
CASE FOR SUPPORT

A. Research Context and Aims

Background: Simulating low-level cognitive be-
haviour, such as reaction to stimuli, has been a ma-
jor focus of research and development in the au-
tonomous systems (AS) community for many years.
Automated assessment of sensor data, and reactive
selection of actions in the form of condition-action
pairs, is well developed in robotic and control appli-
cation areas. In contrast, a characteristic of more in-
telligent, high level cognitive behaviour is to be able
to reason with self-knowledge: an AS knows about
the actions it can perform, the resources it has, the
goals it has to achieve, the current state and environ-
ment it finds itself in; and it has the ability to reason
with all this knowledge in order to synthesise, and
carry out, plans to achieve its desired goals. So for
example an unmanned vehicle on the Mars surface
might be requested to collect a rock sample at some
position, or a spacecraft might be required to take a
photograph of some star constellation. These tasks
require an AS to generate or be given detailed plans
to achieve them. Enabling applications involving AS
to have the general ability to synthesise plans in this
manner is a great challenge, because of the difficulty
of creating plans fast enough in real-time situations,
and the problems in representing and keeping up to
date the AS’s domain knowledge [34].

Control systems in autonomous vehicles, however,
such as in exploration robots or space satellites, need
to be capable of planning, scheduling and carrying
out long term tasks. For over 20 years scientists
at NASA have been developing systems that can,
for example, plan activities for spacecraft [4], sched-
ule observation movements for the Hubble Tele-
scope [19], and control underwater vehicles [17].
They have been successful in applying research from
the area of automated planning and scheduling (here
called APS), where domain knowledge is represented
declaratively and manipulated via symbolic reasoning
(Chien et al [27] gives a good overview of the poten-
tial benefits for spacecraft technology). The APS
research community has been successful in overcom-
ing some of the theoretical problems to do with com-
putational complexity of generative planning, and
scale-up of proposed solutions, which dogged the
community in the last century. This is evidenced
by the wide range of planning applications featur-
ing at this year’s annual international conference in
APS, called ICAPS1 which included fire fighting,
satellite control, emergency landing, aircraft repair
scheduling, workflow generation, narrative genera-
tion, and battery load balancing. ICAPS also hosts
regular competitions leading to the development of
optimised planning tools which can be embedded in
applications software.
Challenges of Fielding APS Applications:
The basic challenges of utilising symbolic reason-
ing systems such as deliberative planners within real
time AS are well known, and were neatly summarised
some time ago by Wooldridge and Jennings [34]:
(a) the transduction problem: that of translating

1icaps11.icaps-conference.org

the real world into an accurate, adequate symbolic
description, in time for that description to be use-
ful; (b) the representation/reasoning problem: that
of how to symbolically represent information about
complex real-world entities and processes, and how
to get agents to reason with this information in
time for the results to be useful.
The reasoning problem alluded to in (b) is what
many in the APS community are aiming to solve,
and a measure of their success is the growing range
of applications referred to above. It is expected that
this ongoing research will lead to yet more efficient
solvers, which can reason with more expressive in-
put knowledge. Just as challenging, and the subject
of this proposal, is the transduction and the related
representation problems of (a) and (b).

For an AS to produce plans and decisions ratio-
nally using symbolic reasoning, it has to have explicit
knowledge of its domain’s actions, resources, goals,
objects, states and environment. A representation of
such knowledge is called a domain model, and sep-
aration of the concerns of creating a domain model,
and the creation of a planning algorithm, is the ba-
sis of what is termed domain independent planning.
While the development of automated planning algo-
rithms has been encouraging, a major problem re-
mains in APS applications, which limits their adapt-
ability, and makes them difficult to maintain and
validate: much of the AS’s self-knowledge has to
be encoded in a domain model before its operation.
Experience has shown that eliciting and validating
domain models involves a great deal of expert time
and effort. It also means that if the AS’s capabilities
change, for example if the preconditions or effects
of an action change, then new knowledge describing
this must be re-entered into the system by human
experts. In fact acquiring, validating and maintain-
ing a domain model for the purposes of automated
reasoning is a key research challenge, and has long
been a limiting factor in the exploitation of domain
independent planning. While currently domain mod-
els are hand crafted and maintained, in AS they are
required to be automatically learned and subject to
adaptation over run time. The aim of this project is
to work towards overcoming this research challenge,
expressed in the research hypothesis:
Automatically learning and adapting an accurate
and adequate domain model for the purposes of
symbolic reasoning, in particular for the processes
of APS, enables effective, sustained goal-directed
behaviour for real time dynamic AS.
By the end of this project we aim to have demon-
strated to prototype the feasibility of using a self-
adapting domain model to support real time deliber-
ative planning in AS, in applications supplied by the
collaborating partners in the AIS Programme Call.
If this challenge is achieved, then it will open the
door to implementing high-level cognitive behaviour
in real time dynamic AS.

