
aiai/hardy/um/1.3

Arti�cial Intelligence Applications Institute

Hardy

User Guide

Prepared by

Julian Smart and Robert Rae

Arti�cial Intelligence Applications Institute
The University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, UK

21st February 1996

Version 1.3

Copyright c
 1995 by Arti�cial Intelligence Applications Institute, The University of Edinburgh

aiai/hardy/um/1.3 Page 1

Contents

1 Introduction 6

1.1 Diagramming : 6

1.2 Hardy and hypertext : 7

1.3 Manual conventions : 8

2 Running Hardy 9

2.1 Starting a session : 9

2.2 Ending a session : 9

2.3 Command line options : 9

2.4 Hardy resources : 10

2.5 Files used by Hardy : 12

2.6 Hardy application associations : 12

2.7 Packaging Hardy �les : 13

3 Using Hardy 15

3.1 Hardy conventions : 15

3.1.1 Mouse conventions : 15

3.1.2 Cursor patterns : 15

3.2 Creating cards : 16

3.3 Browsing : 16

3.3.1 Card browsing : 17

3.3.2 File browsing : 18

3.4 Ordering your screen : 19

3.5 Hypertext links, cards and items : 19

3.6 Cards and �les : 19

3.7 Preferences : 20

4 Diagram cards 21

4.1 Creating new diagrams : 21

4.2 Creating nodes : 21

4.3 Creating arcs : 22

4.4 Selecting nodes and arcs : 22

4.5 Labelling nodes and arcs : 22

4.6 Object attributes : 23

4.7 Multi-way arcs : 23

4.8 Deleting nodes and arcs : 24

4.9 Layout : 24

aiai/hardy/um/1.3 Page 2

4.9.1 Arc attachment points : 25

4.9.2 The toolbar : 25

4.10 Hyperlinks : 26

4.10.1 Linking arcs and nodes to cards : 26

4.10.2 Linking cards to cards : 26

4.10.3 The hyperlinks panel : 26

4.11 Diagram expansion cards : 27

4.11.1 Same object, di�erent cards : 27

4.12 Containers : 28

4.13 Printing diagrams : 28

4.13.1 Printing under X : 28

4.13.2 Printing under MS Windows : 29

4.14 Diagram card options : 30

4.15 Diagram editing summary : 30

4.16 Mouse functionality : 32

4.16.1 Left button : 32

4.16.2 Right button : 33

5 Text cards 35

5.1 Editing text cards : 35

5.2 Linking text cards : 36

5.3 Mouse functionality : 36

5.3.1 Left button : 36

5.3.2 Right button : 36

6 Hypertext cards 37

6.1 Hypertext blocks : 38

6.2 Editing hypertext cards : 38

6.3 Mouse functionality : 38

6.3.1 Left button : 38

6.3.2 Right button : 39

7 Media cards 40

7.1 Media blocks : 40

7.2 Editing media cards : 40

7.3 Mouse functionality : 41

7.3.1 Left button : 41

7.3.2 Right button : 41

8 Symbols 42

8.1 Symbol properties : 42

aiai/hardy/um/1.3 Page 3

8.1.1 Meta�les : 42

8.1.2 Arc symbols : 43

8.1.3 Arc annotations : 43

8.1.4 Node symbols : 43

8.1.5 Attachment points : 44

8.1.6 Divided nodes : 45

8.1.7 Polyline symbols : 45

8.2 Symbol librarian : 46

8.2.1 Appearance and functionality : 46

8.2.2 Buttons : 46

8.2.3 Mouse and cursor functionality : 47

8.3 Symbol libraries : 48

8.3.1 Appearance and functionality : 48

8.3.2 Menu options : 48

8.3.3 Mouse and cursor functionality : 49

8.4 Node symbol editor : 49

8.4.1 Appearance and functionality : 49

8.4.2 Menu options : 50

8.4.3 Mouse and cursor functionality : 51

8.4.4 Node symbol constraints : 53

8.5 Arc symbol editor : 55

8.5.1 Appearance and functionality : 55

8.5.2 Menu options : 55

8.5.3 Mouse and cursor functionality : 56

9 Card types 57

9.1 Diagram card types : 57

9.1.1 New diagram types : 57

9.1.2 Node type editor : 60

9.1.3 Node images : 62

9.1.4 Drop sites : 63

9.1.5 Drop site editor : 63

9.1.6 Node annotation symbols : 64

9.1.7 Containment : 64

9.1.8 Regions : 64

9.1.9 Arc type editor : 65

9.1.10 Arc constraints : 68

9.1.11 Arc images : 68

9.1.12 Arc type annotations : 68

9.1.13 Multi-way arcs and junction symbols : : : : : : : : : : : : : : : : : : 69

aiai/hardy/um/1.3 Page 4

9.2 Hypertext card types : 70

9.2.1 New hypertext types : 70

9.2.2 Hypertext block mappings : 72

9.3 Custom menus : 73

9.4 Saving card type de�nitions : 73

9.5 Editing previously created card type de�nitions : : : : : : : : : : : : : : : : 73

10 Di�erences between the X and Windows versions 75

10.1 Printing : 75

10.2 The clipboard : 75

10.3 MDI mode : 75

10.4 Text editing : 76

11 Programming Hardy 77

11.1 The Hardy CLIPS environment : 77

11.2 Debugging CLIPS code : 78

11.3 Diagram and hypertext structures : 79

12 Hardy Functions Reference 80

12.1 Card index functions : 81

12.2 Card functions : 82

12.3 Item functions : 87

12.4 Link functions : 88

12.5 Arc image functions : 90

12.6 Diagram card functions : 94

12.7 Diagram object functions : 101

12.8 Diagram palette functions : 103

12.9 Diagram image functions : 105

12.10 Node image functions : 112

12.11 Node object functions : 115

12.12 Arc annotation functions : 116

12.13 Container region functions : 117

12.14 Hypertext card functions : 118

12.14.1 Items : 121

12.15 Hypertext card block functions : 121

12.16 Hypertext card item functions : 122

12.17 Media card functions : 124

12.17.1Events : 124

12.18 Text card functions : 131

12.19 Diagram De�nition functions : 132

aiai/hardy/um/1.3 Page 5

12.20 Windows printing functions : 134

12.20.1Windows printing event handlers : 134

12.21 Miscellaneous functions : 138

12.22 Menu command identi�ers : 148

12.22.1Hardy main window commands : 148

12.22.2Generic card commands : 149

12.22.3Diagram card commands : 149

12.22.4Hypertext card commands : 151

12.22.5Text card commands : 151

Glossary 152

Index 154

aiai/hardy/um/1.3 Page 6

1 Introduction

Hardy is a tool that has been designed and developed by the Arti�cial Intelligence Applica-
tions Institute at The University of Edinburgh, primarily for diagramming applications. It
runs on Unix workstations under Motif or Open Look, and on PCs under Windows 3.1.

