Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges

M.M.S. Shah and L. Chrpa and F. Jimoh and D. Kitchin

T.L. McCluskey and S. Parkinson and M. Vallati
School of Computing and Engineering
University of Huddersfield
United Kingdom

Abstract

Encoding a planning domain model is a complex task
in realistic applications. It includes the analysis of plan-
ning application requirements, formulating a model that
describes the domain, and testing it with suitable plan-
ning engines. In this paper we introduce a variety of new
planning domains, and we then use and evaluate three
separate strategies for knowledge formulation, encoding
domain models from a textual, structural description of
requirements using (i) the traditional method of a PDDL
expert and text editor (ii) a leading planning GUI with
built in UML modelling tools (iii) a hierarchical, object-
based notation inspired by formal methods.

We distill lessons learned from these experiences. The
results of the comparison give insights into strengths
and weaknesses of the considered approaches, and point
to needs in the design of future tools supporting PDDL-
inspired development.

Introduction

Knowledge Engineering for automated planning is the pro-
cess that deals with acquisition, formulation, validation and
maintenance of planning knowledge, where a key product
is the domain model. The field has advanced steadily in re-
cent years, helped by a series of international competitions!,
the build up of experience from planning applications, along
with well developed support environments. It is generally
accepted that effective tool support is required to build do-
main models and bind them with planning engines into ap-
plications. There have been reviews of such knowledge en-
gineering tools and techniques for Al Planning (Vaquero,
Silva, and Beck 2011). While these surveys are illuminating,
they tend not to be founded on practice-based evaluation, in
part, no doubt, because of the difficulty in setting up eval-
uations of methods themselves. Given a new planning do-
main, there is little published research to inform engineers
on which method and tools to use in order to effectively
engineer a planning domain model. This is of growing im-
portance, as domain independent planning engines are now
being used in a wide range of applications, with the con-
sequence that operational problem encodings and domain
models have to be developed in a standard language such
as PDDL (Ghallab et al. 1998).

Ifor the most recent see http://icaps12.poli.usp.br/icaps12/ickeps

In this paper we explore the deployment of automated
planning to assist a variety of real world applications: ma-
chine tool calibration, road traffic accident management, and
urban traffic control. In introducing these new planning do-
mains, we take the opportunity to employ and hence eval-
uate three separate methods for knowledge formulation (i)
the traditional method of hand-coding by a PDDL expert,
using a text editor and relying on dynamic testing for de-
bugging (ii) itSIMPLE (Vaquero et al. 2007), an award-
winning GUI, utilising a method and tool support based on
UML (iii) a rigorous method utilising a hierarchical, object-
based notation OCLj,, with the help of tool support from
GIPO (Simpson, Kitchin, and McCluskey 2007). Evaluating
these three approaches gives a range of interesting insights
into their strengths and weaknesses for encoding new do-
mains, and point to needs in the design of future tools sup-
porting PDDL-inspired development. Evaluation measures
used are based on several criteria that describes the quality
of the engineering process and the quality of the product.

This paper is organized as follows. We first provide an
overview of existing KE tools for supporting the task of en-
coding planning domain models. Next we introduce the real-
world domains that have been considered in this analysis.
Then we introduce the features that are used for comparing
the different encoding methods. Finally, we summarize the
lessons learned and we provide some guidelines for future
tools.

Overview of existing KE tools

In this section we will provide an overview of KE tools that
can be used for producing planning domain models. Tools
are listed in alphabetical order.

EUROPA

The Extensible Universal Remote Operations Planning
Architecture (EUROPA) (Barreiro et al. 2012), is an inte-
grated platform for Al planning & scheduling, constraint
programming and optimisation. The main goal of this
platform is to deal with complex real-world problem. It is
able to handle two representation languages, NDDL and
ANML (Smith, Frank, and Cushing 2008). The latter has
been used in various missions by NASA. EUROPA provides
modelling support, result visualisation and an interactive
planning process.