In the following section we survey the state of
the art in representing domain models, focusing
on adequacy, that is the expressiveness of domain
model languages, and accuracy, the validation of
the model. In the succeeding section we focus on
machine learning techniques which can be used to
initially learn and then adapt the domain model.
Domain Model Languages: The control mech-
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anisms of ASs need to be able to represent and rea-
son with rich and detailed knowledge of such phe-
nomena as movement and resource consumption in
the context of uncertain and continuously changing
environmental conditions [11]. Traditionally, phys-
ical systems with discrete and continuously-varying
aspects have been represented using the mathemat-
ical notion of a hybrid dynamical system. This is
a system that has a state made up of a set of real
and discrete-valued variables that change over time
according to some fixed set of constraints. Hybrid
systems are used for modelling in applications such
as embedded control systems [5].

The research-led standard domain model language
in planning is PDDL (planning domain description
language), which is based around a world view of pa-
rameterised actions and states, where it is assumed
that a planner generates a collection of instantiated
actions to solve some goal posed as state conditions.
It has been extended to cope with real applications
such as crisis management [8] and workflow genera-
tion [25], and has versions which can represent time
and resources. More expressive modelling languages
such as PDDL+ have been developed for applica-
tions where reasoning about processes and events in
a hybrid discrete/continuous world is necessary [9].
PDDL+ was recently used in an application for de-
veloping multiple battery usage policies [18]. Al-
though PDDL is designed for logical precondition
achievement, specialist forms of planning can be in-
corporated into the language using procedural at-
tachment [7]. Using this kind of mechanism low
level planning procedures such as real time geomet-
rical reasoning or path planning, which benefit from
a range of specialist techniques [20], can be incor-
porated within PDDL.

Despite its widespread acceptability, a serious
problem with PDDL is that it reflects the concerns of
those working on plan generation algorithms, rather
than the execution and scheduling orientation of
many applications. In contrast, scientists at NASA
Ames developed the application-oriented language
families HSTS [21] and then NDDL [16] for their
applications in the Space arena. NDDL differs from
PDDL in that encodings are based around represen-
tations of objects and object instances, which per-
sist in predefined timelines of continuous activities.
Each activity has a start and end time interval (to
represent uncertainty of duration), and the distinc-
tion between action and state is effectively blurred.
Plan generation and execution are therefore linked
to a much greater degree than with PDDL. NDDL’s
concept of timelines is related to the idea of craft-
ing abstract plans as in the input languages to HTN
systems [15]. The idea of pre-written hierarchical
plans to formulate possible behaviours has long been
a popular type of formalism in which to encode dy-
namic knowledge for APS applications. A related
view of how one could formulate dynamics comes
from the area of Cognitive Robotics [24], which also
seeks to emphasise the integration of planning and
execution. The idea here, though, is to start with an
axiomatisation of the application environment using
a variant of situation logic, then hand craft generic
plans (so-called ’action programming’) from which
concrete plans can be efficiently derived using de-

duction. Systems used in Cognitive Robotics such
as GOLOG require more engineering for individual
applications than in classical planning, but appear
more appropriate for the control of robotics devices.

Another strand of research, closely linked to HTN
and practical planning, has focussed on rich plan
representations [22, 29, 30]. These representations
are intended for the sharing of plans between agents.
The richness of these languages stems from the
underlying ontology that contains generic concepts
from the planning domain. They have been used in
a number of application domains such as emergency
response [23] and personnel recovery [33].

The common role of these rich and expressive
language families is to enable engineers to formulate
an adequate representation of structural, dynamic
and heuristic knowledge for applications involving
action and change. In real time autonomous sys-
tems these languages have been used to represent
a high level knowledge layer. The key limitation
here is the hand coded nature of this kind of
knowledge, and the difficulty of validating and
maintaining the model - all current applications
rely on teams of knowledge engineers to encode
and validate the domain model [13]. To meet the
challenge of domain modelling in NDDL, recent
work by NASA scientists is aimed at developing
an interactive domain model editor which uses
a simulator to short circuit the loop between
the model and validation of the model [3]. This
work also points to the use of machine learning
techniques (some developed by the authors of
this proposal) to assist in engineering the model.
Another promising method that can be used to
automatically synthesise a planning domain model is
to translate from an existing formal model in an ap-
plication lanaguage. The ICKEPS-09 competition
was devoted to this area, with applications including
e-Learning, web services composition, and business
processing [26]. While this line of work is important
in the context of embedding planning components
in applications such as workflow planning, this is
not so suitable for AS where no formal model exists
a priori. Also, in AS the domain model is subject
to refinement and adaptation over time, in order
that a goal directed planning function will remain
effective. We propose to adopt machine learning
techniques to effect both the initial acquisition of
the domain model, and its evolution over its lifespan.

