then Inform( � ,c � ) endif
06. Retire(c � ,C)
07. endif
08. if (  c � c � � C �"� Valid(c � )) then
09. Retire(c � ,C)
10. endif
11. end while
12. end function

According to the function, each agent � � must compare
its beliefs BEL( � � ) with C (step 03). If � � finds some con-
flict, it must try to create a new activity whose goal is to
turn c � true (step 04). If this is not possible, � � must inform
� that c� is no longer holding and its new value is c � (step
05). The idea implemented by this function is simple, how-
ever there are two more complex points: the “Conflict” and
“Valid” functions.

The Conflict function (step 03) is an extension of the Vi-
olated function (step 15, CollaborativePlanning function).
A violation is a type of conflict between two constraints.
It says that two constraints, which are supposed to match,
are not matching. However we are also considering as con-
flict the situation where two constraints have the potential
to be identical. For example, ((colour Car),?x) and ((colour
Car),blue). In this case the two constraints are in conflict be-
cause they have the potential to be identical if the variable
?x assumes the value “blue”. This type of conflict is very
useful in the following class of situations. Suppose that one
of the activities of � is to rescue injured civilians. For that
end, � firstly needs to find such civilians so that it has the
following conditional constraints: ((position ?a),?b), ((role
?a),civilian) and (status ?a),injured). This set of constraints
implies that the variable ?b is the location of an injured civil-
ian ?a. Then if other team agents that have or discover a set
of constraints that conflict with the set sent by � , they must
inform � about this new knowledge (note that in this case
no make sense to create a new activity).

The Valid function (step 08) accounts for eliminating the
constraints that no longer represent conditions to � . This is
important to avoid that � still receives useless information
and also to decrease the number of messages in the coali-
tion. A practical way to do that is to consider that all c � �
C has a timestamp that indicates the interval where such
constraint is valid.

Using the timestamp (t � ,t # ) and considering that t � and t #
are ground values, the Valid function only needs to compare
if the condition (t #�� current-time) is true to eliminate the
respective constraint. However this timestamps are not use-
ful if agents do not know when their activities finish because

such a temporal value will be a variable. Note that the prin-
cipal advantage that we are looking for in using timestamps
is to avoid that agents (C’s senders) need to broadcast the
information that they no longer need that a group of con-
straints holds. Rather, timestamps enables agents (C’s re-
ceivers) to reason by themselves on the elimination of such
constraints. An alternative for timestamps, which we intend
to investigate, is to link constraints, not to real world time,
but to the partial ordering of the plan elements.

One of the principal advantages of the MutualSupport
function is that it improves the information sharing in
� 	 because the sending of information is guided by the
constraint-based knowledge that each agent has about the
activities of its partners. In addition, it can also be used as a
method to avoid conflict between activities because agents
know which external constraints must be respected.

5. I-Kobe: a Collaborative Version

In the last experiment, the first report is sent when agents
start the execution of their activities. In this new version, the
first report is generated as soon as a plan is created (commit-
ment). Note that if there is a long period between the plan
generation and the plan execution, the police office will also
spend a long period unsure about the status of this activity.

This new version also compels police forces to send
progress updates, if some plan information has changed. In
this experiment, when a police force pf commits to the per-
formance of an activity ac, it also sends the cost of ac to its
police office. The cost here is given by the time, in domain
simulation cycles, that pf will spend to reach the blockage
place, plus the time to clear such blockage. However this
cost can change due to, for example, problems in the path
and wrong estimations (e.g., pf usually does an estimative
of the time to clear blockages in the moment of the com-
mitment because it has not seen the blockage yet). As the
allocator handler uses the cost values during the process of
delegation, progress updates help it in keeping its alloca-
tion table in accordance with the real situation of the police
forces, improving the process of allocation.

Together with the commitment mechanism, we have also
introduced the notion of mutual support into this experi-
ment. The mutual support function plays an useful role dur-
ing the simulation. When a police force receives an activity
to clear a road, it shares the conditions to clear this road.
One of these conditions is that the road is actually blocked.
If other agent of the coalition has an information that con-
trasts with this condition, it must inform to the police force.

This process indirectly resolves the problem of or-
activities discussed in the last experiment. If two police
forces pf $ and pf % receive the same activity to clear a road
and pf $ finishes such activity before pf % has started its exe-
cution, the new status of the road (status road = clear) will



contrast with the conditional constraint sent by pf % to pf $ ,
so that pf $ informs this new status to pf % (note that both
agents have received the conditional constraints of each
other). Then, pf % automatically reports the completion of
its activity to its police office. Using this mechanism, the
police forces become available faster and the allocator has
more options to perform its allocations.

On the other hand, this experiment highlights a poten-
tial problem. According to the mutual support function, be-
fore pf $ informs the new status of the road, it must try to
create an activity that turns the condition true (status road
= blocked). This does not happen in this experiment be-
cause police forces do not have this capability. But, in a
general way, conditions that are negations of goals can gen-
erate problems, so that the CreateActivity function (step 04,
MutualSupport function) must consider this exception1.