GIPO

The Graphical Interface for Planning with Ob-
jects (GIPO) (McCluskey and Simpson 2006;
Simpson, Kitchin, and McCluskey 2007) is based on
its own object-centred languages OCL and OCL;,. These
formal languages exploit the idea that the universe of
potential states of objects are defined first, before operator
definition (McCluskey and Kitchin 1998). GIPO is centered
on the precise definition of a planning state as an amalgam
of object’s individual states. This gives the concept of a
world state as one being made up of a set of states of
objects, satisfying certain types of constraints. Operator
schemas are constrained to be consistent with respect
to the state, giving the opportunity for using tools to do
consistency checking. GIPO uses a number of consistency
check, like if the object’s class hierarchy is consistent,
object state descriptions satisfy invariants, predicate struc-
tures and operator schema are mutually consistent and task
specifications are consistent with the domain model. Such
consistency checking guarantees that several classes of
errors are prevented, in contrast to ad hoc methods such as
hand crafting.

itSIMPLE

itSIMPLE (Vaquero et al. 2007; 2012) provides an en-
vironment that enables knowledge engineers to model a
planning domain using the Unified Modelling Language
(UML) standard (OMG 2005). itSIMPLE focuses on the
initial phases of a disciplined design cycle, facilitating
the transition of requirements to formal specifications.
Requirements are gathered and modeled using UML to
specify, visualize, modify, construct and document domains
in an object-oriented approach. A second representation
is automatically generated from the UML model, and it is
used to analyze dynamic aspects of the requirements such
as deadlocks and invariants. Finally, a third representation
in PDDL is generated in order to input the planning domain
model and instance into an automated planner.

JABBAH

JABBAH (Gonzilez-Ferrer, Ferniandez-Olivares, and
Castillo 2009) is an integrated domain-dependent tool that
aims to develop process transformation to be represented in
a corresponding HTN planning domain model. The system
mainly deals with business processes and workflows. The
processes are represented as Gantt charts or by using an
open source workflow engine. The tool provides support
for transforming Business Process Management Notation
(BPMN) (graphical notation) to HTN-PDDL. Such HTN-
PDDL (Castillo et al. 2006) domain model is used in HTN
planners to obtain a solution task network.

MARIO

Mashup Automation with Runtime Invocation and
Orchestration (MARIO) (Bouillet et al. 2009;
Feblowitz et al. 2012) is an integrated framework for
composing workflow for multiple platforms, such as Web
Services and Enterprise Service Bus. This tool provides

a tag-based knowledge representation language for com-
position of planning problems and goals. It also provides
a web-based GUI for Al planning system so that the user
can provide software composition goals, views and gener-
ated flow with parameter to deploy them into other platform.

PDDL Studio

PDDL Studio (Plch et al. 2012) is a recent PDDL editor
that allows the user to write and edit PDDL domain and
problem files. The main goal of the tool is to provide
knowledge engineers the functionality to edit and inspect
PDDL code, regardless of how the PDDL code was created.
The tool supports the user by identifying syntactic errors,
highlighting PDDL components and integrating planners.
PDDL Studio does not require the user to draw any diagram,
it is more like writing traditional programming language
code by using an Integrated Development Environment
(IDE). The current version of this tool can help editing basic
PDDL and also provides error checking.

VI1Z

VIZ (Vodréazka and Chrpa 2010), is a knowledge engineer-
ing tool inspired by GIPO and itSIMPLE. It shares many
characteristics of those systems (GIPO and itSIMPLE) with
the addition of a simple, user friendly GUI by allowing in-
experienced knowledge engineers to produce PDDL domain
models. This tool uses an intuitive design process that makes
use of transparent diagrams to produce a PDDL domain
model. The tool does not support any third party planner
integration. However, the tool is still being developed.

Considered applications

We considered three real-world domains that have been
encoded in planning domain models. Namely, the machine
tool calibration (Parkinson et al. 2012), the road traffic
accident management (Shah, McCluskey, and Chrpa 2012),
and the urban traffic control (Jimoh et al. 2012)

Machine tool calibration

Engineering companies working with machine tools will of-
ten be required to calibrate those machines to international
standards. The requirement to manufacture more accurate
parts and minimise manufacturing waste is resulting in the
continuing requirement for machine tools which are more
accurate. To determine a machine’s accuracy, frequent cali-
bration is required. During calibration, the machine will not
be available for normal manufacturing use. Therefore, re-
ducing the time taken to perform a calibration is fundamen-
tal to many engineering companies.

The calibration process requires various errors in the ma-
chine to be measured by a skilled expert. In addition to con-
ducting the tests, the engineer must also plan the order in
which the tests should take place, and also which instru-
ments should be used to perform each test. It is critical to
find the optimal sequence of measurements so that the ma-
chine is not out of service for too long.

