
Limited Media Interface

for AI Planning System

Alexander Nixon, John Levine, Austin Tate

Arti�cial Intelligence Applications Institute
The University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK
me@alexnixon.co.uk, fj.levine, a.tateg@ed.ac.uk

http://www.aiai.ed.ac.uk/~oplan

Abstract

This paper is concerned with the implementation of a mobile
telephone interface onto the existing AIAI hierarchical planner
O-Plan, and the investigation into how to maximise the usabil-
ity of this limited media interface, with minimum loss of con-
tent. The resulting WOPlan (Wireless O-Plan) interface was
developed as a Java Servlet application which communicates
with the O-Plan system and serves WML (Wireless Mark-up
Language) pages to a WML-enabled mobile telephone. One in-
teresting result of the WOPlan project was the development of
a plan execution facility, whereby the user is presented with an
ordered list of executable actions dependent on what actions
have been executed so far. Another interesting result was the
insight that the reduction of any graphical interface onto a lim-
ited medium may be a useful exercise in its own right, in that
it necessitates the prioritisation of functional elements of that
interface. We will discuss the design of the WOPlan system
and assess its usability. Additionally we will give suggestions
for improvements and for real-world applications.

1 Background

O-Plan(1)(5)1 is an expansion-based hierarchical planner
developed by the Arti�cial Intelligence Applications In-
stitute at the University of Edinburgh. Planning prob-
lem domains (including possible tasks, constituent actions
and relevant constraints) are de�ned in the Task Formal-
ism (TF) language(10). The release version of O-Plan is
written mainly in LISP with an X interface which o�ers
the user the ability to specify problem domains, identify
problem tasks and constraints, generate plans and view
resulting plan details and hypothetical \world" states at
various points in a plan. The same core O-Plan engine
may also be accessed without using a graphical user in-
terface (GUI) by exploiting the proprietary TA Interface,
which consists of a de�ned set of LISP-style messages
which may be passed to and received from a running in-
stance of O-Plan to provide a subset of the functionality
o�ered by the X interface.

1see http://www.aiai.ed.ac.uk/~oplan/documents for a
full listing of O-Plan references

2 Aims and Motivation

The original aim of the project was to create a mobile,
limited media interface onto the O-Plan system. What
was envisaged was the case of the mobile human agent,
equipped with a small, hand-held wireless device, at-
tempting to access a planning server in order to request
some kind of course of action dependent on that user's
current situation. Available web-based demonstrations
of O-Plan(7) propose problem domains involving various
military disaster relief and evacuation operations, and it
was thought that the mobile telephone or Personal Dig-
ital Assistant (PDA) could be a tool for plan delivery to
mobile units in such a situation. Alternatively, a lone mo-
bile user could access O-Plan to retrieve a plan to assist
in a situation in which that user had insuÆcient expe-
rience. Someone who had no experience of engineering,
for example, could retrieve a checklist to perform in the
event of their car breaking down. The utility of such a
system would depend not only on the design of the system
itself, but also on the identi�cation of a suitable problem
domain, in particular a domain in which the users of the
planner are likely to be on the move and in need of a
course of action to solve an immediate task, and other-
wise with no access to more conventional interfaces such
as PCs. The name WOPlan (for \Wireless O-Plan") was
given to the proposed system.

3 Complicating Factors

The design of a mobile interface onto O-Plan is made
more diÆcult by the limited screen sizes of mobile de-
vices, especially in the case of the mobile telephone. De-
velopment of interfaces onto O-Plan to date has allowed
for the luxury of a full-sized terminal screen(4)(8). Issues
of human-computer interaction which may be ignored (if
not altogether forgotten) when using a full-sized terminal
interface become unavoidable in the case of the limited
media interface(18). Generally users of mobile devices ex-

WOPlan Servlet

Tomcat Webserver

WAP Client

WML TA Interface

O-Plan

Figure 1: Architecture of WOPlan

pect their interaction with the device to be brief, whereas
a user sitting down at a workstation is prepared for a
more prolonged session. Browsing with a mobile device,
especially with a mobile telephone, is (with current de-
vices) slow and cumbersome; data entry is diÆcult and
should be kept to a minimum. A mobile telephone sys-
tem needs only be slightly poorly designed to be rendered
unusable; this is especially true if the system is attempt-
ing to serve long lists of data (such as delivering a plan
description), as long pages increase download times and
make navigation even slower and more frustrating.

