
Generating Macro-operators by Exploiting Inner Entanglements

Lukáš Chrpa and Mauro Vallati and Thomas Leo McCluskey and Diane Kitchin
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, m.vallati, t.l.mccluskey, d.kitchin}@hud.ac.uk

Abstract
In Automated Planning, learning and exploiting ad-
ditional knowledge within a domain model, in or-
der to improve plan generation speed-up and increase
the scope of problems solved, has attracted much re-
search. Reformulation techniques such as those based
on macro-operators or entanglements are very promis-
ing because they are to some extent domain model and
planning engine independent. This paper aims to ex-
ploit recent work on inner entanglements, relations be-
tween pairs of planning operators and predicates en-
capsulating exclusivity of predicate ‘achievements‘ or
‘requirements’, for generating macro-operators. We dis-
cuss conditions which are necessary for generating such
macro-operators and conditions that allow removing
primitive operators without compromising solvability
of a given (class of) problem(s). The effectiveness of
our approach will be experimentally shown on a set
of well-known benchmark domains using several high-
performing planning engines.

Introduction
Because even classical planning is intractable (up to
PSPACE-complete (Bylander 1994)), exploiting additional
knowledge which is somehow characteristic for a given class
of planning problems is a promising way towards making
the planning process more efficient. Since the 1970’s, and
lately with the help of the Learning Track of the Inter-
national Planning Competition (IPC)1, many such learning
techniques have been developed. One of the most studied
is the generation and use of macro-operators (macros), en-
coded in the same format as the operators forming the plan-
ning domain model, but encapsulating a sequence of such
(primitive) operators (Dawson and Siklóssy 1977; Botea et
al. 2005; Newton et al. 2007; Chrpa 2010b). Macros, whose
power lies in providing “shortcuts” in the search space,
have always been hampered by the problem of utility: used
naively, their addition to a domain model can cause an ex-
plosion of operator instances.

The use of macros can be considered a technique for
planning problem reformulation, a domain and planner in-
dependent way of preprocessing a planning problem (in

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://ipc.icaps-conference.org

PDDL (Mcdermott et al. 1998) defined by domain model
and problem files) so that a planning engine may be able to
solve the problem more efficiently. Another such technique
is outer entanglements (Chrpa and Barták 2009), which can
be used to reformulate the domain model by effectively
removing unpromising operator instances. Inner entangle-
ments (Chrpa and McCluskey 2012) are relations between
pairs of planning operators and predicates, denoting exclu-
sivity of ‘achievement’ or ‘requirement’ of a predicate. That
is, one operator achieves a predicate exclusively for an-
other operator, or an operator requires a predicate exclu-
sively from another operator.

This paper proposes a preliminary investigation about
how inner entanglements might be exploited to generate use-
ful macros within a reformulation phase of a planning prob-
lem. After some theoretical background, we describe an au-
tomatic technique for (i) generating a macro from two prim-
itive operators in an inner entanglement relationship, and (ii)
safely removing one or both of the primitive operators from
the domain model of a given problem. Being able to re-
move domain operators, while adding macros, ameliorates
the main problem of macro utility. We present the results
of an empirical evaluation of our inner entanglement-based
technique on a set of well-known IPC benchmark domains
using state-of-the-art planning engines, showing that in do-
mains where such macros can replace both primitive opera-
tors, the reformulation is very effective.

Preliminaries
Classical planning (in state space) deals with finding a se-
quence of actions transforming the static, deterministic and
fully observable environment from some initial state to a de-
sired goal state (Ghallab, Nau, and Traverso 2004).

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms defin-
ing their preconditions, negative and positive effects (i.e.,
a = (pre(a), eff−(a), eff+(a))). An action a is applicable in
a state s if and only if pre(a) ⊆ s. Application of a in s (if
possible) results in a state (s \ eff−(a)) ∪ eff+(a).

In the classical representation atoms are predicates. A
planning operator o = (name(o), pre(o), eff−(o), eff+(o))
is a generalised action (i.e. an action is a grounded instance
of the operator), where name(o) = op name(x1, . . . , xk)

(op name is an unique operator name and x1, . . . xk are vari-
able symbols (arguments) appearing in the operator) and
pre(o), eff−(o) and eff+(o) are sets of (ungrounded) predi-
cates.

A planning domain is specified by a set of predicates and
a set of planning operators. A planning problem is specified
via a planning domain, initial state and set of goal atoms.
A plan is a sequence of actions. A plan is a solution of a
planning problem if and only if a consecutive application of
the actions in the plan (starting in the initial state) results in
a state, where all the goal atoms are satisfied.