In this manual, the Windows version of Hardy is referred to as Hardy for Windows.

1.1 Diagramming

The idea behind Hardy is very simple. The diagram is a fundamental tool that is essential
to many analysis and design activities. Diagrams provide an intuitive way of expressing
relationships between concepts which most people can relate to, unlike most formal languages
and notations. However, though diagrams are often easily drawn with pencil and paper, any
subsequent modi�cation normally means that the whole diagram has to be re-drawn, with
all the usual problems of consistency checking, etc. Some support for diagramming can
be provided by conventional computer-based drawing tools, but these su�er from two main
draw-backs.

Firstly, tools are not normally speci�c to the type of diagram required; for example, when an
image is erased or moved, there is no knowledge of what other images are related to it, so any
links to and from the image remain where they were. Secondly, in most cases the diagram
cannot be directly processed|the diagram must �rst be translated by hand to a di�erent
representation. In those tools that overcome these shortcomings, the types of diagram and
means of customisation provided are limited; in addition, high costs are normally associated
with them.

Hardy allows the user to build a diagram type (such as a data
ow diagram type) or to use a
type already provided by someone else. The user may then select a type and rapidly produce
diagrams, which consist essentially of a number of nodes linked by arcs. When constructing
a diagram, arcs will follow nodes when they are moved, and values may be entered for node
and arc attributes that are speci�ed in the diagram type.

Once created, diagrams can be output in a variety of formats which allow the underlying
system model to be processed by another program, so that Hardy can be used, for instance,
as a knowledge capture tool feeding directly into a Knowledge Based System, or transformed
into a document with mixed text and graphics, so that (for example) the documentation of
organisational procedures becomes much less arduous. Hardy can also be used to display
diagrams generated by other programs.

To achieve a greater degree of customisation, Hardy supports an Application Programmer's
Interface. This allows the card type designer to intercept events such as selecting a menu
item or clicking on a diagram node and implement specialised layout algorithms or animate
particular scenarios.

aiai/hardy/um/1.3 Page 7

1.2 Hardy and hypertext

Figure 1.1: Example Hardy session under X

The diagramming capabilities of Hardy are built on top of a hypertext framework in which
each diagram has its own card (window), and cards may be linked together to form a tree
or network. The user may browse through this network, either by following hypertext links
or by viewing the index tree and clicking on a card title.

Diagrams have a habit of being hierarchical, with a node on a high-level diagram representing
an entire diagramat a lower level. Hardy supports this type of organisation though expansion
cards. A diagram card with its expansion cards will all be treated as a single unit, being
held in one �le, for instance.

Figure 1.1 shows several elements of a Hardy session. Going clockwise, the top left window
is the control window , the main window of the application. The control window can display
a map of the cards, as shown here, and is also used for various administrative tasks, such
as loading and saving index �les. In front, to the right, is a diagram card with its symbol
palette. On top of this is another diagram card and symbol palette of a di�erent type, for
which the user is editing the attributes of one of its nodes. To the left and at the bottom,
is the Diagram Type Manager , a tool for de�ning and changing diagram types.

In addition to diagram cards, the user may create text cards, for example to document a
diagram. Above and behind the Diagram Type Manager is a hypertext card using several
di�erent fonts, to which other cards have been linked.

aiai/hardy/um/1.3 Page 8

1.3 Manual conventions

In this document, the following conventions will be used.

A term will be italicised when �rst used, as in hypertext card, above.

The names of particular �les will be shown using a \teletype" face, as in diagrams.def. The
same face will also be used for particular function names, as in diagram-card-find-root.

Button labels will be shown in bold face, for instance OK, and the notationMenu: Entry
will refer to the entry Entry on the menu Menu.

aiai/hardy/um/1.3 Page 9

2 Running Hardy

To run Hardy, you require a serial number, which may be obtained from AIAI if you are an
academic user, or have otherwise arranged with AIAI to use Hardy.

This serial number should be entered into Hardy using the Tools: Preferencemenu. Click
on the Serial number button, enter the number, and restart Hardy.

2.1 Starting a session

It is normally useful to tell Hardy the type of cards and symbols you expect to use during
a session so that they are immediately available. This is done through a �le which contains
information on all the de�nitions needed. Its default name is diagrams.def so, before
running Hardy, this �le should be in your working directory or you should tell the system
which alternative �le you require.

This can be done either by specifying it on the command line through the -def
ag followed
by the full name of the �le required (see Section 2.3), or by specifying it as a resource in
WIN.INI under Windows or in .hardyrc under X (see Section 2.4).

To run Hardy under UNIX, just type hardy. Under Windows, install the program in the
Program Manager by dragging hardy.exe from the File Manager.

If Hardy cannot �nd the diagram de�nition �le, however it is speci�ed, it will give you a
warning. Under Open Look, other messages may also appear warning that it cannot load
certain fonts. This is normal: Hardy is just searching for a font which is not available.

2.2 Ending a session

To exit from Hardy, use the File: Exit Hardy menu from the control window.

2.3 Command line options

Many system defaults can be over-ridden by giving options on the command line. For
instance, to specify an initial hypertext index �le, use the -f option followed by the �le
name, or to specify the directories in which to search for �les, use the -path option followed
by the full directory name.

These are Hardy's command line options for both UNIX and Windows, unless stated oth-
erwise:

-block �lename
Specify a block type de�nition �le(see Section 6).

-clips �lename
Specify a CLIPS �lename to batch.

-def �lename
Use the speci�ed global diagram de�nition �le, instead of the default diagrams.def in

aiai/hardy/um/1.3 Page 10

the current directory. This �le mentions all the diagram de�nition �les which should
be loaded on running.

-dir directory
Change to the given directory before loading CLIPS and other �les. Useful to avoid
specifying directories in CLIPS application code.

-h Print a screen summarising the command line options (UNIX only).

-help Print the list of recognised command line options (UNIX only).

-load �lename
Specify a CLIPS �lename to load (�le must contain constructs only).

-mdi Run in MDI (Multiple Document Interface) mode (Windows only).
In this mode, child windows are constrained by the main window. This is the default
under Windows. NOTE: this option has been withdrawn from version 1.76.

-nobanner Suppress the opening screen, regardless of initialisation �le setting.

-path path
Add the given path to Hardy's path search list. This enables Hardy to �nd �les which
are not in the current directory or whose absolute path name is incorrect, perhaps due
to transfer of �les between UNIX and PC. This switch may be used repeatedly to add
more than one path.