Machine Learning of Domain Models: Ma-
chine Learning applied to APS has attracted a long
history of research, and we point the reader to a
recent survey for a full account [12]. There have
been many events on the subject in recent years in-
cluding workshops adjunct to AI international confer-
ences (including ICAPS), and elements of the ICAPS
competition series (ICKEPS/IPC). In the context of
domain independent planning, as well as research
aimed at learning a domain model representing the
physics of the world, much of the machine learning
work is aimed at learning heuristics to make the use
of a planning engine more efficient.

Domain model learning can be separated into
three concerns: (i) what language is the learned
domain model going to be expressed in? (ii) what
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inputs (training examples, observations, constraints,
partial models etc) are there to the learning process?
(iii) what stage is the learning taking place - initial
acquisition, or incremental, online adaptation? For
much of the work done up to now the answers to (i)
are “some variant of PDDL forming a domain model
that can be input to planning engines” and to (iii)
is initial acquisition. However, adaptation can be
viewed as a special case of initial acquisition, where
input to the learning process includes the current
domain model as well as training examples etc, and
output is the updated model.

Regarding (ii), systems that learn very expressive
domain models tend to demand most detailed in-
put. Work in learning domain models for robotic
agents [1, 2] assumes that a training mechanism ex-
ists with rich feedback mechanisms. Typically, much
a priori knowledge is assumed, such as predicate de-
scriptions of states, and partial or total state in-
formation before and after action execution. With
such rich inputs, systems such as Amir’s SLAF [1]
can learn actions within an expressive action schema
language.

Some recent work on learning domain models has
concentrated on learning from example plan scripts
but with little or no input domain knowledge. The
LAMP system [36] can form simple PDDL domain
theories from example plan scripts and associated
initial and goal states only. It inputs object types,
predicate specifications, and action headings, and
from plan scripts taken from planning solutions, it
learns a domain model. The domain model is syn-
thesised using a constraint solver, inputting two sets
of constraints: one set is based on assumed physi-
cal, consistency and teleological constraints - for ex-
ample, every action in the example plan script adds
at least one precondition for a future action, ac-
tions must have non-empty effects, and so on. The
other set of constraints is generated using a type of
associative classification algorithm which uses each
plan script as an itemset, and extracts frequent item-
sets to make up constraints. While LAMP is aimed
squarely at helping knowledge engineers create a new
domain model, LOCM is an algorithm which learns
from plan scripts only [6]. As with ARMS, it outputs
a planning domain theory in a PDDL format but it
inputs only plan scripts - it does not require represen-
tations of initial and goal states, or any descriptions
of predicates, object classes, states etc. LOCM has
been used in a system that learns to play the Freecell
game by observation, with no a priori knowledge of
the game [6].

There have been several other notable develop-
ments in learning in uncertain or partially known do-
mains. Reinforcement learning, traditionally used
in single goal or policy learning planners, has recently
been developed for symbolic or relational learning,
though its potential for learning full models of the
PDDL variety is not yet proven [12]. A promis-
ing approach towards learning incomplete and un-
certain domain models is ongoing in the Model-lite
project [35]. Here the authors use probabilistic logic
as the basis for the language of the learned domain
model.

B. Summary of Aims and Objectives

To summarise, before AS in real time dynamic appli-
cations can attain high-level cognitive skills there are
still major challenges to be overcome in the acqui-
sition, validation and adaptation of domain knowl-
edge. To be able to perform deliberate reasoning in
new or changing domains, we propose that an AS
needs to be able to learn and incrementally adjust
its understanding of the world, encapsulated in a do-
main model. It needs to ensure the accuracy of the
evolving domain model with the help of internal ver-
ification checks and external validation constraints.
The project aims to work towards the solution of
these challenges within a programme involving col-
laborator applications (identified as CAs below) put
forward by collaborators in the consortium behind
the AIS Programme Call. Hence, we set up the fol-
lowing objectives, the achievement of which will be
measured using the criteria following each one:

1. research and develop an expressive domain
model language (here called AIS-DDL) for AS
Criteria: AIS-DDL will be a generic lan-
guage, adequate to capture domain models for
at least three CAs. It will be capable of cap-
turing knowledge about actions and change at
a human-understandable level of abstraction,
and allow for efficient reasoning as required for
learning, planning and validation.

2. research and develop methods for automated
learning and online adaptation of models in
AIS-DDL
Criteria: the methods will be generic to the
CAs, and will maintain the accuracy and ade-
quacy of the domain model, and develop heuris-
tic knowledge to support planning functions;

3. determine methods and develop tools for
knowledge analysis, verification and valida-
tion (V&V)
Criteria: the methods will be able to de-
tect inconsistencies in the learned models, de-
rive new knowledge, and inform further knowl-
edge acquisition and learning cycles. Further,
V&V criteria will be in terms humans can under-
stand, thus enabling a mixed-initiative approach
to knowledge engineering where appropriate.