Basic Relations between Actions and Operators
By analysing action or operator preconditions and effects we
can identify how these influence each other. As discussed
in Chapman’s earlier work (Chapman 1987), an action hav-
ing some atom in its positive effects is a possible achiever
of that atom for some other action having that atom in its
precondition. A notion of being a possible achiever can be
easily extended for planning operators. If an action achieves
an atom for some other action in some plan, then the first
action is a necessary achiever of the atom for the other one.
Hereinafter, we will use only achiever unless it is not clear
from the context whether an action is a possible or neces-
sary achiever. Note that being ‘achiever’ refers to a notion
“causal link” in plan-space planning.

The opposite for being a (possible) achiever is being a
(possible) ‘clobberer’ which means that action ai deletes
atom(s) aj has in its precondition. Clearly, a notion of nec-
essary clobberer is meaningless unless negative precondi-
tions are used. Note that being ‘clobberer’ refers to a notion
“threat” in plan-space planning. A notion of (possible) clob-
berer can be also easily extended for planning operators.

Achiever and clobberer relations between planning oper-
ators require predicate comparison. Predicates are equal if
they have the same name and their arguments (including
their order) are identical. Arguments of ungrounded predi-
cates are variable symbols. These variable symbols are also
arguments of operators having the corresponding predicates
in their preconditions or effects. Achiever and clobberer
relations, therefore, indicate which arguments must be the
same for the given planning operators.

Inner Entanglements
Inner Entanglements have been recently introduced as rela-
tions between pairs of planning operators and atoms (pred-
icates) (Chrpa and McCluskey 2012). Inner entanglements
stand for operator exclusivity of ‘achieving’ or ‘requiring’
predicates. The BlocksWorld domain (Slaney and Thiébaux
2001) which we will use as a running example consists
of four operators: pickup(?x) refers to a situation when
a robotic hand picks-up a block ?x from the table, put-
down(?x) refers to a situation when a robotic hand puts-
down the block ?x it is holding to the table, unstack(?x,?y)
refers to a situation when a robotic hand unstacks a block
?x from ?y, and stack(?x,?y) refers to a situation when a
robotic hand stacks a block ?x to ?y. For a typical prob-
lem in the BlocksWorld domain, it may be observed, for

instance, that operator pickup(?x) achieves predicate hold-
ing(?x) exclusively for operator stack(?x,?y) (and not for
operator putdown(?x) because putdown(?x) would just re-
verse the effects of pickup(?x)) (see Figure 1). This re-
lation is denoted as an entanglement by succeeding. Sim-
ilarly, it may be observed that predicate holding(?x) for
operator putdown(?x) is exclusively achieved by opera-
tor unstack(?x,?y) (and not by operator pickup(?x) be-
cause again putdown(?x) would just reverse the effects of
pickup(?x)) (see Figure 1). This relation is denoted as an en-
tanglement by preceding. Entanglements by preceding and
succeeding are denoted as inner entanglements.

Informally speaking, inner entanglements provide con-
straints affecting ordering of operators’ instances in solution
plans. If an operator o1 is entangled by a succeeding opera-
tor o2 with a predicate p in a given planning problem, then
in some solution plan, instances of o1 are at some point fol-
lowed by corresponding instances of o2 and no correspond-
ing instance of other operator having p in its precondition
can be placed in between them. Similarly, if an operator o2
is entangled by a preceding operator o1 with a predicate p
in a given planning problem, then in some solution plan, in-
stances of o2 are at some point preceded by corresponding
instances of o1 and no corresponding instance of other op-
erator having p in its positive effects can be placed in be-
tween them. Note that this refers to strict inner entangle-
ments (Chrpa and McCluskey 2012).

A single (inner) entanglement requires only the existence
of one plan solving the given planning problem where the
entanglement conditions are met and, therefore, different en-
tanglements might be met in different solution plans. A set
of compatible entanglements ensures existence of at least
one solution plan following all the entanglements in the
set (Chrpa and McCluskey 2012). For example, the two
BlocksWorld related entanglements mentioned throughout
this section forms a set of compatible entanglements. Here-
inafter, we will assume that multiple entanglements are a set
of compatible entanglements unless stated otherwise.

Indirect Inner Entanglements
The Zeno domain addresses the problem of transporting pas-
sengers by planes between locations. Here, we may observe
that the operator refuel(?aircraft, ?city, ?fuel1, ?fuel2)
is entangled by the succeeding operator fly(?aircraft,
?city1, ?city2, ?fuel2, ?fuel1) with the predicate fuel-
level(?aircraft, ?fuel2). The operator refuel increases the
fuel level of an aircraft in some location. The operator fly
moves the aircraft from one location to another reducing
the fuel level. The entanglement says that the fuel level of
the aircraft is increased for the next flight. However, no en-
tanglement can capture that the refuelling is done at the
same location the flight will start from. The reason is that
refuel does not achieve the predicate at(?aircraft,?city1)
for fly because at(?aircraft,?city1) is not in refuel’s pos-
itive effects. However, adding at(?aircraft,?city1) to re-
fuel’s positive effects will satisfy the entanglement condi-
tions. If adding a predicate into the positive effects of an
operator given the fact that the predicate is present in its
precondition but not in its negative effects enables the in-

Figure 1: Motivating example for entanglements by preceding (left hand side) and by succeeding (right hand side)

ner entanglement relation with some other operator, then we
say that the operator is in the indirect inner entanglement
relation with the other operator (and the predicate).