-Pprinter
Substitute printer with a printer name to use as the default printer.

-port integer
Specify a port number if Hardy is used as a DDE server.

-sdi Run in SDI (Single Document Interface) mode (Windows only).
In this mode, windows are not constrained by the main window. NOTE: this option
has been withdrawn from version 1.76.

-server Use as a DDE server.

-version Display the current version number.

2.4 Hardy resources

Under Windows, Hardy resources should be held in the Hardy section of the �le WIN.INI.in
the form name = value.

Under X, they should be in the �le .hardyrc in your home directory in the form hardy.name
= value

An example of a WIN.INI entry is as follows:

[hardy]

definitionList=c:\diagrams\diagrams.def

For .hardyrc, the equivalent is the line:

hardy.definitionList=/user/11/jacs/diagrams/diagrams.def

aiai/hardy/um/1.3 Page 11

Below are some of Hardy's resource names for use in both UNIX and Windows versions,
unless otherwise stated.

de�nitionList = �lename (diagrams.def)
List of diagram de�nition �les.

objectBitmapSize = integer (32)
Size in pixels of node/arc images on diagram symbol palette.

annotationBitmapSize = integer (32)
Size in pixels of annotation images on diagram symbol palette.

libraryBitmapSize = integer (32)
Size in pixels of images on symbol library palette.

showLinkPanelOnCreate = boolean (0)
If 1, show the hyperlink panel when a diagram card is created.

showToolBarOnCreate = boolean (1)
If 1, show the toolbar when a diagram card is created.

showPaletteOnCreate = boolean (1)
If 1, show the symbol palette when a diagram card is created.

showErrors = boolean (1)
If 1, route error messages to the Development Window.

displayCategories = boolean (0)
If 1, card types will be requested by the system as category then type.

clickToSelect = boolean (0)
If 0, clicking on an object will follow any hyperlink present, shift-clicking will select it.
If 1, clicking will select, shift-clicking will follow the hyperlink.

mdi = boolean (1) Windows only
If 1, run Hardy in MDI (Multiple Document Interface) mode. In this mode, child
windows are constrained by the main window. This is the default under Windows.

HARDYStart = boolean (1) Windows only
If 1, the audio �le hystart.wav will be played when the system is started.

HARDYExit = boolean (1) Windows only
If 1, the audio �le hyexit.wav will be played when the system is exited.

Standard defaults are shown in brackets.

aiai/hardy/um/1.3 Page 12

2.5 Files used by Hardy

Apart from the executable �le, hardy, the system will look for certain �les in your working
directory when it is started. The most important of these are:

1. diagrams.def{ a list of diagram type �les,

2. resources �le { contains your preferred settings for various system values (.hardyrc
under X or WIN.INI under Windows). See Section 2.4 .

Other information must also be available between Hardy sessions. Hardy uses �les for this
purpose, distinguishing several di�erent types of �le, each holding di�erent but related types
of information. Standard �lename extensions are used to identify these �les.

1. De�nition list �le (diagrams.def),

2. Symbol library �les (.slb),

3. Card collection index �les (.ind),

4. Diagram and hypertext de�nition �les (.def),

5. Diagram card �les (.dia),

6. Hypertext card �les (.hyp),

7. Text card �les (.txt).

8. Hardy package �les (.hpk). These are explained in Section 2.7 .

2.6 Hardy application associations

Just as you can associate �le extensions with programs in MS Windows, you can associate
particular application-de�ned �le extensions with Hardy command lines. The appropriate
command line will be invoked when Hardy encounters a �le which isn't an index �le, and
for which there is an entry in Hardy's association list.

This means that instead of invoking a speci�c Hardy application or document with a com-
mand line like this:

hardy -dir c:\hardy\tree -clips treeload.clp -f demo.tre

you could instead use:

hardy demo.tre

or, if no application main �le needs to be speci�ed,

hardy tre

which will put Hardy into the required application state.

What is the nature of demo.tre? Well, it could be a normal index �le, or it could be an
application-speci�c �le, unrecognised by Hardy. In the latter case, the application code

aiai/hardy/um/1.3 Page 13

should register an OnLoadFile event handler which will be called when Hardy �nds the
application association and after it has executed the associated command line. If there is
no OnLoadFile event handler, Hardy will assume the �le is a normal index �le.

You can edit the associations by selecting the Preferences dialog and clicking on the As-
sociations button. The Hardy Application associations dialog will appear, with a list of
applications (initially empty). To add an application association, click on Add, and �ll in
the Extension,Name and Command �elds. Click on a listbox item or Ok to register the
extension.

The values of the dialog �elds should be �lled in as follows:

� Extension: this is a short �le extension unique to the application, such as `tre' or `btk'.

� Name: the name of the application, e.g. Tree Drawing Demo.

� Command: the Hardy command line that will be executed by Hardy to activate the
application. It should not include an index-loading command (-f) since this index
loading will be done automatically by Hardy if necessary. An example:

-dir {HARDYDIR}\tree -clips treeload.clp

Note the {HARDYDIR} keyword which will be substituted by the Hardy directory as
determined by the HARDY environment variable, or hardy installation directory, or
hardy directory under the user's UNIX home directory.

To delete an assocation, press theDelete button. Unfortunately the entry will not be deleted
in win.ini (or other) initialisation �le unless further items are added: edit the initialisation
�le by hand if necessary.

Under Windows, it's a good idea to use the File Manager to associate the .hpk extension (see
next section) with the runhardy.exe program. You can also edit win.ini to do this. This will
allow double clicking on a Hardy package �le to run or reset Hardy and load the appropriate
�les. It will also allow World Wide Web browsers to do the right thing when you click on a
.hpk �le.

If when trying to use the associations, Hardy does not seem to be loading the application
properly, check that the index �lename has the correct extension. Hardy needs the extension
to be correct for it to load the required de�nition �les properly.

2.7 Packaging Hardy �les

Because a single application or document may use several �les, maintaining and distributing
such �les can become inconvenient. Hardy provides a `composite' �le type with extension
.hpk which packages several Hardy or user �les into one �le. Hardy recognises the extension
and unpacks the �les into the standard Hardy area before executing the associated command
line contained in the package �le (if any). The standard Hardy area is determined by the
HARDY environment variable, or if this is unde�ned, the Hardy installation directory under
Windows or, under UNIX, the directory hardy under the user's home directory.

aiai/hardy/um/1.3 Page 14

As mentioned above, under MS Windows you can associate the .hpk extension with the
program runhardy.exe to allow invocation of Hardy when double-clicking on a .hpk �le from
the File Manager or Web browser. The reason why you need to associate the extension with
runhardy.exe instead of hardy.exe is that only one copy of Hardy can run at a time under
Windows, and runhardy.exe will communicate with Hardy by DDE if it is already running.