4. deliver a prototype demonstrator system
Criteria: The system will exhibit delibera-
tive planning within the CAs in a virtual world,
and therein demonstrate the efficacy of domain
model acquisition and online adaptation.

Relation with AIS Programme Call: This
proposal will advance the state of knowledge in four
areas of the Call’s Research Interests table as detailed
in the Pathways to Impact Document attached.

C. Method and Technical Plan

Overview: This research project’s method will be
based around the following activities:
–the creation/acquisition of a simulation environ-
ment tailored to each CA, analogous to that pro-
posed by Scientists from NASA/JPL to explore
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mixed-initiative knowledge engineering [3]. This will
provide the necessary environment for experimention
with the acquisition, verification and validation of
domain models, and resulting synthesised plans;
–utilising an hierarchical approach to the simulation
of AS architecture, with abstract symbolic knowl-
edge at a high level to enable long term planning,
with detailed knowledge at a lower level to enable
path planning or manipulator planning;
–the creation of verification axioms and processes
based on the ontological constraints intrinsic to the
design of AIS-DDL (analogous to those developed
for PDDL [32]);
–the engineering of a set of immutable validation
constraints capturing some of the physics of the CAs;
–drawing on the techniques used in existing domain
model learning tools such as SLAF and LAMP re-
ferred to above, the proposer’s own recent research
in learning domain models [6, 14], and early experi-
ences of learning models in reactive AS [2];
- utilising the rich sources of relevant literature, for
example the Space workshop series2.

With these developments in place, it will be
feasible to meet the main challenge of automated
learning of domain models in AIS-DDL. These
models will be translated into the input language
of existing planning engines in order to test gener-
ated plans in real time using simulation, and the
simulator will be used as the basis of the subse-
quent demonstrator system. The workpackages
(WPs) making up the programme are detailed below:

WP1. Analysis of CAs and State of the
Art: Determination and analysis of requirements of
the set of CAs which cover the high level planning
and decision making function of the AS, drawn
from members of the AIS consortium; meetings
with domain experts, acquisition of documentation
and other appropriate resources describing CAs.
For each CA: determination of required planning
function, collation of sample required plans, state
representations and sensor/effector information, and
scope of application.
Distill the state of the art in APS from the literature
as applicable to the case studies. Acquisition and
testing of applicable tools eg specialist and general
planners, learning tools, with potential for use in
the project.
Construction of project web site and consideration
of routes to transfer technology and exploit research
outputs. Consideration of potential for integration
of project results with other funded research in the
AIS programme.
Delivered: Agreements on the detail and scope
of the CAs, such as I/O from/to a deliberative
planning function, and a set of detailed criteria
with which to measure success [D1]; a collection of
literature and summary overview of applicable state
of the art in planning and learning techniques[D2],
a repository of potentially applicable research tools,
project website, and initial report on the integration
of research results within the AIS programme[D3].
Evaluation: Scope of CAs to be sufficiently
testing to measure all the planned features of the
domain model language, the learning method, online

2http://www.congrexprojects.com/11c05/

adaptation, validation etc. The survey will be of
publishable standard, and the tools repository will be
used to demonstrate to collaborators the potential of
current automated planning and learning technology.

WP2. Configuration of Simulation En-
vironment: Using D1, D3 and collaborator
resources where applicable, configure or acquire a
simulation environment, for example based on a
virtual world platform (such as Second Life), to
simulate CAs. Identify the abstractions made and
the effort required to transfer systems developed in
the virtual world to a real scenario.
Delivered: report on abstractions made in the
virtual world[D4]; working application simulator,
and well defined interfaces [D5],
Evaluation: simulator configured to showcase the
chosen CAs, with the ability to embed APS tech-
nology such as generative planners, demonstrate the
execution of plans based on learned domain models,
and handle user interaction during execution. The
visualisation should be adequate to satisfy the
owners of the CAs.

WP3. Domain Model Representation and
Ontology: Utilising D2, gain insights from the
major AI approaches to domain model representa-
tion (e.g. in classical planning, action programming,
constraint-based planning), and formalisms used
in hybrid systems design [5], SAT-based mixed
discrete/continuous systems [28], classical-based
formalisms [9], and situation-calculus-based
work [10]. Clarify the relationship between high
level notations and low level reactive planning
knowledge as used in the CAs, and specify a generic
I/O language for the planning component. Combine
with insights from D1, and anticipating the need
to learn domain models, create the first version of
AIS-DDL.
– Define a rich ontology of domain independent
planning concepts for representing processes, events,
actions, uncertainty, and continuously changing
variables that will provide the abstract vocabulary
for AIS-DDL;
– Design and implement algorithms that map
AIS-DDL to known languages such as variants of
PDDL to utilise state of the art planning technology.
Delivered: specification of generic planner I/O
[D6], AIS-DDL[D7], specification of domain model
language ontology[D8], translators[D9].
Evaluation: D6 and D7 will fit the requirements
of the planning function and model represention
(respectively) of the CAs (evaluated by hand
encodings of collaborator problem domains). D8
will be evaluated by peer reviewed publication and
in combination with D9 using dynamic testing (in
WP4 and WP5).