Determining Macro-operators from Inner
Entanglements

Inner entanglements, as mentioned before, refer to exclu-
sivity of ‘achievement’ and ‘requirement’ of predicates be-
tween planning operators. As a running example we will
use the well-known Depots domain which is a combination
of the BlocksWorld and Logistic domains. Operator lift un-
stacks a crate from its surface (another crate or pallet) by a
hoist in a given place. Operator drop reverses lift by stack-
ing a crate to a surface by a hoist in a given place. Operator
load loads a crate lifted by the hoist into a truck in the given
place. Operator unload unloads a crate from the truck by a
hoist in a given place. Operator drive moves the truck be-
tween places.

Entanglement by succeeding says that a predicate
achieved by an instance of a given operator can be required
only by instances of a specific operator. For a typical prob-
lem in the Depots domain, we may observe that the op-
erator lift(?hoist, ?crate, ?surface, ?place) is entangled
by the succeeding operator load(?hoist, ?crate, ?truck,
?place) with the predicate lifting(?hoist,?crate). Hence, if
an instance of lift (e.g. lift(h1,c1,c2,p1)) is executed at the
i-th step of some solution plan, then a corresponding in-
stance of load (e.g. load(h1,c1,t1,p1)) is executed at the
j-th step of the plan, where j > i. Also, no instance of an-
other operator requiring (having in its precondition) or con-
suming (having in its negative effects) lifting(h1,c1) (e.g.
drop(?hoist, ?crate, ?surface, ?place)) can be executed
in between. Similarly, we may observe that the operator
load(?hoist, ?crate, ?truck, ?place) is entangled by the
preceding operator lift(?hoist, ?crate, ?surface, ?place)
with the predicate lifting(?hoist,?crate). Hence, if an in-

stance of load (e.g. load(h1,c1,t1,p1)) is executed at the
i-th step of some solution plan, then a corresponding in-
stance of lift (e.g. lift(h1,c1,c2,p1)) is executed at the j-th
step of the plan, where j < i. Also, no instance of other op-
erator achieving lifting(h1,c1) (e.g. unload(?hoist, ?crate,
?truck, ?place)) can be executed in between. Analogously,
we may observe entanglement by preceding and succeed-
ing between the operators load(?hoist, ?crate, ?truck,
?place) and unload(?hoist, ?crate, ?truck, ?place) and
the predicate in(?crate,?truck). Indirect inner entangle-
ments can be considered as well. As discussed before, in
the Zeno domain the operator refuel is indirectly entangled
by the succeeding operator fly with a predicate at.

Macros, on the other hand, encapsulate situations where
corresponding instances of given planning operators are ex-
ecuted consecutively. For a typical problem in the Depots
domain, we may observe that the operators lift and load can
be assembled (in this order) into a macro in such a way that
the arguments ?hoist,?crate are shared because lift achieves
a predicate lifting(?hoist,?crate) for load. However, in the
case of the operators load and unload, where load achieves
a predicate in(?truck,?crate) for unload and thus argu-
ments (?truck,?crate) are shared by the operators, we may
also observe that when the operators are applied consecu-
tively the crate is unloaded at the same place where it was
loaded. Therefore, it is necessary to execute the drive oper-
ator in between which moves the truck (and the crate which
is loaded in it) from one place to another. This situation is il-
lustrated in Figure 2. Hence, it is not reasonable to assemble
load and unload into a macro.

Straightforwardly, operators cannot be assembled into a
macro if the first one clobbers for the second one. Inner en-
tanglements indicate pairs of planning operators which are
candidates for becoming macros and also determine argu-
ments the operators share since it is known which predicate
or predicates are achieved by one operator exclusively for

another operator or vice versa. However, we have to ensure
that the corresponding instances of the operators can be ap-
plied consecutively without any other constraints. In other
words, we must be sure that no action (instance of some
other operator) must be applied in between them. There are
three situations which might cause necessity of executing an
action (an instance of some operator o) between correspond-
ing instances of operators o1, o2 considered for a macro.
(a) o is a possible achiever of a predicate for o2 but also a

clobberer for o1.
(b) o1 is a possible achiever for o but o2 is a clobberer for o.
(c) o1 is a possible achiever for multiple instances of o2.