If the .hpk �le is identi�ed as residing in a temporary directory (such as TEMP or /tmp),
it will be deleted after unpacking.

To create your own .hpk �les, invoke the Package tool from the Hardy Tools menu. In the
HPK Filename text box, enter the full pathname of the package �le to be created, with
.hpk extension.

In the Current root directory text box, enter the path to be subtracted from the real
�le path when storing in the package �le. So if your application is stored in the directory
c:\hardy\apps\test, you might enter the directory c:\hardy\apps. In this case, the
package �le will contain �les such as test\load.clp. This allows unpacking into a directory
relative to the user's standard Hardy data directory instead of replicating your original
directory structure.

Use the Add button to add �les to the list, and Delete to remove them. Check the Load
checkbox for a �le which is to be designated the application �le to load immediately (if any).

Enter an optional comment into theComment text box, and inAssociation, enter an asso-
ciation string of the same syntax used in the Association list as invoked from the Preferences
dialog. For example:

btk,BITKit,-dir {HARDYDIR}\thing -clips load.clp

This consists of an extension, an application name, and a Hardy command line. You should
not put a -f switch on this command line since an index or application main �le will be
invoked automatically if appropriate. You can use the keyword {HARDYDIR} to stand in for
the user's current Hardy directory, where �les are unpacked to.

When you have entered the details of the package �le, you can save these details as a package
�le list (.p
 extension) for later loading. Press the Generate button to generate the Hardy
package �le.

aiai/hardy/um/1.3 Page 15

3 Using Hardy

3.1 Hardy conventions

Hardy uses the keyboard, mouse and cursor in a regular way, so that you get similar e�ects
from doing similar things anywhere in the system.

3.1.1 Mouse conventions

Generally, Hardy uses the left mouse button only, with the right button being used to provide
short-cuts for common operations. We never use other buttons even if they exist.

With each mouse button, we can do three basic things:

1. Click on { move the cursor to where you want it, then depress and immediately release
the button.

2. Double-click on { move the cursor to where you want it, then depress and immediately
release the button twice in rapid succession.

3. Click-and-drag { move the cursor to where you want it, then depress the button and
move the mouse, dragging the cursor to the new screen position, then release the
button.

These operations may be modi�ed by the control and the shift keys, so that control-click
means: move the cursor to where you want it, then depress and immediately release the
mouse button while holding down the control key.

We'll talk about \pressing" a button when we mean:

move the cursor over the button and click on it

and \choosing" a menu entry will mean:

move the cursor over the menu, depress the button to open the menu and keep
it depressed, then move the cursor down to the menu entry required, and then
release the button.

3.1.2 Cursor patterns

Six di�erent cursors are used by Hardy, as follows:

pointer normal default pattern,

text pointer used when entering text,

hand used when you can move items around in a window,

cross-hairs used in a window when something has been selected and can be \dropped"
onto the window,

aiai/hardy/um/1.3 Page 16

bulls-eye when you move an arc from one point to another on a node,

hourglass/stopwatch used whenever a noticeable delay is expected, such as when loading
a �le.

3.2 Creating cards

Start Hardy without specifying any command line options, etc. The main control window
will appear with the menus File, Cards, Tools and Help. Initially, there will be nothing
on the canvas.

To create your �rst card, select the Cards: Create top card entry. A choice of card types
is presented; try the Text card option since this is the simplest. Select it and press the
OK button. A new window appears with a blank text subwindow.

Figure 3.1: Hardy control window and text card

Now you can try making use of hypertext. There are four menus, File, Edit, Hyperlinks
and Help on this new card. Goto the Hyperlinks menu of the new cardand select the
Link new card option. Again, choose a text card. Another new card appears, linked to
the original one. Link another card to the new one. Link a further card to the original card.
The set of cards you've built up is shown as a treein the control window. The �rst card is
called the Top Card since it's at the top or root of the hypertext `tree'.

You can use the File: Open �le menu entry to associate a text �le with the last card you
created. Any text �le will do.

3.3 Browsing

There are two ways in which the term Browsing is used in Hardy.

� Card browsing gives the user an overview of cards in the current index.

aiai/hardy/um/1.3 Page 17

Figure 3.2: Linked cards

� File browsing gives detail on various kinds of Hardy �le on disk, and allows loading
these at will without having to know which tool to invoke �rst.

3.3.1 Card browsing

Although the tree of cards is shown in the control window, you may not know which card is
which by now, because the cards all have the same title. The title of a card can be changed
with the File: Card title menu entry. Change the titles of the Top Card and the second
card you created, say. The changed titles are not shown immediately in the control window.
You can ask for the tree to be redrawn by going back to the control window and selecting
the Cards: Draw tree entry. Clicking on a title in this tree index gets you directly to the
relevant card.

You can also search on card titles using the Cards: Search item. The Card Search dialog
allows entry of a search string (or the *" wildcard to �nd all cards), and pressing Search
causes all matching titles to be displayed. Clicking on a title in the index tree brings the
corresponding card to the front of the stack.

Press OK to quit from Card Search.

aiai/hardy/um/1.3 Page 18

Figure 3.3: Renamed cards

3.3.2 File browsing

Instead of loading �les individually from di�erent tools and menus, it is possible to use the
File browser. This is accessible from the File: Browse �les menu on the control window. The
�le browser dialog shows a list of �les, information about each �le, and a list of directories
so the user can navigate around the disk.

Single clicking on a �le in the Files displays information about it in the Description area,
and double clicking loads this �le. Note that almost all Hardy �le types are supported in
the �le browser, although it is not always possible to load displayed �les since a speci�c
diagram �le, for example, might rely on a diagram type being already loaded. The user will
be warned if an attempt is made to load a �le whose type is not present.

There are checkboxes to allow selective browsing, and a Show detail checkbox to toggle
between high detail mode (which can be slow) or lower detail mode (faster).

A restricted version of the �le browser is available from other tools, such as the diagram
card. The diagram card �le browser allows browsing of �les whose types match the type of
that card.

aiai/hardy/um/1.3 Page 19

3.4 Ordering your screen

The screen may be getting a bit cluttered by now. To hide cards, select the File: Quit card
option on a card's File menu. This gets rid of the physical window, while keeping a record
of the card in the hypertext index. (This is very di�erent from the File: Delete option,
which erases the card completely from Hardy's memory.) When you refer to a hidden card
from another card, or from the control window, the card will spring into life again. This
means that a hypertext index can consist of hundreds of cards without becoming totally
unworkable on the screen. You need to keep visible only the cards you are working with at
any given time.