An example PDDL2.2 (Edelkamp and Hoffman 2004) op-
erator taken from the machine tool calibration domain model
can be seen in Figure 1. This operator can be considered as

(:durative—action setup

:parameters

(?er — error ?ax — axlis ?in - instrument)
:duration (= ?duration (setup-time ?in ?ax))
:condition

(and (over all (not (blocked ?in ?ax)))
(over all (axis—error ?ax ?2er))
(over all (measures ?in ?er))
(over all
(forall (?a - axis ?i - instrument)
(imply (setup 2?1 ?a) (= ?a ?ax))))
(over all (forall (?1 - instrument)
(imply (operating ?1i)
(compatible ?i ?in))))
(at start (<= (using ?in) 0))
(at start (>= (using ?in) 0))
(at start (not (measured ?ax ?er)))
(at start (not (operating ?in)))
(over all (>= (working-range ?in)
(travel-length 7ax)))
(over all (working-day))

)

reffect
(and
(at end (setup ?in ?ax))
(at end (setup-for ?in Z?er))
(at end (operating ?in))
(at start (increase (using ?in) 1))

)
)

Figure 1: A sample planning operator from the machine tool
calibration domain model, encoded in PDDL 2.2.

one of the most complex that we have dealt with in this work.
It includes quantification, timed-initial literal and ADL fea-
tures of PDDL.

Figure 2 illustrates an excerpt taken from a valid, optimal
calibration plan produced from using the PDDL2.2 domain
and LPG-td planner (Gerevini, Saetti, and Serina 2006).
From the excerpt it can be seen that the planner has sched-
uled measurements that use the same equipment together,
and that where possible, measurements are taken concur-
rently. This plan allows the calibration process to be com-
pleted as quickly as possible, minimizing the down-time of
the machine.

Road traffic accident management

Accidents cause traffic congestion, injury, increase envi-
ronment pollution, and cost millions of pounds every year
because of delay and damage. This has lead to highway
agencies needing more appropriate solutions to manage
accidents. Accidents are a particular type of road traffic
incident which can be defined as irregular or unplanned
events that reduce road capacity, increase congestion and
travel time. Incidents increase traveler delay which may
lead to more serious problems such as further accidents
(Owens et al. 2000). The consequence of this problem
is often severe since accidents limit the operation of the
road networks and put all road users at risk. The main

1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5

Y positioning laser

Y about Y

Y acc and rep

Y about X

Y about Z

Y straightness in X

Y straightness in Z
Table parallelism to Y

electronic level
taser
laser
laser
laser
laser

clock:on table

Key: === :Concurrent measurement
—= :Adjust equipment

== :Set-up equipment

Figure 2: Excerpt from a produced calibration plan from the
machine tool calibration application

responsibility for managing and dealing with the incident
lies with the highway agencies which are serving on that
area. It is a top priority for highway agencies around the
world to manage accidents more effectively, efficiently
and as fast as possible to save time, money and most
crucially life. Utilising automated planning capabilities in
real applications is a current topic with great potential to
help in speed, accuracy, and co-ordination of tasks to be
carried out.

Urban Traffic Control

Traffic in urban areas (e.g. town centers) tends to be dense,
especially in rush hours, which often leads to traffic jams
which can significantly increase travel time. Therefore, a
need for efficient Urban Traffic Control in such exposed ar-
eas is becoming more important. It is necessary to minimize
travel time by efficiently navigating road vehicles through-
out the road network, while avoiding road congestion and
diverting traffic when a road is blocked. Traditional Urban
Traffic Control methods are based on reactive acting, they
operate, for instance, on the basis of adaptive green phases
and flexible co-ordination in road (sub)networks based on
measured traffic conditions (Dusparic and Cahill 2009;
sheng Yang et al. 2005; Salkham et al. 2008; Daneshfar et
al. 2009; Bazzan 2005). However, these approaches are still
not very efficient during unforeseen situations such as road
incidents, when changes in traffic are requested in a short
time interval (Dusparic and Cahill 2012). The role of Al
planning in this case is to come with deliberative reason-
ing. In contrary to traditional reactive control we can reason
about the road network globally that is useful while dealing
with unexpected situations. Consequently, by exploiting Al
planning in traffic control, we can reduce cost and pollution
which is often a serious issue in town/city centers.

Criteria for evaluating approaches

We identified several criteria that are useful for evaluating
the considered approaches for encoding domain models.

Operationality. How efficient are the models produced? Is

(:durative—action DRIVE

:parameters (?r - road ?n - num)
:duration (= ?duration (length ?r))
:condition

(and

(at start (>= (head ?r) (val ?n)))
(over all (operational ?r))
)
ceffect
(and
(at start (decrease (head ?r) (val ?n)))
(at end (increase (tail ?r) (val ?n)))
)

Figure 3: A sample planning operator from the Urban Traffic
Control application encoded in PDDL 2.1.

the method able to improve the performances of planners
on generated models and problems?