Conditions (a) and (b) can be weakened by analysing
other inner entanglement relations which might invalidate
some achiever relations between operators. For example, the
operator lift possibly achieves the predicate lifting to the op-
erators load and drop. If lift is entangled by succeeding load
with lifting in a given problem, then no instance of lift is an
achiever for any instance of drop in some solution plan of
the problem. Condition (a) is illustrated in Figure 2. Typi-
cally, we need to execute an instance of drive in between in-
stances load and unload. Condition (b) is analogous (there
is no example in the Depots domain). Condition (c) is illus-
trated in Figure 3. Typically, we need to unload more crates
in one place from a given truck, i.e., one instance of drive
achieves a predicate at for multiple instances of unload.

Operators o1 and o2 can be assembled into a macro if for
no operator o any of conditions (a)-(c) is satisfied. Opera-
tors o1 and o2 are selected as a candidate for a macro only
if there is at least one inner entanglement relation between
them (and some predicate). An inner entanglement between
operators also indicates that there exists a solution plan of
a given planning problem where instances of one operator
are always followed or preceded by instances of the other
operator. This information is useful because a macro gener-
ated from these operators may replace one or both of these
operators without affecting completeness for that planning
problem. Concretely, an entanglement by succeeding means
that instances of one operator (o1) are always followed by
corresponding instances of the other operator (o2) and there-
fore, if a macro is generated o1 becomes unnecessary. Simi-
larly, an entanglement by preceding means that instances of
one operator (o2) are always preceded by corresponding in-
stances of the other operator (o1) and therefore, if a macro is
generated o2 becomes unnecessary. If both inner entangle-
ments hold between o1 and o2, then if a macro is generated
both o1 and o2 becomes unnecessary. Having a non-empty
set of predicates which are in an inner entanglements rela-
tion with o1 and o2 we can specify the following conditions:

(i) o1 is entangled by succeeding o2 with all the predi-
cates, or

(ii) o2 is entangled by preceding o1 with all the predicates,
or

(iii) both (i) and (ii).
Then, after generating a macro o1,2 from operators o1, o2 (in
this order we can remove: o1 if (i) is met, o2 if (ii) is met,
and both o1 and o2 if (iii) is met.

Drive (t1, p1,p2)

Unload (h1, c1, t1, p2)Load (h1, c1, t1, p1)

at (t1,p2)

in (c1,t1)

at (t1,p1)

Figure 2: Example, in the Depots domain, where operator
Load is entangled by succeeding operator Unload with a
predicate in. Drive that is an achiever for Unload is also a
clobberer for Load, so it has to be executed in between them.

Drive (t1, p1,p2)

Unload (h1, c1, t1, p2)

Unload (h1, c2, t1, p2)

Unload (h1, c3, t1, p2)

Unload (h1, cn, t1, p2)

.

.

.

at (t1,p2)

Figure 3: Example of an instance of operator Drive that
achieves a predicate at for multiple instances of operator
Unload, in the Depots domain

We are not restricted to generating macros from only two
operators. When a new macro o1,2 from operators o1 and o2
is generated, one of or both operators o1 and o2 are removed.
It may be observed that an inner entanglement held between
some other operator o and o1 (or o2) becomes true between
o and the generated macro o1,2 if o1 (o2) is removed. This is
because the new macro encapsulated the primitive operators
from which it was assembled, and when the primitive oper-
ator is removed the new macro becomes its only ‘follower’.
However, if the primitive operator is not removed the inner
entanglement relation with it might be compromised since
also the new macro consists of this primitive operator. Since
macros are encoded in the same way as ordinary planning
operators our approach can be applied recursively, which
might result in generating ‘longer’ macros.

Implementation Details
Detection and Use of Inner Entanglements
Detecting inner entanglements is believed to be intractable
in general, although some trivial cases can be easily iden-
tified (Chrpa and McCluskey 2012). Besides this, we can
use an approximation method for detecting compatible sets
of inner entanglements (including indirect inner entangle-
ments) which has recently been published (Chrpa and Mc-
Cluskey 2012). This method analyses a set of training plans,
solutions of simpler planning problems, in order to identify
a set of compatible (inner) entanglements which holds for
every training problem and then it is assumed that this set of
compatible (inner) entanglements holds for a whole class of
planning problems using the same domain model. Of course,
a set of compatible inner entanglements detected by this ap-
proach might not be correct for some (non-training) prob-
lems. Enforcing incorrect set of compatible entanglements
while solving a problem results in losing its solvability (note
that a correct set of compatible entanglements ensures the
existence of a solution plan following all the entanglements
in the set). Despite incompleteness of such an approach, we
believe that selecting a ‘good’ set of training problems can
almost eliminate this issue. In IPC benchmarks, selecting a
few (around 5) training problems from the domain is usually
sufficient to find a correct set of inner compatible entangle-
ments for all the benchmark problems in a given domain. It
was shown empirically (Chrpa and McCluskey 2012) that in
a very few cases (in very complex domain) enforcing entan-
glements caused loss of solvability of a few problems.