If you delete a card, its links with other cards will disappear. Sometimes this means that
cards are `orphaned': they have no parents from which the user can get to the child. These
can be linked up again by using the Cards: Find orphans option, choosing one of them,
and selecting that card by using the Hyperlinks: Select card option. You can then go to
another card and choose the Hyperlinks: Link card to selection option.

3.5 Hypertext links, cards and items

So far, links between information have always involved cards. However, linking a card with
another card is only a special case of linking an item with an item. Hardy considers a card
to contain a number of items, and these items may be linked with other items in the same
or a di�erent card.

The items in a diagram card are nodes and arcs. In a hypertext card, items are blocks of
text.

3.6 Cards and �les

Hardy uses �les to save information from one session to another. Several di�erent types
of �le are involved (see Section 2.5). For instance, every card has a �le associated with
it which will have to be saved individually if the card has been changed. (The exception is
any diagram expansion card which is always a `descendant' of a diagram card. Expansion
card contents are saved with the ancestor diagram card, so that an entire hierarchy is stored
in one �le.) In addition, the main hypertext index which contains pointers to the card �les
and the links between cards will need to be updated. These �les may be saved through the
File: Save option on each card and on the main Hardy window.

Before saving a diagram to a �le, Hardy will make a backup of any �le with the same name
by copying it to a �le with a .bak extension. If for any reason Hardy crashes, leaving your
diagram �le in an unloadable state, or you need to get back to the previous version for some
other reason, this backup �le is available for editing, etc.

Index �les can also be recovered if you forget to save the them. Each card is designed to
be able to load a card �le independently of the main index (assuming it's of an appropriate
type). Therefore you can reconstruct a hypertext index manually, creating new cards and
loading them with the appropriate �les. This also means that you can import card contents
from other sessions.

aiai/hardy/um/1.3 Page 20

If you try to exit Hardy without saving the index �le after changes have been made to it,
or without saving changed cards, you will usually be asked if you want to save the changes.
The same goes for individual cards which are being deleted.

3.7 Preferences

You can set some system values to suit yourself and save them between sessions to give the
default behaviour that you want. You can, for instance, say whether or not you want to
show the hyperlinks panel on every card, or what �le you want to use to hold your list of
diagram �les.

These \preferences" are set through the Preferences dialog box which is opened from the
\Preferences" entry on the \Tools" menu of the main control window.

To alter the default diagram de�nition list, select the text entry area labelled \Default
de�nition list" by clicking on it, then type in the name of the �le you want to use.

You can also set the sizes of the images used in library and diagram card palettes, again
by selecting the text entry area associated with the bitmap in question and changing the
contents to the value (in pixels) that you want.

The other preferences have boolean values which correspond to the state of the buttons
associated with them: if the button is depressed the value is true, if the button is not
depressed the value is false.

Once you have set all the values to be what you want, you press the OK button, whereupon
the system will accept the values and dismiss the dialog box. The dialog box can be dismissed
without changing any values by pressing Cancel.

These values are held between sessions in the �les .hardyrc under Unix,or WIN.INI under
Windows (see Section 2.4).

aiai/hardy/um/1.3 Page 21

4 Diagram cards

4.1 Creating new diagrams

New diagrams are created through the Cards: Create top card menu item of the control
window, or the Hyperlinks: Link new card menu option of an existing card. If you then
select the particular diagram type you wish to use (see Section 9.1.1),a new diagram card
will appear, together with a
oating symbol palette.

Figure 4.1: Example Hardy diagram card

The symbol palette is used for selecting the node and arc types that are available to you for
this type of diagram card.

A panel showing all the hyperlinkages to and from the card may be displayed on the right
side of the card. You can toggle this to be shown or hidden by using the Hyperlinks: Tog-
gle link panel displaymenu option. Similarly, you can save space on the card by hiding
the toolbar that appears at the top of the card below the menu bar through the Hyper-
links: Toggle toolbar option on the same menu. This toolbar gives easy access to some of
the most used text formatting and diagram layout facilities that are on the Layoutmenu(see
Section 4.9).

4.2 Creating nodes

You add a node to the diagram by choosing the one you want from the selection in the
symbol palette. To help you tell which is which, the name of the symbol below the cursor
is shown in the status line at the bottom of the diagram card as you move over the symbol
palette. When you've found the one you're after, click on the image in the palette, then
move your cursor back into the diagram card where it will change its shape to cross-hairs (a
large addition sign. This means that you can now place a node on the diagram by clicking

aiai/hardy/um/1.3 Page 22

where you want it.

Move the node to a di�erent place on the card by holding down the left button over the
shape, dragging the mouse to the new position, and releasing the button.

You can add more of these nodes by continuing to click where you want them. You can
always tell that clicking will drop something on to the window from the cross-hairs cursor
pattern.

You can label nodes so as to tell them apart. See Section 4.6 .

4.3 Creating arcs

An arc can be drawn between one node and one or more other nodes. Basically, this is
done using the right mouse button by clicking-and-dragging from the source node to the
destination node where the button is released. (You can draw an arc from a node back to
itself: in this case, you'll be asked to con�rm that that was what you really meant.) Most
of the time this is all that is necessary, however there are cases in which there is more than
one type of arc that can join the nodes. There are two ways of telling Hardy which arc you
want: either you can select the correct arc symbol from the diagram symbol palette before
you join the nodes, or you can wait until after you've asked the system to join the nodes
when it will pop-up a dialog box showing you which arcs might be suitable. You then select
the node you want and press the OK button to dismiss the dialog box. The arc will follow
the nodes correctly if you now move one of them.

4.4 Selecting nodes and arcs

Nodes and arcs may be selected by holding down the shift key and left-clicking over them.
Selection handles are shown around the shape to indicate that it is selected. The shape may
be deselected with the same operation. You can have more than one object selected at a
time.

A selected node may be resized by clicking-and-dragging on one of its selection handles; if
shift is also held down while a corner handle is moved, the shape will go back to its original
proportions.

Various other operations may be done on selected objects using the card's Edit menu.
Arcs may be divided into segments by selecting the arc (shift left click) and choosing the
Edit: Add control point menu option. A line or spline arc's control points, except for
the start and end points, may be dragged with the mouse to make the arc bend. Lines and
splines always start o� with no intermediate control points (giving a straight line).

4.5 Labelling nodes and arcs

Nodes and arcs can have more than one label if they have more than one text region. Nodes
only have more than one text regionif they are composite symbols (made up from more than
one basic shape(see Section 8.1.4). All arcs have three text regions: one at its start, one at
its middle, and one at its end. There will be one label for each text region. Each label has

aiai/hardy/um/1.3 Page 23

its own speci�ed appearance (its colour, font family and size, etc) and its own text string
which is held in one of the node's attributes. To change the label, you need to change the
value of the attribute holding its text (see Section 4.6).