If we calculate the integral of the Clear curve (Figure 2)
for this experiment, the resultant value is almost the same
as in the last experiment. However in this case we are sure
that the clear actions are associated with the requests of the
police office because such a curve follows the behaviour of
the Move curve. In other words the police forces are mov-
ing to the blockages indicated by the police office. Note
that there are two perspectives in which we can analyse the
efficiency of ��� . From the ��� ’s perspective, such subteam
is efficient if they are able to clear a big number of roads.
From the perspective of the coalition as a whole, which is
the focus of this experiment, �&� is efficient if they are able
to clear the necessary roads. Thus, rather than a quantita-
tive result, we are interested in a qualitative measure on the
performance of clear actions.

Figure 2. Collaborative version results.

If we compare this graphic with the graphic of the first
experiment (Figure 1), we can also notice that the Move and

1This is a common problem in AI planning and planners often use “con-
straint types” to indicate which constraints are only intended to be tested
and which are intended to be targets to be achieved [Tate, 1995].

Search curves are more regular and narrower. This indicates
that the police forces finish their delegated activities faster
than the first experiment, returning to their original action
of searching blockages by themselves.

6. Final Discussion and Directions

A deficiency in the current planning literature is the lack
of discussions about the amount and kind of knowledge that
each agent of a coalition must maintain about the coalition’s
activities so that they mutually support one another. Ac-
cording to our approach to mutual support, we are arguing
that the knowledge about the conditions required by each
agent is appropriate to enable such support. However, based
on our experiments, it is not possible to demonstrate the real
efficiency of such an approach. A detailed investigation of
this issue could be done via measures of the usefulness and
usability of the knowledge, in our case the activities’ condi-
tions shared through the coalition.

Other practical matters associated with the mutual sup-
port approach are: the elimination of useless information,
the number of messages and the post-conflict decision pro-
cess. As discussed previously, the solution applied to elim-
inate conditions is to stamp a timeline in each constraint
saying the period that it should be considered valid. How-
ever such a solution was not very useful in our application
because the majority of the activities did not have a defined
timeline (start and finish times).

Another pertinent problem appears when an agent aban-
dons an activity. In this case its conditional constraints are
no longer valid, but as they were shared into the coalition,
they are still generating unnecessary reasoning and perfor-
mance of activities. Thus, the development of a process
like a team garbage collection, applied to unnecessary con-
straints, could be appropriate to avoid collateral effects.

Concerning the number of messages, the experiments
have demonstrated that the mutual support function is likely
to require considerable communication. The idea of filter
algorithms could be applied to this problem, avoiding that
an agent sends its conditional constraints for all agents of
its (sub)team.

The post-conflict decision process is another possible
reason for low efficiency. Consider the following scenario:
an agent a $ generates a plan p $ with a conditional constraint
c $ , which is shared into the coalition. Meanwhile, an agent
a % is trying to generate a plan p % , however its possible plans
are in conflict with p $ . According to the simple post-conflict
decision process that we are applying, all the agents must
consider the constraints already shared. Thus, a % will not be
able to complete its activity. This problem becomes worse if
the performance of a % is critical to the coalition aim. In this
case a $ should replan its activities, eliminating c $ and en-
abling the generation of p % by a % . We can conclude that the



simple use of time is not adequate for the post-conflict deci-
sion process and the priority of the activities is an important
attribute that must be considered during such process.

The definition of possible extensions for this work is di-
rectly indicated by such limitations. These extensions are
listed below:
� Development of experiments that measure the useful-

ness and usability of conditional constraints, consid-
ering the process of mutual support. The idea is to
investigate, from the set of all constraints received by
an agent, which of such constraints are useful for the
different processes provided by the mutual support ap-
proach (conflict resolution, information sharing and
activity generation). Based on the results of this ex-
periment, we could also be able to know which infor-
mation, other than conditional constraints, is important
to agents. If we apply such experiments to all the hier-
archical levels, we can produce the basis for supplying
the lack in the current planning literature previously
cited;

� Study and implementation of mechanisms that enable
the elimination of knowledge which is no longer valid
from the coalition. Rather than agents exchanging
messages saying which information must be elimi-
nated, agents should be able to reason about such elim-
ination by themselves. An interesting metaphor, used
in the previous section, is to think about this process
as a garbage collection used for some object-oriented
languages. In Java, for example, each virtual machine
uses a specific rule (there are no longer any refer-
ences to an object) to eliminate unnecessary objects. In
the same way, we could implement some rule in each
agent so that they eliminate unnecessary knowledge;

� Specification and test of a post-conflict decision pro-
cess so that it considers the idea of priority. In fact
the � I-N-C-A � ontology already provides a represen-
tational attribute for priority in the activity definition.
Thus we could use this attribute to decide which agent
must replan in case of conflict.

The extension of our search and rescue domain to
three levels of decision-making (strategic, operational
and tactical), together with the implementation of a
new different domain associated with space applications
[Siebra et al., 2004] are also themes for future works.
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