Encoding Inner Entanglements into Domain and
Problem Models
Work (Chrpa and McCluskey 2012) utilised a planner-
independent approach to enable the reformulation of do-
mains and problems in order to enforce (inner) entangle-
ments during the planning process. In other words, alterna-
tives which do not follow exclusivity of ‘achieving’ and ‘re-
quiring’ predicates between operators must be avoided. The
idea behind the reformulation is in introducing specific pred-
icates, ‘locks’, which prevents executing certain instances
of operators in some stage of the planning process. An in-
stance of an operator having a ‘lock’ in its precondition can-
not be executed after executing an instance of another op-
erator (‘locker’) having a ‘lock’ in its negative effects un-
til an instance of some other operator (‘releaser’) having a
‘lock’ in its positive effects has been executed. For exam-
ple, a situation where pickup(?x) is ‘entangled by succeed-
ing’ stack(?x,?y) with holding(?x) is modelled such that
pickup(?x) is a ‘locker’ for putdown(?x) and stack(?x,?y)
is a ‘releaser’ for putdown(?x). For details about encoding
inner entanglements, see (Chrpa and McCluskey 2012).

Note that ‘trivial’ inner entanglements, i.e., whether there
is only one achiever for a certain predicate or a certain pred-
icate is required by only one operator, do not have to be en-
coded in the domain model since they do not provide any
useful knowledge which can be used to prune some un-
promising alternatives in the search.

Algorithm 1 A high-level description of our method for
generating macros from inner entanglements
Require: Planning domain model with training planning

problems and their solutions
Ensure: Reformulated domain model (added macros, re-

moved some of primitive operators)
1: Determine a set of compatible inner entanglements
2: repeat
3: for all operators o1, o2 having an inner entanglement

relation(s) between them do
4: if for each operator o in the domain model none of

conditions (a)-(c) is satisfied then
5: generate a new macro o1,2 and remove o1, o2 or

both (depends if (i), (ii) or (iii) is satisfied)
6: update inner entanglement relations
7: break
8: end if
9: end for

10: until No new macro has been generated
11: generate a reformulated domain model

Macro Generation
Our method is described in Algorithm 1. It utilises the

original method for detection of inner entanglements (line
1), and then uses them to perform a macro generation phase
(lines 2-10). The inner loop (lines 3-9) iteratively checks
whether the macro candidates (pairs of operators in an in-
ner entanglement relation) meet the conditions for becom-
ing macros discussed in the previous section (line 4). If a
candidate does meet the conditions, then a new macro is
generated, one of or both (primitive) operators are removed
according to conditions (i)-(iii), and inner entanglement re-
lations are updated (as already discussed before). Then, we
continue with the main loop (line 2). If no candidate meets
the given conditions the macro generation phase finishes and
a reformulated domain model is generated (line 18).

Condition (a) is verified as follows. Predicates which have
to be achieved for o2 by some different operator than o1 are
considered. In particular, we know that such predicates are
not in o1’s positive effects or prevailing precondition (i.e. a
predicate is in o1’s precondition but not in o1’s negative ef-
fects). We have to consider any operator o achieving some of
these predicates, however, we can exclude situations where
such a predicate achievement violates some of the inner en-
tanglement relation. If o is also a clobberer for o1, then con-
dition (a) is satisfied and thus the macro o1,2 cannot be gen-
erated. Condition (b) is verified analogously by finding an
operator o which requires predicate(s) from o1 which are
deleted by o2. Also, in this case we can discard situations
which violates some inner entanglement relations.

Condition (c) is verified by checking whether the opera-
tor o2 is a clobberer for itself or whether multiple application
of different instances of o2 will not bring any new informa-
tion. The first can be easily identified by checking whether
some predicate involved in the entanglement relation with
o1 is in negative effects of o2. The latter can be identified
by checking whether instances of o2 with fixed arguments

referring to all predicates involved in the inner entangle-
ments relation with o1 do not have different positive effects.
For example, in the Gold-miner domain, the operator pick-
gold(?location) achieves only a predicate holds-gold and
thus it is not necessary to execute it more than once. As a
counterexample, we might use the one depicted in Figure 3

Experimental Evaluation
The goal of the experimental evaluation was to demonstrate
the potential of reformulating problems by the replacement
of original operators with inner entanglement-based macros,
to compare this with inner entanglement reformulation, and
to explore the range of domains and planners for which the
techniques are successful. For evaluation purposes we chose
several IPC benchmark domains (typed strips) from IPC-3,
IPC-6 and 7 (learning track), where it was clear that this
kind of reformulation would be applicable (for example, it
would not be applicable to domains with one operator). The
domains are BlocksWorld (BW), Depots, Zeno, DriverLog,
Gold-Miner, Matching-BW, Satellite and TPP. As bench-
marking planners we chose Metric-FF (Hoffmann 2003),
LPG-td (Gerevini, Saetti, and Serina 2003), Probe (Lipovet-
zky and Geffner 2011), LAMA 2011 (Richter and Westphal
2010), SatPlan 2006 (Kautz, Selman, and Hoffmann 2006)
and Mp (Rintanen 2012). All the planners successfully com-
peted in the IPCs. Timeout was set to 900s. The experiment
was performed on Intel Xeon