4.6 Object attributes

An attribute is a de�ned component of the node which can be given a text string as its value
by the user through the Attribute Editor.

You open the the Attribute Editor by control-left-clicking on the node so that a window
pops-up with a list of all the node's attributes. The node label is usually called `label' or
`name'. The value of the selected attribute name is shown in the text entry area below the
list of attributes.

Under Unix only, you can now position the cursor in the text entry area by clicking, then
type in characters directly from the keyboard. To delete the character before the cursor use
the Back Space key; to delete the one after it use the Delete key.

Otherwise, you must press the Edit button below the text area whereupon a editor window
will appear. Which editor is used depends on your value for the EDITOR environment
variable. When you have made your changes and dismissed your editor, you must press the
OK button on the dialog box that also popped up so as to tell Hardy that you have �nished
with the editor. After you have made all the changes you want, press the OK button and
Hardy will accept them and dismiss the Attribute Editor. Or you can abandon all your
changes and leave the attribute values unaltered by pressing Cancel.

You can add a further attribute to the node by pressing the Add attribute button. This
will ask for the name of the attribute and add it to the list. You can then give it a value as
before. And you can remove an attribute that isn't required by selecting it from the list and
pressing the Delete attribute button. As before, no changes are made to your diagram
until you press OK, and you can always throw all your changes away by pressing Cancel.

Arcs have attributes in exactly the same way as nodes, and exactly the same Attribute
Editor is used to change them.

4.7 Multi-way arcs

As well as being able to join one node to another node, you can join one node to several
others (of the same type) with a single multi-way arc. You can do this in two di�erent
ways. Either you select all of the destination nodes then right-drag from the source node
to any one of the destination nodes, or you can connect an additional node to an existing
multi-way set-up, by �rst selecting the junction symbolthen right-dragging from the common
source node to the new node, as usual, to create a new connection from the existing junction
symbol to the new node.

If, for aesthetic purposes, you want to alter the way the multi-way arc is shown, you can
move the junction symbol around by �rst selecting it, then left-dragging it as though it were
a node symbol.

aiai/hardy/um/1.3 Page 24

4.8 Deleting nodes and arcs

There are two ways of deleting images: you can either select the shape(s) and use the
Edit: Cut menu entry, or you can right click on the image and select the pop-up menu's
Delete Image item. You can clear the whole card by using the Edit: Select all menu
item followed by Edit: cut.

The major advantage of using Edit: Cut is that the images deleted are actually copied
into an internal bu�er (and, under Windows, the Clipboard), so you can still change your
mind and replace the image by selecting the Edit: Paste menu entry. Edit: Paste will
add the contents of the clipboard back into the diagram. The same bu�er is used by
Edit: Copy which copies the selected objects into the bu�er but doesn't delete their images
from the diagram. This cut-and-paste mechanism will also work for copying images from
one card to another of the same type. Again, you can copy the entire card easily by using
Edit: Select all.

The entire card will be deleted if you use the File: Delete card menu entry, but this cannot
be undone.

4.9 Layout

The Layout menu provides several options to help create neat diagrams. To use the Align
vertically option, select several nodes and then choose the option. The �rst node selected
is taken to be the one which the others should be aligned with, in the vertical direction. The
Align horizontally option does the same thing in the horizontal direction.

The Straighten lines option acts on a selected multiline, i.e. a line which has had control
points inserted. It will attempt to align the segments of the line horizontally and vertically,
according to the direction each segment is already tending towards.

The To front option places the selected image at the front of the diagram, so that it will
be displayed on top of any overlapping images. Similarly, the To back option places the
selected image at the back of the diagram, so that it will be fully or partially obscured by
any overlapping images.

Hardy can also automatically layout a group of nodes as a tree with the Layout: Format
tree option. The selected node is taken as the root of the tree and the nodes connected
to it will be arranged as a tree on its right hand side. The format of this tree can be
altered by using the Diagram Card Options dialog box which is opened through the card's
File: Options menu entry. See Section 4.14 .

The Layout: Apply de�nitionmenu option lets you update a displayed card if you have,
in the meantime, changed its Diagram Type de�nition, and existing values of the various
properties of the displayed objects will be updated as appropriate. The Layout: Zoom
option allows you to change the scale of the entire diagram. Reducing the scale will allow
you to view a larger diagram area and, hence, more objects for the same physical size of
card on your screen.

If you have any doubts about whether or not your new layout has been properly displayed,
use the Edit: Refresh display menu entry to carry out a full re-display of the card.

aiai/hardy/um/1.3 Page 25

4.9.1 Arc attachment points

Some diagram types may be de�ned so that arc images stay attached to a particular side
of a node image (or vertex in the case of triangles, diamonds and other polyline symbols),
depending on where you place the start and end points of an arc when creating it. Nodes
which impose this behaviour on arcs have their Use attachments toggle switched on from
the Diagram Type Manager.

Circles, ellipses and rectangles have four attachment points, one at each point of the compass,
triangles and diamonds have three and four respectively, one at each vertex. When you create
a new arc by sweeping from one node to another, the nearest attachment point for each node
is found and used. When another arc is drawn, all arcs on the same attachment point are
spaced out evenly. Note that this spacing is not performed if the node's attachment mode
is not switched on.

It may be that the arc spacing that Hardy chooses causes arcs to overlap untidily. You can
order the arcs on a particular attachment point by selecting the arc and, while holding down
the left mouse button, dragging the endpoint to a new preferred position by the attachment
point. The cursor changes to a bullseye during this operation. If the attachment point
itself is wrong, the right mouse button may be used to drag the endpoint to the correct
attachment point on the same node. Again, the cursor changes to a bullseye.

4.9.2 The toolbar

Each diagram card can have a toolbar displayed at the top below the menu bar. You can save
space on the card by hiding this toolbar through the card's Hyperlinks: Toggle toolbar
menu entry. The toolbar is used to give easy access to some of the most used layout and
formatting facilities which are mostly otherwise available through menu options and image
properties.

1. Left justify text (Edit: Format text).

2. Centre text (Edit: Format text).

3. No centring or justi�cation (Edit: Format text).

4. Fit images to contents.

5. Don't �t images to contents.

6. Vertically align selected images on left .

7. Vertically align selected images on centre (Layout: Align vertically).

8. Vertically align selected images on right.

9. Horizontally align selected images on top

10. Horizontally align selected images on centre (Layout: Align horizontally).

11. Horizontally align selected images on bottom

12. Straighten lines (Layout: Straighten lines).

13. Format tree (Layout: Format tree).

14. Choose font (Edit: Change font).

aiai/hardy/um/1.3 Page 26

4.10 Hyperlinks

You can hyperlink individual nodes, arcs and cards to other cards. This helps you organise
your diagram by allowing you to set up a hierarchy which can give you a top-down view of
it, presenting only as much detail at any level as is appropriate.