4 The Resulting System:
WOPlan

WOPlan was developed as a web application which com-
municates with an instance of the core O-Plan engine and
deliversWireless Mark-up Language (WML)(12) to a con-
nected client. The client may be any device with has a
browser which conforms to the Wireless Application Pro-
tocol (WAP), such as a WAP-enabled mobile telephone.
The WOPlan web application is a Java Servlet(20). In
development and testing the Nokia WAP Toolkit WML
browser emulator(22) was used in place of a physical
WAP device, and the servlet was hosted within the Tom-
cat Jakarta webserver(21). The client initiates a session
by connecting to WOPlan, which connects to the O-Plan
server and initialises the service, and provides the user (on
the WAP device) with a list of available problem domains.
The user is prompted to choose a planning domain (de-
�ned as a Task Formalism �le), then choose a task within
that domain, and then to view, execute or evaluate the
resulting plan, or to get a di�erent plan that ful�ls the

same speci�ed task.

4.1 WAP Client

This is the component with which the WOPlan user inter-
acts. The user activates WOPlan by initiating an internet
session on the WAP Client and navigating to the internet
address of the second component, the WOPlan servlet.
The WAP client could be any device with a WAP-enabled
browser and internet connectivity, although WOPlan has
only been tested in use with WAP emulator browsers run-
ning on a workstation.

The emulator used in development was the Nokia WAP
Toolkit. Included at the end of this paper is a screenshot
of the Nokia Toolkit emulator. Features to notice are the
very limited screen size (only four lines of text), and the
user interface objects. Directly below the screen are two
arrow buttons (used for scrolling up and down a WML
page), in between which is a single Select button (used
for selecting whatever item is currently highlighted in the
WML page). Below and left of the screen is the Options
button, which when available and selected should display
a context-sensitive list of options. Below and right of
the screen is the Back button, which when available and
selected should navigate the user back to the previous
screen.

It is worth noting that this layout and combination of
available keys is particular, though not necessarily unique,
to this browser. Although all WAP-enabled browsers
should fully implement all of the functional elements of
WML as de�ned by the WAP Forum, the implementa-
tion is not constrained as to layout or number of buttons,
etc. Generally, however, most mobile telephone WAP
browsers to date have adopted a layout similar to this

Tool Desc Location

O-Plan 3.3 Hierarchical Planner http://www.aiai.ed.ac.uk/~oplan

JAVA 2 SDK 1.2 Java Dev Kit http://java.sun.com/products/jdk/1.2/

Jakarta Tomcat 3.1 Servlet Engine http://jakarta.apache.org

WAP Toolkit 1.3 WAP Emulator http://www.forum.nokia.com

RedHat 6.1 Linux OS http://www.redhat.com

Emacs JDE Java Env for Emacs http://sunsite.auc.dk/jde

Table 1: Platforms/Applications used in the development of WOPlan

Nokia emulator. The Nokia WAP Toolkit, rather than
any other emulator, was used because it is currently the
most stable free browser emulator which is supported on a
non-MS Windows platform, in that it operates as a Java
archive, and so is entirely portable2.

4.2 WOPlan Servlet

The servlet sits between the WAP Client and the core
O-Plan system. It accepts WAP requests from the client
(or from multiple clients simultaneously) and communi-
cates with O-Plan, initially connecting to O-Plan as re-
quired and sending and receiving TA interface messages.
All of the development work for the WOPlan system has
focused on the WOPlan servlet; it is in this component
that the logic speci�c to this implementation resides. The
servlet dynamically creates WML pages, depending on
the responses it is receiving from O-Plan, which are then
sent to the WAP Client for browsing. These WML pages
may themselves contain logic such as navigational direc-
tives or actions to perform after a certain length of time
has passed. Although these directives are executed by the
WAP Client, their source is the servlet.

4.3 O-Plan Server

O-Plan sits in the bottom tier of the architecture, re-
sponding to requests from the WOPlan servlet.

5 WAP/WML

5.1 WML

WML is based on Extensible Mark-up Language (XML)
(13). It has been designed by the WAP forum(11) for de-

2be aware that Nokia WAP Toolkit 2.0 has recently
been released; it will run only on a Win32 platform (i.e.
Windows 98/NT/2000)

livering hypertext content to wireless devices, taking into
considerations the limitations of such devices, including:

� Limited display size and user interface capabilities,
including constrained data entry ability;

� Slow network connections;

� Limited system resources (memory and computa-
tional speed).

The complete WML speci�cation de�nes a set of XML
mark-up elements which together provide the following
functional areas:

� Presentation and layout, including provision for text
emphasis, simple table formatting, simple images
(Wireless Bitmaps);

� Navigation, including hypertext links and the con-
cept of Cards and Decks. Each page is presented
as a card, but several cards may be grouped into
a single deck for simultaneous delivery, thus saving
network time;

� String parameterisation and state management.
Variables may be used instead of explicit strings and
their values are resolved by the WAP device at run-
time. This may reduce network traÆc.