TM
3 GHz, 2 GB RAM. For

each benchmark we selected 5-7 easy problems as training
problems and produced training plans by Metric-FF which
were used to learn inner entanglements and generate macros
from them. Metric-FF was selected due to the fact that it is
usually fast, and provides good quality plans. Time spent on
learning was usually in the order of tenths of seconds (rarely
in the order of seconds) per one domain.

Cumulative results of the evaluation are presented in Ta-
ble 1, with the macro technique compared to the existing re-
formulation technique of inner entanglements, and the orig-
inal problem formulation. Values are computed according
to rules used in IPC-7 learning track2. The score for ev-
ery solved problem is computed according to the formula
(1/(1+log10(T/T

∗))) for time or (N∗/N) for quality. T is
a running time of a certain planner for a certain (original or
reformulated) problem, N is the length of the solution, T ∗

is the minimum running time achieved by a certain planner
on either the original problem or any of its reformulations.
Similarly, N∗ is the shortest solution. The score for unsolved
problems is zero. Note that in the Satellite domain we iden-
tified only ‘trivial’ inner entanglements, so the reformulated
domain (and problems) model was the same as the original
one, hence the ‘N/A’ value for inner entanglements.

Discussion of Results
It is well known that using macros tends to reduce the depth
of the search at the cost of increasing the branching factor. In
the BW, Depots and TPP domains, generated macros always
replaced both the primitive operators in the Depots and TPP

2http://www.plg.inf.uc3m.es/ipc2011-learning/Rules

domains, and in one case in the BW domain. Therefore, the
branching factor did not increase much (note that macros of-
ten have more instances than the primitive operator it is as-
sembled from), resulting in an overall improvement across
those planning engines that could cope with the hard learn-
ing track problems. Indeed, Metric-FF and Mp were able to
find solutions to almost all the problems in the BW domain
which was not previously possible without the aid of macro
reformulation. In other cases macro reformulation achieved
mixed results, often worse than original or inner entangle-
ment encodings. In these cases, generated macros replaced
only one of the primitive operators causing increase of the
branching factor which often had a negative impact on plan-
ners’ performance. The technique of using inner entangle-
ments to reformulate domains can reduce the search branch-
ing factor, but does so at the cost of introducing supplemen-
tary predicates, which causes an increase of the size of prob-
lem representation. Using inner entanglements brings some
improvement against the original encodings in about half of
the cases. However, using macros generated from inner en-
tanglements outperforms the inner entanglement encodings
in the majority of cases. Good results were achieved for this
technique in the Zeno domain because the size of the rep-
resentation increased only marginally. Interestingly, in some
cases using the inner entanglements encodings resulted in
getting much better plans (in terms of quality).

LPG uses greedy local search on the Planning Graph
which might not work well in situations where the branching
factor is large. Therefore, LPG seems to exploit more origi-
nal or inner entanglement reformulations. On the other hand,
LPG achieved very good results in BW, Matching-BW and
TPP when using macro reformulation. Probe’s performance
improves with either inner entanglement or macro reformu-
lations. Probe uses ‘causal commitments’ which are simi-
lar to ‘causal links’ in plan space planning and, therefore, it
seems to better exploit inner entanglements which determine
exclusivity of ‘causal links’ between operators. Probe also
seems to be less vulnerable to larger branching factor, there-
fore, it can exploit macros as well. Metric-FF and LAMA,
which are based on heuristic search, tend to perform better
with macros than inner entanglements (except Gold-miner).
It seems that in this case, having more actions, which even-
tually reduce the depth of the search, is better than having
more atoms (facts). SatPlan and Mp, which are based on
SAT, achieved mixed results. Mp seems to exploit macros
better than SatPlan. In the SatPlan case, reformulations lead
to more complex SAT formulae which might slow-down the
planning process despite pruning some unpromising search
alternatives. In the Mp case, it seems that more compact SAT
formulae reduces the negative impact of having more opera-
tor or predicate instances.

Although neither the original inner entanglement tech-
nique, or the macro replacement technique, are generally
effective, we found out some interesting outcomes. If gen-
erated macros replace both the primitive operators, then
the results suggest that this reformulation will outperform
both original and inner entanglement encodings. Planners
based on heuristic search (e.g. Metric-FF, LAMA) incline
to exploit macros more efficiently than inner entanglements.