Collaboration. Does the method/tool help in team efforts?
Is the method/tool suitable for being exploited in teams or
is it focused on supporting the work of a single user?

Maintenance. How easy is it to come back and change a
model? Is there any type of documentation that is auto-
matically generated? Does the tool induce users to pro-
duce documentation?

Experience. Is the method/tool indicated for inexperienced
planning users? Do users need to have a good knowledge
of PDDL? Is it able to support users and to hide low level
details?

Efficiency. How quickly are acceptable models produced?

Debugging. Does the method/tool support debugging?
Does it cut down the time needed to debug? Is there
any mechanism for promoting the overall quality of the
model?

Support. Are there manuals available for using the
method/tools? Is it easy to receive support? Is there an
active community using the tool?

Evaluation of the approaches with respect to
stated criteria

In this paper we employ and hence evaluate three sepa-
rate methods for knowledge formulation: (A) the traditional
method of hand-coding by a PDDL expert, using a text edi-
tor and relying on dynamic testing for debugging; (B) using
state-of-the-art KE tool itSIMPLE; (C) using transparency
and consistency checkers in GIPO III.

In the following we will evaluate each method with re-
spect to the criteria stated in the previous Section.

Method A

This method involves a PDDL expert that uses a text ed-
itor (in this paper, Gedit) for generating a planning domain
model, given the description of the real world domain. For il-
lustration, a handcoded planning operator is depicted in Fig-
ure 3.

Operationality. Even if this is the most exploited method
for generating new planning domain models, there is no
evidence that it leads to models that are more efficient
than those generated by other methods. The quality of
models depends on the expertise of the person that en-
codes it, which is very hard to predict a-priori. In fact, we
have experimentally observed that often, the models gen-
erated by this method reduce the performances of plan-
ning algorithms.

Collaboration. This method does not support any type of
collaboration. Usually the model is produced by a single
expert, that eventually discusses issues or improvements
with domain experts rather than with other planning ex-
perts.

Maintenance. It is usually easy, for the expert that encoded
the domain model, to come back and maintain or mod-
ify it. On the other hand, models are usually not docu-
mented. This means that the maintenance is potentially
hard, with regard to the complexity of the model, for peo-
ple that were not involved in the encoding process.

Experience. This method is applicable only for PDDL ex-
perts. PDDL experts know the ways for handling some
common issues and are able to interpret the planners out-
put in order to identify bugs.

Efficiency. Usually, the first version of the model is quickly
produced. This leads users to perceive this method as a
very efficient one. On the other hand, the first version re-
quires a lot of dynamic tests and improvements to become
acceptable.

Debugging. Debugging while hand-coding a model is a
critical task. The only way for debugging is dynamic test-
ing. This involves the use of one (or more) planners for
solving some toy instances. The produced plans are then
analysed for identifying bugs that can be fixed by mod-
ifying the model. This cycle is repeated until no bugs
are found. Omitting some important constraints is often
a source of bugs for this encoding method.

Support. Since this is a traditional method, there are many
guides available online for generating new domain mod-
els. However, these guides are usually technically written
and are very difficult to follow for non-experts of auto-
mated planning.

Method B

This method involves a user that exploits itSIMPLE for
generating new planning domain models. The steps of the
method follow the use of UML in software engineering: (i)
design of class diagrams; (ii) definition of state machines;
(iii) translation to PDDL; (iv) generation of problem files.

Operationality. From our experience, it seems that domain
models generated by itSIMPLE can often improve the
performances of planners. This is probably due to a do-
main description that is less constrained than the one de-
veloped by exploiting method A. The quality of the mod-
els generated does not depend on the expertise of the
users; itSIMPLE guides users in the design process.

¥ -~

=
Vehicle

maoveable : Boolean

available : Boolean
busy : Boolean

moaove(V: Vehicle, O: Location, City:
City, L. Location, City1: City, R: Route)
mave_in_city(\: Vehicle, O Location,
City: City, L. Location)

Figure 4: An example of a Class Diagram designed in itSIM-
PLE.

Collaboration. itSIMPLE has not been designed for team
work. This means that usually, the model is developed
by a single user. However, it is possible to import models
(projects) developed by different users. This helps to ex-
change ideas and comments among users. Moreover, the
UML diagrams generated are useful for sharing and dis-
cussing issues with experts.