WP4. Verification and Validation: This
WP will research and develop methods and tools
for the verification and validation of AIS-DDL
domain models, resulting in more accurate and
robust domain models, and a way of validating
the doman model learning processes(WP5). The
work will draw on D6,D7 and D8 and relevant
literature [32, 13, 15], and investigate:
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a) automated verification analysis: the creation of
verification axioms and verification tools based on
the ontological constraints intrinsic to the design of
AIS-DDL
b) automated validation checks: the engineering
and encoding of a set of immutable validation
constraints capturing the underlying physics of each
of the CAs, and a set of validation tools
c) a visualisation and mixed-initiative knowledge
engineering tool to allow users to validate by
inspection, and manipulate, the domain models.
These tools will be used to identify and help remove
bugs, and in particular:
– to provide additional input knowledge during the
knowledge acquisition process, and to inform each
cycle of domain model adaptation;
– to provide information relevant for the efficiency
with which planners can solve planning problems,
advice on the best planner to use, and help in
optimizing the representation to support efficient
automated planning.
– to augment learned models with knowledge
useful for the human user (to make them more
understandable and intelligible), and useful for
enabling translation to other formalisms;
Delivered: verification axioms and tools [D10],
validation knowledge and tools [D11], knowledge
engineering tool [D12], report on specification and
computational properties of tools[D13]
Evaluation: D10-D12 will be evaluated taking
into account number of errors identified from test
scenarios, the quality of the additional knowledge
created, and the success in integrating the output
with learning functions in WP5, D13 will be sub-
mitted for peer review.

WP5. Acquisition and Adaptation of
Domain Models Utilise D2 and D3 to further
investigate forms of knowledge acquisition and
learning, and methods for domain model creation.
Assemble a number of sources of input to machine
learning, for each of the CAs: (i) sets of sample
information available to the CAs, from simulated
sensor data, (ii) engineered and derived knowledge
from D10,D11 in WP4, such as domain invariants
used for validation checking. Utilise knowledge
engineering tools as appropriate to create sample
domain model encodings for the CAs, to be used to
evaluate the acquisition process. Utilising D7 (the
planning ontology), and insights from the literature
e.g. [36, 6], and dependent on the kind of learning
data available:
a) create an initial domain model acquisition tool
b) create an adaptation tool for evolving the domain
model through its online use.
The acquisition tool is likely to be based on a
training approach, where sample plans are supplied
to it (or observed by it) and in the context of its
domain invariants, it induces action structures. The
adaptation tool is likely to utilise theory revision
or incremental learning techniques, where feedback
from the failure of a plan helps to identify and
remove bugs in the domain model.
Delivered: Hand engineered domain models[D14],
learning[D15] and adaptation[D16] tools, specifica-
tion and computational properties of tools[D17]

Evaluation: Learned domain models will be
compared to D14; the process of adaptation of
domain models will be evaluated operationally
within the demonstrator(WP6), D17 will be sent for
peer review publication.

WP6. Demonstrator Systems, Project
Evaluation and Exploitation: Development
of the simulation environment to incorporate
autonomous behaviour in order to demonstrate
system learning and adaptation capabilities: this
will fully simulate CAs, using for example a hybrid
architecture [31] to integrate learning and plan-
ning components with virtual sensor and effector
capabilies, leading to extensive testing using CAs
scenarios (testing will run in parallel with develop-
ment of learning techniques in WP5). There will
follow an overall evaluation of the project; future
development exploration, including integration with
other results in the AIS progamme; identification
using D3 of effort need to transfer results from
the virtual world to the real, and determination of
exploitation routes of developed technologies.
Delivered: final versions of simulation environ-
ments and demonstrator scenarios[D18]; pathway to
research exploitation document[D19]; final project
report[D20]
Evaluation: evaluate D18, D19 against success
measures identified in D1 and take up of research
results by commercial partners; peer reviewed
journal publications derived from D20.

Project Management: The project’s Workplan
(see attached) illustrates deliverables, milestones,
WP duration, and approximate WP resource at
each of the Universities. Huddersfield will lead
WP3, WP5, WP6; Edinburgh will lead WP2, WP4;
WP1 will be jointly led. For WP6, researchers at
Edinburgh in the third year will work on creating
the interfaces necessary to make the Simulation
Environment suitable as a demonstrator, and this
work will be carried on in the fourth year at Hud-
dersfield. Milestone meetings will take place at each
6 monthly milestone M0 - M8 with all University
project staff attending, and other stakeholders and
collaborators invited as required. The meetings will
be used to review deliverables produced at each
milestone, and to keep under review a detailed
workplan for the remaining part of the project. Prof
McCluskey will provide overall leadership of the
project, and convene/chair milestone meetings.