+MA -O
Metric-FF LPG Probe LAMA SatPlan Mp

Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr Orig IE Mcr

BW (60) 2 3
Time 0.0 0.0 60.0 21.1 35.8 60.0 29.3 33.1 50.0 21.1 15.8 59.0 0.0 0.0 0.0 0.0 0.0 57.0
Quality 0.0 0.0 60.0 30.0 59.8 55.1 39.3 49.2 49.2 17.9 14.0 58.9 0.0 0.0 0.0 0.0 0.0 57.0

Depots (60) 2 4
Time 15.1 24.0 42.8 39.5 26.9 32.7 49.8 55.9 50.2 17.5 20.0 51.9 7.4 6.6 13.3 33.2 24.3 35.4
Quality 22.1 23.9 42.5 40.2 45.0 37.2 54.0 57.6 52.5 18.6 20.9 51.1 6.3 9.3 14.0 30.6 36.8 39.6

Zeno (20) 1 1
Time 17.6 19.3 17.7 19.8 14.2 6.6 18.0 19.6 18.9 18.1 17.0 19.8 15.1 15.3 9.7 18.2 19.2 19.1
Quality 20.0 19.9 16.9 16.6 17.7 9.0 19.0 19.7 16.8 19.6 18.8 18.1 13.9 15.3 11.8 18.3 19.7 17.5

DriverLog (20) 1 1
Time 14.6 13.7 15.7 16.8 17.8 17.6 19.5 18.3 19.1 19.1 16.6 18.7 14.6 15.1 14.4 18.9 18.6 18.2
Quality 16.3 16.0 16.5 17.3 16.2 18.4 18.5 18.2 19.3 18.1 18.1 18.5 14.2 15.7 13.8 19.4 19.2 15.4

Gold-miner (60) 1 1
Time 37.6 52.6 33.0 60.0 33.0 48.3 55.1 34.4 57.0 44.2 53.2 56.4 60.0 54.9 53.4 60.0 32.6 49.9
Quality 54.0 58.5 53.6 60.0 45.3 46.6 56.7 58.6 55.0 54.4 57.7 22.9 58.9 58.9 58.6 54.8 56.8 50.2

Matching-BW (60) 1 1
Time 23.0 8.1 17.9 28.8 21.7 43.4 15.5 25.1 29.8 45.2 11.6 20.6 41.0 27.3 36.7 1.0 1.7 5.8
Quality 24.3 9.5 20.4 31.3 34.4 33.2 20.1 27.8 28.4 42.8 18.0 15.4 41.0 33.8 35.0 0.8 1.8 6.0

TPP (60) 1 2
Time 18.5 17.7 31.9 12.2 23.2 60.0 30.7 1.2 51.0 25.5 19.4 56.8 29.8 34.5 31.7 9.4 14.4 27.0
Quality 27.2 28.7 32.6 15.4 30.0 24.5 37.3 3.0 50.6 37.5 33.8 52.5 26.7 36.8 41.9 13.0 17.4 26.3

Satellite (60) 1 1
Time 28.0 N/A 16.9 60.0 N/A 51.8 20.6 N/A 30.0 27.4 N/A 29.7 7.0 N/A 4.2 25.0 N/A 22.5
Quality 27.5 N/A 24.5 60.0 N/A 54.6 25.4 N/A 29.2 31.8 N/A 26.9 6.9 N/A 4.5 24.6 N/A 23.9

Table 1: Cumulative results for typed strips IPC benchmarks (problem numbers are in brackets). +MA stands for the number of
generated macros. -O stands for the number of removed primitive operators. Values are computed according to scoring in IPC
learning track (2011). Orig - original PDDL domain encoding, IE - inner entanglements, Mcr - Macros

Probe tends to perform better using either inner entangle-
ments (except Matching-BW) or macros than in the original
domain encodings.

Related Work
Synthesising macros to aid AI plan generation has been a
popular research area dating back to 1970s, in systems such
as STRIPS (Fikes and Nilsson 1971) and REFLECT (Daw-
son and Siklóssy 1977). Some work has concentrated on “of-
fline” problem independent macro generation using domain
model analysis (McCluskey and Porteous 1997). A recent
example of off-line macro generation is WIZARD (New-
ton et al. 2007; Newton and Levine 2010), which gener-
ates a useful set of macros using genetic algorithms, with
generation and validation time of several hours for a given
domain. Work (Alhossaini and Beck 2009) learns a set of
domain-specific macros by WIZARD and then selects the
most promising ones for a given problem in this domain by
analysing problem features (e.g. numbers of objects). In fact,
this approach provides problem-specific macros rather than
domain specific which resulted in significant improvement
of planning process in some domains. From this perspec-
tive, it seems to be reasonable to consider such an idea for
improving our method since (inner) entanglements are also
problem-specific, although we can identify the same entan-
glements for a whole class of ‘typical’ problems in a given
domain.