4.10.1 Linking arcs and nodes to cards

You can link a node or arc to an existing card or to a new card.

To link the object to a new card, right click on the image and choose the Hyperlink to
new card option. This will ask you to specify what type of card you want (see Section 4.1
), and construct a new card of this type which will be linked to the object in question. You
will see the new card re
ected in the display of the index tree in the control window, and,
if the object was a node, you'll probably see its boundary highlighted to tell you that it is
linked to another card (though this property can be switched on or o�).

An alternative way of linking an object to a new card is to select the object you want to
link, then select the Hyperlinks: Link new card option and proceed as before.

Left clicking on the image will now take you to the new card in subsequent browsing, as
would clicking on the appropriate item on the card's link panel.

If you want to link the object to an existing card, you should select the card by its Hyper-
links: Select card menu entry, then right-click on the object to pop-up the menu so you
can chose the Hyperlink to selection entry. Alternatively, you can select the object then
use the Hyperlinks: Link card to selection entry on the card.

4.10.2 Linking cards to cards

One card can be linked directly to another card by selecting the card itself through the
Hyperlinks: Select card menu entry. This will work even when there are no nodes
or arcs present on the card. You can then link it to a new card by using the Hyper-
links: Link new card option and proceeding as above, or link it to an existing card by
using the Hyperlinks: Link card to selection entry on the card you want.

4.10.3 The hyperlinks panel

All links to and from a card or any items on the card can be shown in the Hyperlinks
panel which may be displayed on the righthand side of the card. However, as it takes up
quite a lot of space on the card, you can hide it through the card's Hyperlinks: Tog-
gle link panel display menu entry. The same menu entry will show it if it is already
hidden.

You can display any card listed in the panels by left-clicking on its entry.

The default order of links in the Links panel may not be appropriate, especially for applica-
tions such as on-line manuals. Use the Hyperlinks: Order links option, to bring up the
Order Items dialog box. Press on the Source titles in the desired order. The Destination list
shows the new order.

aiai/hardy/um/1.3 Page 27

4.11 Diagram expansion cards

In some cases a complex diagram will need several cards. If you create separate diagram
cards in the normal way, each diagramwill be saved in a separate �le. This may be acceptable
if the diagrams are only conceptually related, but may not be good enough if you wish to
display the same node or arc on more than one diagram, but only have to type in the
attributes for one node or arc. The way this is achieved is explained in Section 4.11.1 ,
below.

First, how can we expand a top-level diagram so we can show more detail? If you have a
node which you wish to expand, select it and use the Edit: New expansion option. This
creates a new expansion card whose title is the name of the node, and which can be reached
by clicking on the node. Alternatively, if there is no node you wish to expand, select nothing
and again choose the Edit: New expansion option. This will link a new expansion card
to the existing card so that, conceptually, the whole card, rather than an image, is linked to
the expansion.

Now when you save the top-level diagram card, all its associated expansion cards are saved
as well in the one �le. For this reason, expansion cards don't have their own �le saving
option.

An expansion card is accessed in the same way as any other linked card, either via the
index tree in the control window, by left-clicking on an item, or by selecting an entry in the
hyperlinks panel.

4.11.1 Same object, di�erent cards

Returning to the question of having the same image on multiple cards. You will require this
when you need to ensure that changing the attributes of one image changes the attributes
of the other(s).

You can achieve this for nodes by selecting the node on one card, going to another, and
there selecting the Edit: Duplicate image for same object menu entry. This will not
make a duplicate node|it merely creates a new image for the existing, selected node. There
is an underlying concept of node and arc for which the visual representation is a `handle'.
When an entirely new node image is created, a node is also created. When a node image is
deleted, the node is only deleted if there are no other images for this node still in existence.

You can copy an arc image in a similar way by selecting the arc image, then linking up two
nodes on the destination card. Instead of selecting an arc type, use the bottom option in
the pop-up menuUse selected arc object. This makes a new image for the same selected
arc.

You can prove that these images refer to the same underlying object by changing the label
text. All related images will have their labels changed to re
ect the new text.

IMPORTANT NOTE: this will not work across diagram �les, since all diagram �les are
stand-alone and cannot reference other �les. Only cards in the same hierarchy of diagrams
can be used.

aiai/hardy/um/1.3 Page 28

4.12 Containers

Some nodes can be set-up to be containers. These are nodes which can contain other nodes
(of speci�ed types) so that, if you move the container node, its contents are moved with it.
This can look the same as having nodes super-imposed on each other, but their behaviour
is di�erent.

There are two special things that you can do with containers.

1. You can move nodes into and out of the container .

2. You can split a container into sub-containers which you can then split further if you
want.

You move nodes in and out of containers in the same way as you move them normally.
However, if you move a node that was outside a container across the container's boundary,
a dialog box will be popped-up to ask you whether or not you want it inside the container.
If you prefer, you can leave a node sitting over the container: it will look the same as if it
were inside but it won't move when the container moves. Similarly, when you move a node
that is contained in a container across the container boundary, you will be queried to check
whether or not you really want it to be moved outside the container.

To sub-divide a container (or a sub-container), you control-right-click on it and a menu will
pop-up with entries that allow you to split the container into two: either horizontally (so
the sub-containers lie beside each other), or vertically (so the sub-containers lie above and
below each other). (Other menu entries let you change the appearance of the container's
boundary. See Section 8.1 .)

4.13 Printing diagrams

Under the UNIX and X environment, Encapsulated PostScript (EPS) output is provided. An
entire hierarchy of diagramsmay be printed to EPS �les in one shot using the File: Print hi-
erarchy to �les menu option. See also Section 10 on platform-speci�c features for recom-
mended ways of printing out diagrams under Windows.

4.13.1 Printing under X

The diagram/expansion card File: Print PostScript option pops-up a Printer Settings
dialog box which lets you change the default settings.

Printer Command: the printer command, e.g. lpr.

Printer Options: any command line options for your printer, e.g. -PE17.

Portrait: if on, will print in portrait mode. If o�, will print to landscape mode.

Print to �le: if on, will prompt for a �lename to print to. If o�, the printer command will
be invoked with the printer options appended. Note that the preview toggle over-rides
this option if on.

aiai/hardy/um/1.3 Page 29

Preview only: if on (the default), the ghostview program is invoked to preview the
PostScript output. Obviously ghostview needs to be installed and in your path.
Previewing allows you to adjust the scaling and translation without wasting too many
trees.