Project Risks: We identify major risk areas in
the project as (a) feasibility of creating simulations
of CAs (b) poor degree of fit between planning tech-
nology and the application requirements (c) difficulty
in obtaining and eliciting underlying knowledge. The
range of potential CAs (as demonstrated in the Pro-
gramme Call) and the similarity of them to exist-
ing planning developments (eg Mars Rover) mitigate
against (a). The wide experience of the Proposers
in applying APS, and in the knowledge engineering
aspects in general, will help resolve problems arising
in (b) and (c) by judging what is feasible in terms of
the scope and range of the CAs given the timescale.
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[12] S Jiménez, T. De la Rosa, S. Fernández, F. Fernández,
and D. Borrajo. A review of machine learning for auto-
mated planning. The Knowledge Engineering Review (in
press).

[13] D. Long, M. Fox, and R. Howey. Planning domains and
plans: Validation and analysis. In Proc. Verification and
Validation in Planning workshop, ICAPS, 2009.

[14] T. L. McCluskey, S. N. Cresswell, N. E. Richardson, and
M. M. West. Action Knowledge Acquisition with Op-
maker2. In Agents and Artificial Intelligence, volume 67
of Communications in Computer and Information Sci-
ence, pages 137–150. Springer Berlin Heidelberg, 2010.

[15] T. L. McCluskey, D. Liu, and R. M. Simpson. GIPO II:
HTN Planning in a Tool-supported Knowledge Engineer-
ing Environment. In Proc. ICAPS, 2003.

[16] C. McGann. How to solve it: Problem solving in Europa
2.0. Technical report, NASA Ames, 2006.

[17] C. McGann, F. Py, K. Rajan, J. Ryan, and R. Henthorn.
Adaptive control for autonomous underwater vehicles. In
Proc. AAAI, pages 1319–1324. AAAI Press, 2008.

[18] M.Fox, D.Long, and D.Magazzeni. Automatic Construc-
tion of Efficient Multiple Battery Usage Policies. In Proc.
ICAPS, Frieburg, Germany, 2011.

[19] G. E. Miller. Planning and scheduling the hubble space
telescope: Practical application of advanced techniques.
In Artificial Intelligence, Robotics, and Automation for
Space Symposium, pages 339 – 343, 1994.

[20] M.Naveed, A.Crampton, D.Kitchin, and T.L.McCluskey.
Real-Time Path Planning using a Simulation-based
Markovian Decision Process. In 31st SGAI International
Conference on AI (to appear), 2011.

[21] N. Muscettola. HSTS: Integrating planning and schedul-
ing. In Intelligent Scheduling, pages 169–212. Morgan
Kaufmann, 1994.

[22] A. Pease and T. Carrico. Object model working group
core plan representation. Technical Report AL/HR-TP-
1996-0031, United States Air Force Armstrong Labora-
tory, Wright-Patterson AFB, OH, 1996.

[23] S. Potter, A. Tate, and G. Wickler. Using I-X process
panels as intelligent to-do lists for agent coordination in
emergency response. In Proc. 3rd Information Systems
for Crisis Response and Management (ISCRAM), 2006.

[24] R. Reiter. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[25] A. Riabov and Z. Liu. Scalable planning for distributed
stream processing systems. In Proc. ICAPS, Cumbria,
UK, 2006.

[26] Roman Bartak, Simone Fratini, and Lee McCluskey. The
third competition on knowledge engineering for planning
and scheduling. AI Magazine, Spring 2010, 2010.

[27] S.Chien, G. Rabideau B. Smith, Nicola N. Muscettola,
and K. Rajan. Automated planning and scheduling for
goal-based autonomous spacecraft. IEEE Intelligent Sys-
tems, 13:50–55, September 1998.

[28] J.A. Shin and E. Davis. Processes and continuous change
in a sat-based planner. Artificial Intelligence, 166, 2005.

[29] A. Tate. Roots of SPAR—shared planning and activity
representation. The Knowledge Engineering Review, 13,
1998.

[30] A. Tate. <I-N-C-A>: A shared model for mixed-initiative
synthesis tasks. In Proc. IJCAI Workshop on Mixed-
Initiative Intelligent Systems, 2003.

[31] A. Walczak, L. Braubach, A. Pokahr, and W. Lamers-
dorf. Augmenting BDI Agents with Deliberative Plan-
ning Techniques. In in The Fifth International Workshop
on Programming Multiagent Systems (PROMAS, 2006.

[32] G. Wickler. Using planning domain features to facili-
tate knowledge engineering. In Proc. KEPS Workshop,
ICAPS, 2011.

[33] G. Wickler, A. Tate, and J. Hansberger. Supporting col-
laborative operations within a coalition personnel recov-
ery center. In Proc. 4th Knowledge Systems for Coalition
Operations (KSCO), pages 14–19, 2007.

[34] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering Re-
view, 10(2):115–152, 1995.