Maintenance. The itSIMPLE tool is designed for support-
ing a disciplined design cycle. The UML diagrams can
also be used as documentation. From this point of view
it is easy to maintain a generated domain model also for
people that were not involved in the design process. How-
ever, if a model generated by itSIMPLE is modified using
a different tool (or even a text editor), then it is not possi-
ble to import it back to itSIMPLE.

Experience. The typical itSIMPLE user does not have to be
a PDDL expert. However, he should have some basic ex-
perience in software engineering and especially in UML.

Efficiency. Most of the time is spent in designing classes
of objects and defining legal interactions between them in
UML. After that, only a short time is required for debug-
ging. This method is usually slower than method A, but
faster than method C, to generate a first version model.

Debugging. Even if itSIMPLE provides dynamic analysis
by simulation of Petri Nets created from UML models,
most debugging initiates through dynamic testing done by
running planners on some toy instances. While the UML
description of the models helps in development and main-
tenance, and “designs out” some sources of error, it is the
failure of a planning engine to solve a given problem that,
in most cases, alerts the user to bug presence.

Support. itSIMPLE provides a complete documentation
which includes a description of the tool, a tutorial and an
online FAQ section. It is easy to find information and so-
lutions for most of the common issues.

Method C

We focus on domain models encoded in OCL;, with the help
of tools in GIPO-III, using basic consistency checkers as

Checking method carry_direct(P,0,D)

found an unrecognised decomposition item: unload_subject(P,D,V)’.
Check failed

Checking method carry_direct(P,0,D)

found an unrecognised decomposition item: unload_subject(P,D,V)’.
Check failed

Checking method transport(Subject,Org,Dest)

The static predicate in_region(Org,Region) has no prototype

The static predicate in_region(Dest,Region) has no prototype

Check failed

Doing task checks.

Figure 5: Part of output from GIPO: here the transparency of
HTN methods is checked and found to fail, with the likely
faulty components identified.

well as the more complex transparency property checker. Hi-
erarchies of classes are used to capture state: for example, in
the Road Traffic Accident domain, in a particular state an
ambulance may have a position, be in service and available.
The set of constraints are added using GIPO-III to encode
the behaviour of each of the dynamic object classes, that is,
the range of states that each object can occupy.

Operationality. The size of the OCL;, model is larger than
the size of the PDDL models, because state constraints
are encoded explicitly, and HTN methods are specified
in addition to primitive ones. The structure of the solu-
tions is similar to the structure of solutions generated by
the LPG planner on the PDDL model developed in it-
SIMPLE. However, given the different nature of OCL,,, it
seems to be impossible to provide a rigorous comparison
with PDDL.

Collaboration. GIPO has been designed for a single user.
However, it is possible to import models (projects) devel-
oped by different users. This helps the exchange of ideas
and comments among users.

Maintenance. Domain models generated by GIPO are gen-
erally easier to maintain than the hand-encoded ones,
due to the consistency checking opportunities during each
stage of the modelling process.

Experience. The typical user is not required to be an OCL
expert, but he should have some basic knowledge of the
language or the tool.

Efficiency. GIPO does not require creating UML diagram
like itSIMPLE, but it requires to explicitly encode the
constraints of the domain as transition diagrams, that are
then used to create operators. This method is usually
slower then the others, but the first model generated is
very close to the final one.

Debugging. The creation of a dynamic hierarchy of object
classes encoded constraints of the domain explicitly, and
this is what is used by GIPO’s tool support to check opera-
tor schema, states, predicates, etc., and identify bugs prior
to dynamic testing. Part of the output of the consistency
checking tools is shown in Figure 5.

Support. GIPO comes with complete documentation which
includes a user manual, tutorial and OCL manual. It is
easy to find information and solutions for most of the
common issues.

Summary of lessons learned

We can now summarize the lessons that we learned by using
the three outlined methods for formulating requirements into
domain models.

We observed that creating different models does not take
very different amounts of time (taking into account the
developers expertise) while exploiting method A and B.
Method C usually requires significantly more time resource
than the others, because in addition the users have to provide
object hierarchies and invariants (for consistency check),
and also users have to encode HTN methods. As mentioned
before, in method C creation of a dynamic hierarchy of ob-
ject classes encoded constraints of the domain explicitly, and
this is what is used by GIPO’s tool support to check opera-
tor schema, states, predicates, etc., and identify bugs prior to
dynamic testing. While one could argue that dynamic test-
ing will pick bugs up anyway, there may be behaviours that
have not been picked up in the tests done in method A and
B, that result from hidden bugs. On the other hand the UML
description of the domain, that is required by itSIMPLE,
helps to prevent many unwanted behaviours. Method A is
the most sensitive to bugs, and the quality of the produced
model completely depend on the expertise of the user.