5.2 Comparison of HTML and WML

5.2.1 Functionality

HTML is a visually-rich mark-up language appropriate
for use with systems with large screens. WML allows a
very restricted set of formatting commands, with no facil-
ity for plug-ins. Typically HTML browsers are very for-
giving of sloppy mark-up encoding. For example, gener-
ally, unrecognised elements are ignored. WML, as an im-
plementation of XML, requires more precision, and avail-
able WAP browsers are unforgiving of errors in WML.
Tags must be properly nested with attributes correctly

speci�ed. Generally, if a document violates the WML
speci�cation, it will cause an error and not be displayed.
Additionally the variable and history mechanisms have to
be taken into account in WML development.

5.2.2 Popularity

Recently, the usability of WAP devices and services has
been the subject of widespread derision in the press(15);
the disappointment in WAP services is not because of
any failing inherent in the WAP or WML speci�cations,
however, but rather primarily because:

� WAP is still young (1999) and WAP-compliant de-
vices have only recently come on the market. The
devices which are currently available have extremely
limited screen sizes and no multimedia capabilities.

� WAP has been hyped by wireless industry leaders
such as BT Cellnet as \putting the Internet in your
pocket"(16). Invariably such hype encourages direct
comparison between WAP services and more estab-
lished web-based services delivered via HTML. With
such functional limitations, WAP cannot possibly
compete with HTML.

5.2.3 Purpose

WAP should not currently be regarded as a competitor to
HTML, then, but rather a complementary internet tech-
nology. The
exibility of HTML allows for a greater range
of applications available to the home or oÆce based inter-
net user, but the peculiar properties of the mobile WAP
device provide potential for a range of useful applications
for the user on the move.

6 Plan Viewing

A hierarchical plan consists of layers of action nodes, each
deeper level representing an expansion of the nodes in
the level above. Each node consists of two enodes, rep-
resenting the beginning of the associated action, and its
completion. Within each node, the begin and end enodes
themselves each maintain a list of predecessor and succes-
sor enodes (of other nodes). These dependency lists fully
specify the conditions for the legal execution of the plan.
Each node may optionally contain some time window in-
formation. This is given as an earliest and latest time for
beginning the associated action, and an earliest and latest
time for completing it. The O-Plan GUI supports several

Figure 2: Example of WOPlan Narrative Display

modes of plan viewing. The most descriptive is the graph-
ical representation, which denotes action enodes as boxes
and dependencies between enodes as links. An example
of this is shown in �gure 5. Such a full representation of a
plan would be unable to �t into the screen of the mobile
telephone, however.

6.1 The Utility of a Narrative

Another mode of plan viewing which the O-Plan GUI sup-
ports is the creation of a plan narrative, a step-by-step
ordering of the enodes which honours time constraints
and enode dependencies. The narrative cannot represent
the dependencies between enodes in the same way that
the full plan description does (in that it is simply a one-
dimensional ordered list of enodes), but rather attempts
to show a typical (but usually not the only) execution
trace through the actions of the plan. For a user who
wishes to appreciate quickly the typical sequence of ac-
tions involved in executing a given plan, this mode of plan
viewing could be more informative than the full graphi-
cal representation, and certainly more intuitive than a full
list of node descriptions. In the case of the mobile tele-
phone user, this narrative representation may be the only
intuitive and economical way of presenting an entire plan
on one page, and it is this representation which WOPlan
implements.

6.2 The Narrative Creation Problem

The creation of the plan narrative constitutes a non-
trivial problem. O-Plan solves this problem with a simple
topological sort which attempts to take into account both
enode dependencies and time windows. The procedure

begins by ordering the enodes by their time-windows, and
then by name (so in the case that no nodes have any time
window information, the enodes will simply be ordered
by name). The topological sort then visits the enodes in
reverse order. Each enode is visited by visiting all of that
enode's dependent successors and then placing that en-
ode at the front of the result. When all the enodes have
been visited, the result is the plan narrative.

WOPlan approaches the creation of the plan narra-
tive as a problem of sorted search rather than a topolog-
ical sorting procedure. Although the topological search
is more eÆcient than the sorted search, the reasons for
using the search in WOPlan are:

� The sorted search procedure is more modular in de-
sign and allows for straightforward substitution of
sorting criteria, which in turn can in
uence which
enodes are presented earlier in the resulting plan nar-
rative; the procedure is more
exible as a result;

� The sorted search is less trusting of the plan descrip-
tion than the topological search: if there is a problem
with the plan description the sorted search will fail,
whereas the topological search will complete incor-
rectly; as the creation of the plan description is not
WOPlan's but O-Plan's responsibility, this cautious
approach is more appropriate.

6.3 Example Narrative to Depths 3

The following narrative was created by the O-Plan
GUI on the house-1 problem domain, on the task
task build house. Where both the begin enode and the
end enode of a single node are consecutive in the narra-
tive presentation, the node is called an Action. Where
the begin and end enodes have been separated for some
reason (as is the case when an upper level node has been
expanded into its lower level nodes), each individual en-
ode is shown with the appropriate quali�er Begin or End.