[35] S. Yoon and S.Kambhampati. Towards model-lite plan-
ning: A proposal for learning & planning with incomplete
domain models. In Proc. Workshop on AI Planning and
Learning, ICAPS, 2007.

[36] H.H. Zhuo, Q. Yang, D. H. Hu, and L. Li. Learning
complex action models with quantifiers and logical im-
plications. Artificial Intelligence, 174(18):1540 – 1569,
2010.

6



Track Record of Proposers

The University of Huddersfield

T.L.McCluskey (PI): Prof Lee McCluskey ob-
tained a PhD in computer science while working as
a lecturer at the City University in 1989. He holds a
BSc and MSc in Mathematics from the Universities
of Newcastle and Warwick respectively. During the
last 25 years he has been research active in areas such
as APS, Machine Learning, Knowledge Engineering,
Formal Methods and Domain Modelling. Currently
he is Professor of Software Technology at the Uni-
versity of Huddersfield, where he is Research Direc-
tor in the School of Computing and Engineering at
Huddersfield. The School holds over 100 PhD stu-
dents, has just secured a c.£8 million research grant
for an EPSRC Centre in Innovative Manufacturing
in Avanced Metrology, and will play a major role
in the University’s new c.£12 million Enterprise and
Innovation Centre to be opened in May 2012. His
relevant expertise for the project falls into several
categories:
Knowledge Engineering, Domain Modelling
and Verification and Validation: In the early
1990’s McCluskey led a series of projects funded ini-
tially by the CAA, then by the National Air Traffic
Services, under the heading of FAROAS (formali-
sation and animation of requirements for oceanic
aircraft separation), successfully delivering a do-
main model called the CPS. Written in many-
sorted first-order logic, the CPS embodied separa-
tion criteria for aircraft management in the North
Atlantic, and was secured in a tools environment
which enabled its verification, validation, animation
and maintenance.
Knowledge Engineering for Planning
(KEPS): McCluskey’s basic research [4] resulted
in the five partner EPSRC responsive mode project
(GR/M67421) Planform: An Open Environment
for Building Planners for which he was overall
leader. This led to the development and integration
of planning technology, notably the development
at Huddersfield of KEPS software called GIPO [6].
In 2005 at Monterey, USA, GIPO won the best
tools award at the First International Competition
on Knowledge Engineering for AI Planning and
Scheduling (ICKEPS), and has had a leading role in
shaping subsequent research in the area. Currently
McCluskey works closely with Roman Bartak of
Charles University, Prague, in organising annual
events in KEPS at the annual ICAPS conferences.
Machine Learning: Prof McCluskey’s PhD was in
the area of machine learning of heuristics for domain
independent planners. Combining his machine learn-
ing work with engineering of domain models led to
the EPSRC responsive mode project (GR/K73152)
IMPRESS: Improving the Quality of Formal Re-
quirements Specifications Using Machine Learning

Techniques (1996-98) which developed meta-tool
technology to investigate the application of machine
learning to the validation of domain models. The
project successfully developed tools based on the-
ory revision which automatically revised the CPS
model to fit with training data [5]. Recently he has
returned to work on applying machine learning to
APS, concentrating on using training examples to
learn planning domain models. This research has
been embodied two learning tools: Opmaker for
learning from one plan script example and LOCM [2]
for learning from many example plans. This, and his
earlier work on theory revision, will directly support
research in WP5 of this proposal.
Autonomic Systems in Transport: Currently
Prof McCluskey is leading COST Action 1103 called
Towards Autonomic Road Traffic Support Sys-
tems (2011-15) with 30 partners throughout Eu-
rope. This aims to integrate disparate research in
intelligent traffic management. Its research focus of
self-managing, self-maintaining, self-protecting, and
self-adapting systems will intersect and create syn-
ergies with the proposed research project.
Leadership in the AI Plannng Commu-
nity: Prof McCluskey was a proposal co-author,
and a Network Executive member, of the 60 node
Planet II, European Network of Excellence in AI
Planning (2001-2003). He led the development
of Planet’s roadmap on KEPS, and co-ordinated
Planet’s technical unit in this area. He was con-
ference co-chair of the ICAPS 2006, and will be pro-
gram co-chair of ICAPS 2012 with Brian Williams,
Professor of Aeronautics and Astronautics at MIT.
He has helped organise and contributed to many
ICAPS workshops relevant to this proposal, includ-
ing in knowledge engineering, verification and vali-
dation, machine learning, and applying planning to
real world problems. Currently he is organising the
UK PlanSIG (the UK’s annual workshop on APS) at
The University of Huddersfield to be held in Decem-
ber 2011.