Considering the maintenance of the generated models,
method B provides the better instruments for changing a
model. The UML description provides a sort of documen-
tation that can be exploited for quickly understanding the
domain and for applying changes. An issue that we noticed
while working with itSIMPLE is that it is not possible to
import a model that, even if originally generated by using
itSIMPLE, has been slightly modified with a different tool.
This force users to make several steps in the framework also
for very small changes. In method C, the complex represen-
tation of domain models makes it more difficult for a non-
expert user to come back and maintain the model.

Regarding the generated models, there are several inter-
esting aspects to consider. Models generated by method A
are usually very compact in terms of numbers of lines, pred-
icates and types, but they are usually over-constrained in
order to avoid unwanted behaviours. The iterative process
of analyzing produced plans, identifying bugs and removing
them from the model leads to incrementally add constraints
in the form of pre- and/or post- conditions. The structured
and principled process of encoding the requirements of
Method B usually leads to domain encodings that are clear
and easy to understand, even if less compact (around 10%
longer) then the ones generated by method A. It is worth
mentioning that the good quality of the encoded domains
leads to good quality generated plans. The quality of models
generated by method C is harder to understand due to the
different language used. The models are significantly larger
than PDDL ones (about two times longer in terms of num-
ber of lines) and need a HTN planner to solve corresponding
problems. We observed that the structures of the solutions

are similar to solutions generated by domain-independent
planners on models developed by other methods. We believe
that a possible advantage of this approach might be the better
scalability than the PDDL models. However, current OCLy,
techniques do not support durative actions, which makes it
less interesting in domains where time optimization is criti-
cal.

Needs in the design of future tools

The comparison of the three methods for encoding different
domain models was fruitful. It gave us the opportunity for
understanding the strengths and weaknesses of them, and to
highlight the needs that future tools should meet.

Expertise

A main issue of current KE approaches for encoding domain
models is that they require a specific expertise. Method A
(and some approaches based on existing KE tools such as
PDDL Studio) requires a PDDL expert, Method B requires
some expertise in UML language, which is common knowl-
edge mainly in software engineering. Finally, method C
requires some expertise in the OCL, language, which is not
a widely known language in the Al Planning community.
This requirement might significantly reduce the number of
potential users of the KE tools. Since users with different
research background usually do not have the required
expertise, they are not able to exploit existing approaches
for encoding domain models. They require an expert that,
due to his limited knowledge of the real world domain, will
introduce some noise in the encoding. Moreover, given the
hardness of generating domain models for planning, many
users are not exploiting automated planning but use easier
approaches, even if they are less efficient. It is also worth
considering that KE tools for encoding domain models
are, usually, not very well known outside the planning
community. This, again, reduces the number of potential
users that could exploit them.

Team work

Current KE tools are designed for a single user. This is
usually fine; actually, the generated domain models are
encoding easy domains or significantly simplified versions
of complex domains. On the other hand, the number of
efficient KE tools is growing, especially in the last few
years. Hopefully, in coming years, we will be able to encode
very accurate models of complex real-world domains. In
this scenario, it seems reasonable that many experts will
have to cooperate for generating a domain model. From this
perspective it is straightforward to consider the need of tools
explicitly designed for team work as a critical requirement
for future KE tools.

Maintenance

Users are not supported by existing KE tools in writing
documentation related to the generated model. As a result,
users are usually not writing any sort of documentation.
Given this, it is often quite hard to change an existing
domain model a few months after its generation. Providing
support for writing documentation would make changes

easier and would also help the users while encoding the
model. The process of describing what has been done is
a first test for the model. Furthermore, some tools are not
able to handle domain models that have been changed man-
ually, or by using a different tool. This limits the support
that such tools could give to the life cycle of domain models.

Debugging

We noticed that the checking tools provided by GIPO are
very helpful for minimizing the time spent on dynamic
debugging. Moreover, exploiting the automatic debugging is
a strategy for reducing the number of bugs that remain in the
domain model, since many problems are usually not easy to
find by dynamic debugging. A significant improvement in
the techniques for automatic debugging of static/dynamic
constraints will lead to significantly better encoded domain
models.