Plan execution starts.

0:00 Begin (build house).

Action (excavate and pour footers).

Action (pour concrete foundations).

Action (erect frame and roof).

Action (lay brickwork).

Action (finish roofing and flashing).

Action (fasten gutters and downspouts).

Begin (install services).

Action (install drains).

Action (lay storm drains).

Action (finish grading).

Action (pour walks and landscape).

Action (install rough plumbing).

Action (install rough wiring).

Begin (decorate).

Action (pour basement floor).

Action (install air conditioning).

Action (fasten plaster and plaster board).

Action (lay finished flooring).

Action (install finished plumbing).

Action (install kitchen equipment).

Action (finish carpentry).

Action (paint).

Action (sand and varnish floors).

End (decorate).

Action (finish electrical work).

End (install services).

End (build house).

Plan execution finishes.

7 Plan Execution

7.1 Functionality

The �nal major piece of functionality which was added to
WOPlan was the provision of a simple plan execution fa-
cility. This functionality is not available by default in the
standard O-Plan GUI. In WOPlan, when a user chooses
to Execute a plan, they are presented with a depth-
ordered list of nodes which are currently executable, given
what has been completed so far in the execution process.
In between consecutive calls to the servlet, WOPlan rec-
ollects the current execution state of the plan. Initially
the only node which is executable is node-1, which is
always the start node. Accordingly, at the beginning of
plan execution the user will see a list with only one ac-
tion item in it, namely start. During execution, each
of the items visible in the execution list is itself a link,
which when selected displays a context-sensitive list of
functions to perform on that node. Functions which may
be performed on action nodes are:

� Execute Node. This function will be available
if the node which has been selected is fully exe-
cutable, i.e. the predecessors of the end enode of
this node have already been executed during this
session. Choosing this function will mark the node
as complete.

� Force Completion. This function will be available
if the node may be begun but not immediately ended

Figure 3: Example of WOPlan Execution Display

without some intermediate execution. This happens
when a node is expandable, i.e. there are subactions
which have to be completed before the entire node
action may be completed. Choosing this function
will mark this node and any subactions at any depth
as complete.

� Expand Node. This is available when there are ex-
ecutable subactions at a level deeper than this node.
Choosing this will cause these executable subactions
to become visible in the plan execution facility.

The text of each node action in the execution screen
is emphasised according to which of the above functions
may be performed on it. Actions which may be immedi-
ately executed appear in unemphasised small text. Ac-
tions which may be completed by force appear in italic

small text. Actions which are expandable appear in bold

italic small text. When a function is performed on an
action, the WAP client noti�es WOPlan of the change,
whereupon WOPlan updates its understanding of the ex-
ecution status of any nodes which are a�ected by the
change, and sends a refreshed list of executable nodes
back to the client as a WML page. This cycle continues
until either the user cancels the execution or the finish

node is reached. If the �nish node (always node-2) is exe-
cuted, then the message No More Action Items appears,
and so execution ends.

8 Assessment

8.1 Original Aims

This original aim has been achieved in that WOPlan pro-
vides reasonably stable, scalable and usable access to the

O-Plan system through a mobile telephone. Although
it does not provide all of the functionality which O-Plan,
and in particular the TA interface, has to o�er, it provides
a useful subset of this functionality, and has addressed the
core issues of plan review and execution through the nar-
rative and execution facilities.

8.2 Usability

The following usability issues emerged from user testing.

8.2.1 Context-Sensitive Menu Confusing

WOPlan includes an Options menu which is modi�ed de-
pending on which menu items should be available to the
user at any point during the use of the application. Inter-
estingly, the users reported that the constantly-changing
Options menu made them feel \uncomfortable", in that
it made it diÆcult to assess, as a new user to WOPlan,
exactly how much functionality there was included in the
system, and they felt that new options were constantly
making themselves available unannounced. They would
have been happier if the same Options menu were avail-
able at all times, but that speci�c functional items on the
menu were somehow disabled depending on what func-
tionality should be available at that point. The tailoring
of the options menu was intended to be a feature which
increased usability. It may be that a more advanced user
of the system would �nd context-sensitivity a helpful fea-
ture, but it is worth bearing in mind that novice users
feel uncomfortable with an interface which is constantly
shifting.

8.2.2 Back Key Required on All Screens

It was felt that a Back key would be a useful addition
on all screens. Again, this is a problem which an ad-
vanced user would not encounter, as the Options menu
always provides the ability to return to the previous com-
mand. Where this is not a possibility, a speci�c Back

key is added. The exception to this is during plan exe-
cution, where once an execution is con�rmed there is no
way it can be cancelled. It is recommended programming
practice(17)(18) for limited media interface design always
to provide a Back key, and certainly it would be a useful
addition to this application to add one to all pages.