The University of Edinburgh

Austin Tate (PI): Prof Austin Tate holds the Chair
in Knowledge-Based Systems at the University of Ed-
inburgh and is the Director of the Artificial Intelli-
gence Applications Institute at the University. He
helped form AIAI in 1984 and since that time has
led its efforts to transfer the technologies and meth-
ods of artificial intelligence and knowledge systems
into commercial, governmental and academic appli-
cations throughout the world. He holds degrees in
Computer Studies (B.A. Lancaster, 1972) and Ma-
chine Intelligence (Ph.D. Edinburgh, 1975). He is a
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professionally Chartered Engineer.
Prof. Tate is a Fellow of the Royal Society of Ed-

inburgh (Scotland’s National Academy) and Fellow
of a number or organisations: the Association for the
Advancement of AI, European AI, the British Com-
puter Society, the British Interplanetary Society and
the International Workflow Management Coalition.
He is a Senior Visiting Research Scientist at the In-
stitute of Human Machine Cognition in Florida.

Prof. Tate is an international authority on
Knowledge-Based Planning and Activity Manage-
ment Systems [8, 3, 7] and is involved with indus-
trial and governmental organisations deploying AI
technology in the UK, Europe, Japan and the USA.
Work has involved Command, Planning and Con-
trol for activities such as Non-combatant Evacua-
tion Operations, Air Campaign Planning (including
work with the Pentagon), US Army Small Unit Op-
erations, Emergency Response and Disaster Relief.
A number of projects in the UK and internation-
ally have involved Search and Rescue Coordination,
Personnel Recovery and Multi-national Coalition or
Joint Forces Planning and Execution Aids.

Prof. Tate’s team is funded by governments
and businesses across the world. His research is
supported by the US Defense Advanced Research
Projects Agency (DARPA), the US Air Force Re-
search Laboratory (Rome, NY), and UK Defence Sci-
ence Technology Labs (DSTL) amongst other organ-
isations. He has been engaged on some of the lead-
ing US Defence Advanced Research Projects Agency
(DARPA) funded programs such as Planning Initia-
tive, Agent-Based Computing and Semantic Web
programs. He is Edinburgh Principal Investigator for
the £7 million 6 year Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collabo-
ration funded in the UK (EPSRC GR/N15764/01).
He is a key scientist on the European Union funded
OpenKnowledge project, involving some of the top
European research groups involved in peer-to-peer
agent systems for emergency response. He also
led the international Coalition Agent eXperiment
(CoAX) project involving some 30 organizations in 4
countries over a 3 year period. He is Chief Technical
Officer of I-C2 Systems Ltd. - a company seeking to
develop advanced aids for emergency response.

Prof. Tate is on the Senior Advisory Board for
the highly-rated IEEE Intelligent Systems journal and
is a member of the editorial board of a number of
other journals. The grants held by Prof Tate re-
cently include: OpenVCE: Army Research Lab (ARL,
US), $400,000, 2009–2010; FireGrid: Building Re-
search Establishment (BRE) via grant from Depart-
ment of Trade and Industry (DTI), £2.4 million,
£161,835 to AIAI, 2006–2009; OpenKnowledge:
2.3 million Euros, 2006–2008; Slam Games via ITI
TechMedia (Scotland), £50,000 consultancy, 2005–
2006; Scottish Enterprise IM-PACs POC+ £41,379,
2005–2006; Co-OPR2, DARPA, $400,000, 2005–
2007; Co-OPR, DARPA/SAIC $350,000, 2004–
2005; Scottish Enterprise IM-PACs POC £169,985,
2004–2005; FASTC2AP, DARPA/Global InfoTek
$100,000; CoSAR-TS, DARPA/AFRL $280,000;
CoAKTinG, EPSRC/e-Science, £500,000; Ad-
vanced Knowledge Technologies (AKT) Interdisci-
plinary Research Collaboration (IRC), EPSRC grant

number GR/N15764/01, total value: £7,000,000,
Edinburgh value: £1,300,000; I-X and Coalition
Agents eXperiment (CoAX), DARPA, £2.6 million
enterprise and process modelling project, $800,000;
etc.

Gerhard Wickler: In 1996 Gerhard Wickler
moved to Edinburgh to start his PhD studies in the
area of AI Planning, which he successfully completed
in 1999. He went on to hold research positions in
Italy, Belgium, and Germany, working in several ar-
eas of AI. Since 2004 he has been senior researcher at
the Artificial Intelligence Application Institute (AIAI)
within the School of Informatics at the University of
Edinburgh, where he teaches the AI Planning course.

Dr. Wickler regularly publishes in AI-related con-
ferences and journals, reporting on his research in
AI Planning and Intelligent Agents applied to emer-
gency response [10, 9]. He is an active reviewer
for a number of conferences and journals. He has
been a member of the programme committees for
various workshops and conferences, including the In-
telligent Systems track at ISCRAM. He is currently
principal investigator and grant holder of an EOARD-
funded research project in the area of AI planning
and plan execution. In May 2010, he was elected
onto the board of directors of the ISCRAM Associ-
ation and has received the ISCRAM Distinguished
Service Award.
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