Another line of work concentrates on specific planning
engine techniques, and treats macro-generation as integrated
with the planning process itself. For instance Macro-FF
(SOL-EP) (Botea et al. 2005) and Marvin (Coles, Fox, and
Smith 2007) exploit macros in order to help an FF-type plan-
ner escape plateaus. Our work fits into this area of “online”
macro generation, but is aimed at providing a reformulation
stage for input domain and problem specification, acting as a
preprocessor (or “wrapper”) for a range of planning engines

and domains. The “CA-ED” technique of Macro-FF (Botea
et al. 2005), involving learning macros via analysis of static
predicates, is related but complementary to the inner entan-
glement approach. It is potentially useful for unifying some
arguments of operators before generating a macro (e.g. lift
and load are applied in the same location since the involved
hoist can be only at one location), or by analysing succes-
sive actions in plans. Later work by Chrpa (2010b) extended
the idea of macro-generation from adjacent actions in a so-
lution, to non-adjacent actions which can be made adjacent
in some valid plan permutation. His work utilised the idea of
removing unnecessary primitive operators, though in an ad-
hoc manner. In future, we should provide a rigorous compar-
ison of this and our method in order to identify whether and
how much are these methods complementary or competitive.

‘Tunnel macros’ (Coles and Coles 2010) refers to situa-
tions where given operators must be in a certain sequence.
‘Tunnel macros’ are related to ‘trivial’ inner entanglements,
which can be easily determined without necessity for apply-
ing the approximation method, as these provide connections
which must hold between ‘adjacent’ operators in such a spe-
cific sequence.

Given the potential for macros to degrade perfor-
mance (McCluskey 1987), other work has emphasised
the need for guiding heuristics and pruning techniques,
and is largely complementary to our approach. Expansion
Cores (Chen and Yao 2009), for example, restricts action use
only to relevant domain transition graphs during the node
expansion. Outer entanglements (Chrpa and Barták 2009),
relations between operators and initial or goal atoms, are
used for pruning unpromising operator instances. Combin-
ing macros and outer entanglements, even done in an ad-hoc
way, provided very promising results (Chrpa 2010a).

Conclusions
In this paper we studied how inner entanglements, relations
capturing exclusivity of predicate achievement or require-
ment between planning operators, can be exploited in order
to generate macros. We provided an automatic technique for
assembling macros from operators involved in an inner en-
tanglement relation and, moreover, determining which of the
primitive operators (or both) can be removed. For this pur-
pose we defined indirect inner entanglements which can be
understood as an extension of the original inner entangle-
ments definition.

Our approach was evaluated empirically with eight IPC
benchmark domains, which lead to 400 problem instances,
using six state-of-the-art domain-independent planning en-
gines. The results show that while the technique is not suc-
cessful across all domains, it shows potential to be used as
a reformulation technique for domains where a macro can
replace two operator schema.

In the future we plan to provide a theoretical study of the
complexity of the presented technique, and we are interested
in extend our approach with ideas which have been applied
in related works on macros (see the previous section). In
particular we aim to investigate the possibility of combin-
ing our technique with action pruning (e.g Expansion Cores,
Outer Entanglements) which should prevent generation of
unpromising instances of macros.

Acknowledgements
The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1).

References
Alhossaini, M., and Beck, J. C. 2009. Learning instance-
specific macros. In ICAPS Workshop on Planning and
Learning.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333–377.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In Proceedings of IJCAI,
1659–1664.
Chrpa, L., and Barták, R. 2009. Reformulating planning
problems by eliminating unpromising actions. In Proceed-
ings of SARA, 50–57.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of ECAI, 240–245.
Chrpa, L. 2010a. Combining learning techniques for clas-
sical planning: Macro-operators and entanglements. In Pro-
ceedings of ICTAI, volume 2, 79–86.

Chrpa, L. 2010b. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.
Coles, A. J., and Coles, A. I. 2010. Completeness-preserving
pruning for optimal planning. In Proceedings of ECAI, 965–
966.
Coles, A.; Fox, M.; and Smith, A. 2007. Online identifica-
tion of useful macro-actions for planning. In Proceedings of
ICAPS, 97–104.
Dawson, C., and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of IJCAI,
465–471.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: a new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. In Proceedings of the fifth IPC.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proceedings of ICAPS.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artificial Intelligence 95(1):1–65.
McCluskey, T. L. 1987. Combining weak learning heuristics
in general problem solvers. In Proceedings of IJCAI, 331–
333.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical Re-
port TR-98-003, Yale Center for Computational Vision and
Control,.
Newton, M. A. H., and Levine, J. 2010. Implicit learning
of compiled macro-actions for planning. In Proceedings of
ECAI, 323–328.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of ICAPS, 256–263.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. Jour-
nal Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2012. Engineering efficient planners with SAT.
In Proceedings of ECAI, 684–689.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.