8.2.3 No Indication of Plan Context

Unlike in the O-Plan GUI, there is no way within WOPlan
for the user to recollect within which task, within which

problem domain, they are operating. This is a substantial
omission, but could be easily addressed with a separate
menu item for this kind of information.

8.2.4 Replan Functionality Confusing

The users were confused by the ability to replan. Techni-
cally what the Replan option allows is for the user to re-
quest a di�erent plan for the same task. O-Plan searches
for an alternative plan and, if one is found, returns it, oth-
erwise the current plan remains. It is diÆcult for a user
to assess a given plan without actually stepping through
it, but even if the user decides, while viewing or evaluat-
ing the plan, that there is something unacceptable about
that plan, there is no guarantee, if the user chooses then
to replan, that the resulting new plan will not contain the
same fault. Nor is there any way for the user to gauge how
many possible alternative plans there are. One solution
to this replanning issue would be to provide some facility
whereby the user can dynamically specify a set of mini-
mum acceptability constraints which O-Plan would then
attempt to satisfy when searching for a plan. If the re-
sulting plan is still unacceptable, the user should be able
to modify the constraints before replanning. This kind of
functionality exists on the current web-based demonstra-
tion of the core O-Plan system(9), but is not currently
supported through the TA interface.

8.2.5 Add to Task Requirement

The users suggested that there should be some means
of modifying or parameterising the existing tasks, as it
would be unlikely that one of the published task de�ni-
tions would be absolutely relevant to every user in every
detail. The TA interface does include functionality to
add constraints or actions to tasks, but there is no way to
query O-Plan for information on what the available con-
straints or actions may be. Implementation of a robust
Add To Task facility was therefore considered too ambi-
tious within this project.

8.2.6 Plan Execution

Although the users were impressed with the simple and
intuitive interface which the plan execution facility of-
fered, they were critical of the inability to cancel and reac-
tivate previously executed actions. A requirement of this
kind of functionality would be some kind of list (perhaps
in an incomplete narrative format) of actions completed
so far during execution. This in itself would not be a dif-
�cult feature to implement. In addition it was felt that it

would be useful to be able to save the execution state of a
plan for an inde�nite length of time, to allow the user to
return to the execution at an unspeci�ed later date to con-
tinue that execution. This kind of plan persistence would
require the introduction of a database or
at �le into the
system's architecture, in order to store these execution
states alongside the appropriate client details. It would
also require some method of identifying clients beyond
the lifespan of the servlet; if the webserver is shut down
and restarted, the session details of the hosted servlets are
lost. Perhaps one way of achieving this persistent iden-
ti�cation could be through the use of simple logins, the
details of which could be stored in a database or
at �le.

8.2.7 Help Information

The provision of some kind of description of domains and
tasks would be useful, as would the provision of more
general help information on the system.

8.3 Performance

The WOPlan system has not been subjected to speci�c
performance testing, although there appeared to be no
performance problems during user testing, in which three
separate clients maintained concurrent sessions with the
WOPlan servlet. This testing was performed on worksta-
tions in the Department of Arti�cial Intelligence, which
are Sun Microsystems' SPARC Ultra 5s with 360 MHz
processors and 128MB RAM. During the test, the Tom-
cat webserver (running the WOPlan servlet) and O-Plan
itself were located on separate workstations, as were each
of the three Nokia WAP Toolkit clients.

8.4 Robustness

No catastrophic failures occurred during user testing, al-
though exceptions have been noted during development
testing. When identi�ed these have been resolved. The
servlet has been modi�ed to serve a generic error message
to the WAP client in the event of an exception, so at least
if an exception occurs within the operation of the servlet,
the failure is reasonably graceful, if not informative. The
only possible action from such an error page is to Restart,
which attempts a clean connect and initialisation with
O-Plan, which would remove any residual problems. Re-
cently the servlet has been modi�ed to implement a Sin-
gle Thread Model, along with session management(20),
to avoid resource clashes when more than one client at-
tempts to access the servlet at one time.

8.5 Scalability

WOPlan has modular, object-oriented design which
should ease the process of modi�cation or augmentation.
All of the platforms used in the development of WOPlan
are proven, enterprise-level technologies. Where possible,
e�ort has been made to minimise the impact of running
WOPlan. For example, the servlet retains a list of every
single connection to O-Plan which is initiated on behalf
of a WAP client. When the servlet is �nally shut down
(which normally only happens when the webserver itself
is shut down), it iterates through this list, closing the
connections if they still exist. An improvement on this
would be to implement this closure for each client session
whenever the session times out.