Language support

Finally, existing KE tools for generating domain models
for planning have a very limited support of the features of
PDDL language. Most of them are supporting only PDDL,
while a few of them are also able to handle some structures
of PDDL2.1 (Fox and Long 2001). It is noticeable that the
latest versions of PDDL have some features (e.g. durative
actions, actions costs, ...) that are fundamental for a cor-
rect encoding of real world domains. Furthermore, none of
the existing tools support PDDL+ (Howey, Long, and Fox
2004). PDDL+ provides features for dealing with continu-
ous planning, which is needed in systems working in real-
time and that must be able to react to unexpected events.
This is the case for the machine tool calibration domain that
we considered in this paper. In addition, during the imple-
mentation of this domain it was noticed that it can be dif-
ficult to model and debug multiple, interacting equations in
PDDL. The only way of currently evaluating the implemen-
tation is by using VAL with the domain, problem and so-
lution. A KE tool with support for PDDL+ with strong nu-
meric domains would be highly beneficial.

Conclusions

In this paper we have presented the state-of-the-art of
Knowledge Engineering tools for encoding planning domain
models. We introduced three real world domains that we
have encoded: the machine tool calibration, the road traf-
fic accident management and the urban traffic control. We
used and evaluated three different strategies for knowledge
formulation, encoding domain models from a textual, struc-
tural description of requirements using: (i) the traditional
method of a PDDL expert and text editor (ii) a leading plan-
ning GUI with built in UML modelling tools (iii) a hier-
archical, object-based notation inspired by formal methods.
We evaluate these methods using a set of criteria, i.e., opera-
tionality, collaboration, maintenance, experience, efficiency,
debugging and support. We observed that creating different
models does not take very different amounts of time. We
highlighted weaknesses of existing methods and tools and
we discussed the needed in the design of future tools sup-
port for PDDL-inspired development.

Future work will involve a simulation framework for eval-
uating plan execution, where we can couple model design
and plan generation more tightly. We are also interested
in improving the KE tools comparison by considering also
other existing tools and a larger set of features to compare,
such as quality of the solutions found and runtimes of differ-
ent planners on generated domain models.

Acknowledgements

The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1).

References

Barreiro, J.; Boyce, M.; Do, M.; Jeremy Frank, M. L;
Kichkayloz, T.; Morrisy, P.; Ong, J.; Remolina, E.; Smith,
T.; and Smithy, D. 2012. EUROPA: A Platform for Al
Planning, Scheduling, Constraint Programming, and Opti-
mization. In Proceedings of the 22nd International Confer-
ence on Automated Planning & Scheduling (ICAPS-12) —
The 4th International Competition on Knowledge Engineer-
ing for Planning and Scheduling.

Bazzan, A. L. 2005. A distributed approach for coordination
of traffic signal agents. Autonomous Agents and Multi-Agent
Systems 10(1):131-164.

Bouillet, E.; Feblowitz, M.; Feng, H.; Ranganathan, A.; Ri-
abov, A.; Udrea, O.; and Liu, Z. 2009. Mario: middleware
for assembly and deployment of multi-platform flow-based
applications. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’09,
26:1-26:7. New York, NY, USA: Springer-Verlag New
York, Inc.

Castillo, L.; Fdez-olivares, J.; scar Garca-prez; and Palao,
F. 2006. Efficiently handling temporal knowledge in an htn
planner. In In Sixteenth International Conference on Auto-
mated Planning and Scheduling, ICAPS, 63-72. AAAL

Daneshfar, F.; RavanJamjah, J.; Mansoori, F.; Bevrani, H.;
and Azami, B. Z. 2009. Adaptive fuzzy urban traffic flow
control using a cooperative multi-agent system based on two
stage fuzzy clustering. In Vehicular Technology Conference,
2009. VTC Spring 2009. IEEE 69th, 1-5.

Dusparic, 1., and Cahill, V. 2009. Distributed w-learning:
Multi-policy optimization in self-organizing systems. In
Proceedings of the 2009 Third IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems, SASO
’09, 20-29. Washington, DC, USA: IEEE Computer Soci-
ety.

Dusparic, 1., and Cahill, V. 2012. Autonomic multi-policy
optimization in pervasive systems: Overview and evaluation.
ACM Trans. Auton. Adapt. Syst. 7(1):11:1-11:25.
Edelkamp, S., and Hoffman, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical report, Albert-Ludwigs-Universitit
Freiburg.