WOPlan has avoided hard coding con�guration infor-
mation such as the address and port of the O-Plan server,
and the location of the directory which contains the TF
source �les. This information is soft-coded instead in a
�le, currently called WOPlan.properties, which resides
in the same directory as the servlet. Changing these con-
�gurations should necessitate only editing this options �le
rather than recompiling the entire servlet.

9 Future Work

Evaluation of the usability of the WOPlan system (see
section 8), identi�es modi�cations which could improve
the usability of the current system. In addition the fol-
lowing areas for future work have been identi�ed.

9.1 Physical Testing

WOPlan has not yet been tested with a physical WAP
device. In order to achieve this, a publicly-accessible web-
server will need to be set up, hosting the WOPlan servlet.
The security considerations associated with providing a
public service will need to be addressed. A WAP-enabled
wireless device will also be required. A full list of such
devices is available at AnywhereYouGo.com(24).

9.2 Alternative Platforms

9.2.1 Client Platforms

It is likely that non-WML platforms and devices will be-
come more widespread and popular in the near future.
Subsequent development on WOPlan should be open to
the possibility of a move to a non-WAP platform. Porting

to a di�erent client platform would require a signi�cant,
but local and contained, amount of work.

9.2.2 Server Platforms

Given that the WOPlan servlet is a Java applica-
tion, and if the need or interest arises, it should be
reasonably straightforward to port it to a Microsoft
Windows NT/Windows 2000 server environment, run-
ning a webserver which can host servlets on Windows,
such as Apache with JServ. The O-Plan server will still
need to run on SunOS or Linux, although with some work
that should be portable to Windows too.

9.3 Voice and Positioning

The investigation into the possible use of properties spe-
ci�c to the case of the mobile device was a secondary
aim of the project. Two such properties which have
been discussed are voice technology and mobile position-
ing technology. No provision for voice or location in-
tegration exists in currently available WAP devices, al-
though they will certainly become available in the near
future. One possibility for the former would involve the
use of VoiceXML, an XML variant intended to \make In-
ternet content and information accessible via voice and
phone"(14). VoiceXML has the backing of industry gi-
ants IBM, AT&T and Motorola. The Motorola Mobile
ADK(19) is a development environment for integrating
VoiceXML and WML services. The provision of Location
Services (LCS) as a standard for mobile devices is still
currently at the design stage. It is likely that some kind
of service based onGlobal Positioning System (GPS) tech-
nology will be available to GSM (Global System for Mo-
bile Communications - the current European standard)
telephones in the near future.

9.4 Suitable Problem Domains

Beyond the integration of mobile-speci�c technologies,
the WOPlan system could certainly bene�t from the en-
gineering of a Task Formalism problem domain which
is likely to have more relevance to a mobile user than
the currently available O-Plan TF domains. The issue
of the creation of a useful and relevant TF �le is inex-
tricably connected to the issue of providing the facility
within WOPlan to adapt plans according to changing cir-
cumstances, and to specify minimum acceptability con-
straints, as discussed in section 8.2.4. If a truly usable
problem domain is conceived, it must be written in such

a way as to allow parameterisation of acceptability con-
ditions, and to provide, as available choices, the kind of
tasks and constraints which are likely to arise in the case
of that mobile user.

9.5 Plan Execution Research

The execution facility provided with this version of WO-
Plan is little more than a prototype, but it o�ers inter-
esting possibilities for further development and research.
Firstly it could certainly be improved, augmented and
made more usable within the context of the WOPlan
system. Perhaps more importantly, however, its simple,
ordered, one-dimensional format, with action items em-
phasised according to what may done with those items,
could provide a basic template for any system with a mo-
bile limited media interface which is attempting to deliver
courses of action (COAs) to human agents on the move.

9.6 Two Applications

By way of a summary for future work, we provide here
two examples of what we see as potential real-world ap-
plications of a mobile interface into a planning system.

9.6.1 Multi-User COA Delivery

This system would be a multi-user, multi-role planner
with at least two separate user interfaces: an oÆce-based
planner with a full screen interface would be used to coor-
dinate multiple agents and update any courses of action
according to changing circumstances, whereas a mobile
interface would be used by mobile agents to send status
updates to the central planning unit and receive and exe-
cute the courses of action. To build this kind of function-
ality would require detailed research into user roles, and
integration of logic to handle the marshalling of multiple
users. Although such a system would �t comfortably into
the physical, three-tier architecture of WOPlan, it would
involve such complex re-engineering that the logical de-
sign of the system would be almost unrecognisable from
what is currently there.

9.6.2 Web-based Journey Planner

An intra-city journey planner could be implemented with
relatively little alteration of the existing WOPlan system,
except for addressing the usability issues speci�ed at the
beginning of this chapter, and designing an appropriate
TF problem domain. An example of its use would involve

a mobile user accessing the system from a WAP-enabled
telephone to request a plan to travel from their current
location to some destination within the same city. The
planner would have access to information about all the
bus, tram, train and underground stops in the city, as
well as information about the walking time between each
of these stops. With some careful thought this informa-
tion could be encoded in a Task Formalism problem do-
main which would include the relative costs of using each
form of transport and the costs of walking between spe-
ci�c stops, etc. The planner would generate a course of
action to transport the user from their current location
to the speci�ed destination by the shortest route possi-
ble within certain acceptability constraints. This course
of action could then be delivered back to the user as a
narrative or a plan execution. The application could also
provide the facility to reject certain stages of the jour-
ney (for example, if the user knew that traÆc was bad in
a particular area, or wished to avoid a certain station),
which would force the planner to replan, avoiding those
particular stages. In due course, with the advent of lo-
cation services, the user need not even enter their initial
location, as it would be automatically queried by the sys-
tem.

10 Conclusions

One of the unexpected conclusions to result from this
project is that the implementation of an existing system
on a limited media device may be a useful exercise in its
own right, in that it forces the designer both to appreciate
what are the essential informative features of the system
and to consider the ways in which the usability of the
system can be maximised.

An interesting part of the work on WOPlan was the
development of the plan execution facility. Although
the current facility is little more than a prototype, there
is clearly a good deal of work that could be done,
and progress made, in the area of delivering executable
courses-of-action to mobile human agents. This is a clear
case of value added in the case of the mobile user, not
through the use of voice or positioning or any other kind
of technology, but purely for the reason that the user is
mobile and is actually in a position to carry out actions,
unlike the oÆce-bound user (for most problem domains).

We are con�dent that the WOPlan system provides a
valuable tool on which to base further research into the
area of mobile planning and plan delivery. The adaptable
design and use of freely-available, robust, scalable plat-

forms should allow straightforward modi�cation of and
addition to the existing code if desired.

Figure 4: Screenshot of Nokia WAP Toolkit Browser
Emulator

house-1:build_house 11 Nov 0

NODE-1 NODE-3 BEGIN ACTION NODE-3-1 ACTION NODE-3-2 ACTION

NODE-3-9-2 ACTION

NODE-3-7 ACTION NODE-3-8 ACTION

NODE-3 NODE-2

NODE-3-9

NODE-3-9-1 ACTION

NODE-3-10-2 ACTION NODE-3-9-8 ACTION

NODE-3-10-1 ACTION NODE-3-10-3 ACTION

NODE-3-9-7 ACTION

NODE-3-10-6 ACTION NODE-3-9-6 ACTION

NODE-3-10-5 ACTION NODE-3-10

NODE-3-9-4 ACTION

NODE-3-10-4 ACTION

NODE-3-9-3 ACTION

NODE-3-3 ACTION NODE-3-9-5 ACTION

NODE-3-4 ACTION NODE-3-5 ACTION NODE-3-6 ACTION

NODE-3-9 BEGIN ACTION

NODE-3-10 BEGIN ACTION

START (BUILD HOUSE) (EXCAVATE AND POUR FOOTERS) (POUR CONCRETE FOUNDATIONS)

(LAY STORM DRAINS)

(FINISH GRADING) (POUR WALKS AND LANDSCAPE)

END FINISH

END

(INSTALL DRAINS)

(POUR BASEMENT FLOOR) (INSTALL AIR CONDITIONING)

(FASTEN PLASTER AND PLASTER BOARD) (LAY FINISHED FLOORING)

(INSTALL KITCHEN EQUIPMENT)

(PAINT) (FINISH ELECTRICAL WORK)

(SAND AND VARNISH FLOORS) END

(INSTALL FINISHED PLUMBING)

(FINISH CARPENTRY)

(INSTALL ROUGH PLUMBING)

(ERECT FRAME AND ROOF) (INSTALL ROUGH WIRING)

(LAY BRICKWORK) (FINISH ROOFING AND FLASHING) (FASTEN GUTTERS AND DOWNSPOUTS)

(INSTALL SERVICES)

(DECORATE)

F
ig
u
re

5
:
G
ra
p
h
ica

l
R
ep
resen

ta
tio

n
o
f
P
la
n
fo
r
T
a
sk

b
u
i
l
d
h
o
u
s
e
in

D
o
m
a
in

h
o
u
s
e
-
1
,
S
h
ow

in
g
T
y
p
ica

l
N
o
d
e
C
o
n
n
ectiv

ity

References

[1] Tate, A. and Currie, K. O-Plan: the Open Planning Architecture
Arti�cial Intelligence vol 52, 1991
http://www.aiai.ed.ac.uk/~oplan/documents/1991/91-aij-oplan.ps