Feblowitz, M. D.; Ranganathan, A.; Riabov, A. V.; and
Udrea, O. 2012. Planning-based composition of stream pro-
cessing applications. and Exhibits 5.

Fox, M., and Long, D. 2001. PDDL2.1: An extension
to PDDL for expressing temporal planning domains . In
Technical Report, Dept of Computer Science, University of
Durham.

Gerevini, A.; Saetti, A.; and Serina, I. 2006. An Approach
to Temporal Planning and Scheduling in Domains with Pre-
dictable Exogenous Events. JAIR 25:187-231.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

Gonzalez-Ferrer, A.; Fernandez-Olivares, J.; and Castillo, L.
2009. JABBAH: A java application framework for the trans-
lation between business process models and htn. In Work-
ing notes of the 19th International Conference on Automated
Planning & Scheduling (ICAPS-09) — Proceedings of the
3rd International Competition on Knowledge Engireeng for
Planning and Scheduling(ICKEPS), 28-37.

Howey, R.; Long, D.; and Fox, M. 2004. Automatic plan
validation, continuous effects and mixed initiative planning
using PDDL. In Proceedings of the Sixteenth International
Conference on Tools with Artificial Intelligence, 294 — 301.

Jimoh, F.; Chrpa, L.; Gregory, P.; and McCluskey, T. 2012.
Enabling autonomic properties in road transport system. In
The 30th Workshop of the UK Planning And Scheduling Spe-
cial Interest Group, PlanSIG 2012.

McCluskey, T. L., and Kitchin, D. E. 1998. A tool-supported
approach to engineering htn planning models. In In Proceed-
ings of 10th IEEE International Conference on Tools with
Artificial Intelligence.

McCluskey, T. L., and Simpson, R. 2006. Combining
constraint-based and classical formulations for planning do-
mains: GIPO IV. In Proceedings of the 25th Workshop of the
UK Planning and Scheduling SIG (PLANSIG-06), 55-65.

Owens, N.; Armstrong, A.; Sullivan, P.; Mitchell, C.; New-
ton, D.; Brewster, R.; and Trego, T. 2000. Traffic Incident
Management Handbook. Technical Report Office of Travel
Management, Federal Highway Administration.

Parkinson, S.; Longstaff, A.; Crampton, A.; and Gregory, P.
2012. The application of automated planning to machine
tool calibration. In Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2012.

Plch, T.; Chomut, M.; Brom, C.; and Bartak, R. 2012.
Inspect, edit and debug pddl documents: Simply and effi-
ciently with pddl studio. ICAPS12 System Demonstration
4.

Salkham, A.; Cunningham, R.; Garg, A.; and Cahill, V.
2008. A collaborative reinforcement learning approach to
urban traffic control optimization. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology - Volume 02,
WI-IAT ’08, 560-566. Washington, DC, USA: IEEE Com-
puter Society.

Shah, M.; McCluskey, T.; and Chrpa, L. 2012. Symbolic

representation of road traffic domain for automated planning
to manage accidents. In The 30th Workshop of the UK Plan-
ning And Scheduling Special Interest Group, PlanSIG 2012.

sheng Yang, Z.; Chen, X.; shan Tang, Y.; and Sun, J.-P. 2005.
Intelligent cooperation control of urban traffic networks. In
Machine Learning and Cybernetics, 2005. Proceedings of
2005 International Conference on, volume 3, 1482-1486
Vol. 3.

Simpson, R.; Kitchin, D. E.; and McCluskey, T. 2007. Plan-
ning domain definition using gipo. Knowledge Engineering
Review 22(2):117-134.

Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. Proceedings of ICAPS-08.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning domains. In Proceedings of the 17th International Con-
ference on Automated Planning & Scheduling (ICAPS-07),
336-343. AAAI Press.

Vaquero, T. S.; Tonaco, R.; Costa, G.; Tonidandel, F.; Silva,
J. R.; and Beck, J. C. 2012. itSIMPLE4.0: Enhancing
the modeling experience of planning problems. In Sys-
tem Demonstration — Proceedings of the 22nd International
Conference on Automated Planning & Scheduling (ICAPS-
12).

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. A brief
review of tools and methods for knowledge engineering for
planning & scheduling. In Proceedings of the Knowledge
Engineering for Planning and Scheduling workshop — The
21th International Conference on Automated Planning &

Scheduling (ICAPS-11).

VodréZzka, J., and Chrpa, L. 2010. Visual design of planning
domains. In KEPS 2010: Workshop on Knowledge Engi-
neering for Planning and Scheduling.