[2] Tate, A., Drabble, B. and Dalton, J. The Use of Condition Types to Restrict Search in an AI Planner
Proceedings of Twelfth National Conference on AI(AAAI-94), Seattle, July 1994
http://www.aiai.ed.ac.uk/~oplan/documents/1994/94-aaai-typed-conditions.ps

[3] Tate, A., Drabble, B, and Kirby, R. O-Plan2: An Architecture for Command, Planning and Control
Intelligent Scheduling, 1994
http://www.aiai.ed.ac.uk/~oplan/documents/1994/94-is-oplan2.ps

[4] Tate, A. and Drabble, B. O-Plan's PlanWorld Viewers
Proceedings of the 14th UK Special Interest Group on Planning and Scheduling, Essex University, November 1995
http://www.aiai.ed.ac.uk/~oplan/documents/1995/95-sigplan14-viewers.ps

[5] Tate, A., Drabble, B. and Dalton, J. O-Plan: a Knowledge-Based Planner and its Application to
Logistics
Advanced Planning Technology, May 1996
http://www.aiai.ed.ac.uk/~oplan/documents/1996/96-arpi-oplan-and-logistics.ps

[6] Drabble, B., Dalton, J. and Tate, A. Repairing Plans on the Fly
Proceedings of the NASA Workshop on Planning and Scheduling for Space, Oxnard CA, USA, October 1997
http://www.aiai.ed.ac.uk/~oplan/documents/1997/97-jpl-repair.ps

[7] Tate, A., Dalton, J. and Levine, J. Generation of Multiple Qualitatively Di�erent Plan Options
Proceedings of the Fourth International Conference on Arti�cial Intelligence Planning Systems (AIPS-98), Pitts-
burgh PA, USA, June 1998
http://www.aiai.ed.ac.uk/~oplan/documents/1998/98-aips-plan-options.ps

[8] Tate, A., Levine, J., Dalton, J. and Aitken, S. O-P3: Supporting the Planning Process using Open
Planning Process Panels
Proceedings of the AAAI-99 Workshop on Agent Based Systems in the Business Context, Orlando, USA, July
1999

[9] Arti�cial Intelligence Applications Institute O-Plan version 3.3
30th May 2000
http://www.aiai.ed.ac.uk/~oplan/release/index.html

[10] Tate, A. and Drabble, B. Task Formalism Manual
July 1995
http://www.aiai.ed.ac.uk/~oplan/documents/ANY/oplan-tf-manual.ps

[11] Wireless Application Protocol Forum, Ltd WAP Forum
http://www.wapforum.org

[12] Wireless Application Protocol Forum, Ltd Wireless Application Protocol Wireless Markup Language
Speci�cation Version 1.3
http://www1.wapforum.org/tech/documents/WAP-191-WML-20000219-a.pdf

[13] T. Bray et al Extensible Mark-up Language (XML), W3C Proposed Recommendation 10-February-
1998, REC-xml-19980210
February 10, 1998
http://www.w3.org/TR/REC-xml

[14] VoiceXML Forum VoiceXML Forum
http://www.voicexml.org/forum 1.html

[15] Scho�eld, J. Shall we scrap Wap?
The Guardian, Thursday 31st August, 2000
http://www.guardianunlimited.co.uk/Archive/Article/0,4273,4056871,00.html

[16] BT Cellnet WAP's it all about?
BT Cellnet press release 3rd April, 2000
http://www.btcellnet.co.uk/SiteGen4/Feature/181850/1/

[17] Nokia Corporation Nokia WAP Toolkit Version 2.0 Developer's Guide
Nokia Forum, June 2000
http://www.forum.nokia.com

[18] Palm, Inc Palm OS Programmer's Companion
Palm Computing Platform Development Zone, 2000
http://www.palmos.com/dev/tech/docs/palmos/CompanionTOC.html

[19] Motorola, Inc Motorola Mobile Internet Exchange
Motorola Products and Services 2000
http://www.motorola.com/spin/mix/faqs.html

[20] Sun Microsystems, Inc JAVATM Servlet Technology
http://jsp2.java.sun.com/products/servlet/

[21] The Apache Software Foundation The Jakarta Project: Tomcat
http://jakarta.apache.org/tomcat/

[22] Nokia Corporation Nokia WAP Developer Forum
http://www.forum.nokia.com/wapforum

[23] AnywhereYouGo.com AnywhereYouGo.com
Miscellaneous resources for wireless developers
http://www.anywhereyougo.com/ayg/ayg/Content.po?name=waptools/Emulators

[24] AnywhereYouGo.com List of Wireless Devices
http://www.AnywhereYouGo.com/ayg/ayg/wap/devices/Index.po

[25] Isys Information Architects, Inc Interface Hall of Shame
http://www.iarchitect.com/mshame.htm