X/Y Scaling: scales the image.

X/Y Translation: translates the image.

To include a diagram in a LaTeX �le, �rst print it to a PostScript �le. Of the many possible
ways of including the �le in your LaTeX document, the preferred technique is to use a macro
package such as psbox to scale and position the image based on its size. This is possible since
Hardy outputs EPS �les which contain size (`bounding box') information. To use psbox, put
the following statement near the top of your document:

\input psbox.tex

You may then uses commands such as the following:

\begin{figure}

$$\psboxto(0.9\textwidth;0cm){screendump.ps}$$

\caption{Example Hardy session under X}\label{screendump}

\end{figure}

The dollar signs centre the image. The \0.9\textwidth;0cm" indicates that the image is
to be 90% of the normal width of the text on the page, but scaled proportionally in the
vertical dimension. A non-zero value sets that dimension, possibly distorting the image. To
omit dimensions, use the psbox macro instead (see documentation for the psbox package).

4.13.2 Printing under MS Windows

Hardy for Windows provides the same printing facilities as described above (see Sec-
tion 4.13.1) for X through the File: Print PostScript and File: Print hierarchy to �le
options. If you have a word processor which can scale EPS images (such as LaTeX), you
could include an EPS diagram in a document. A better alternative may be to use the
Edit: Copy option.

Using the clipboard

Windows 3 has the concept of a clipboard , viewed using the clipboard viewer . Applications
may exchange data using the clipboard. Types of data that may be exchanged include
bitmaps and meta�les, which are `recordings' of the drawing commands used to build up a
picture, and are easily scaled without losing resolution, unlike a bitmap.

Hardy for Windows has an option in the diagram card Edit menu for copying a meta�le
version of the diagram to the clipboard. The user-de�ned scaling factor (set from the
options dialog box called from File: Options) will a�ect the size of the diagram passed to
the clipboard. You may then paste the image into another application for editing or printing
out. For example, importing into the drawing program Corel Draw splits up the diagram

aiai/hardy/um/1.3 Page 30

into its component shapes, ready for �ne-tuning. Importing into Windows Paintbrush makes
it into a bitmap, and this may be the easiest and cheapest way of printing out a Hardy for
Windows diagram.

4.14 Diagram card options

The File: Options menu pops-up a small window with some options that apply to that
diagram card.

1. Label Arcs with abbreviation
If on, will cause arcs to be labelled with the abbreviation stored in the arc de�nition.
Useful on monochrome displays and non-colour printers.

2. Snap to grid
If on, images will be positioned to the nearest grid line (conceptual, not visible) so
that images are easier to align neatly. The default is on.

3. Colour
If on, colour is used; if o�, non-white colours will be painted in black. This applies to
printing too.

4. Quick edit mode
By default o�, this inhibits diagram redraws when simple edit operations are per-
formed. With quick edit mode o�, the whole diagram will be redrawn if one node is
moved, which can be slow for large diagrams.

5. Scale
Enter a new number between 0 and 1 to scale the diagram. This currently has no
e�ect on printing.

6. Grid spacing
The grid spacing determines the coarseness of image positioning, if the snap to grid
option is on. The default is 10 pixels.

7. Print �le
Allows the user to change the �lename used for printing this diagram to PostScript.

8. Auto-layout options
These are for use with the Layout: Format tree menu of a diagram card. They
allow values to be set for the left and top margins, the width and height, and the X
and Y spacing between nodes.

4.15 Diagram editing summary

The following is an alphabetical summary of common diagramming operations.

aiai/hardy/um/1.3 Page 31

Bending an arc
Select the arc, add control point(s) with the Edit: Add control point option, drag
control points. Turn the curve into a straight line by deleting all but two control
points.

Copying images
Select images on a diagram card of the same type, go to the destination card and
select the Edit: Copy images(s) option. The images will be copied (with new
underlying node and arc objects). An alternative is to select the source card with
Hyperlinks: Select card before the copy operation, in which case the whole card is
copied.

Creating an arc
Holding down the right mouse button, drag from the start node to the end node.
Choose an arc type from the pop-up menu.

Creating a diagram card
Either select Cards: Create top card on the main control window, or select Hy-
perlinks: Link new card on a particular card. Choose an appropriate diagram
card.

Creating a node
Select a node symbol on the
oating diagram symbol palette, move the cursor to where
you want the node to be positioned, and click the left mouse button.

Deleting an image
Either select the image(s) and choose the Edit: Cut option, or right-click on the image
and choose the Delete image option.

Editing attributes
Same as for Labelling an image. Press on the Edit button to use a text editor for
editing large attribute values.

Expanding a node
Select the node, choose the Edit: New expansion option. A new expansion card is
created. Expanding without selecting a node causes the new card to be linked to the
original card, rather than to an image within it.

Labelling an image
Pop-up the attribute editing window by using control-left-click.

Linking an image to a new card
Right-click on the image and select the Link new card option. Left-click on the
image to go to the card subsequently.

Loading a diagram
If you have saved an associated Hardy index �le, use the -f option on the command
line (see above) or use the File: Open �le option on the control window. Otherwise,
create a card of the appropriate diagram type, and select the File: Open option,
entering the �lename.

aiai/hardy/um/1.3 Page 32

Maximising card space
Use the Hyperlinks: Toggle link panel display option and resize the card to �ll
the screen. Note that, unless you start in the middle of the canvas, (see Scrolling
around below), you may have to move your diagram around node by node to extend
up or left.

Moving node(s)
Select a node or nodes, and drag one to the desired position. If more than one image
is selected, all selected images will be moved.

Printing/previewing
Choose the File: Print PostScript option, set Preview only for a preview or switch
it o� to print to the printer, set Print to �le if that's wanted as well, then press OK.
Enter any printer command options in the Printer Options text item. Change the
scaling and/or translation to �t the picture to a page.

Resizing a node
Select image and drag control points. Dragging a corner point and holding down shift
retains the proportions.

Saving a diagram
Select the File: Save �le option, enter �lename (not path). Also choose the control
window's File: Save �le option to save the Hardy index �le (with a pointer to the
diagram �le).

Scaling diagrams
Either choose the File: Options menu item in the Control Window and enter a new
number for the scaling factor, or choose the Layout: Zoom item for the card.

Scrolling around
Left-click click on the up and down arrows of the scroll bars, or drag the scroll bar.
(Under Windows, dragging the scroll bar is slow since the diagram is repeatedly re-
drawn. Under X, bitmaps are used for scrolling which makes it much faster.)

Selecting an image
Shift left click; same for deselecting. Select multiple images by left-dragging on the
canvas and releasing when the rubber band encompasses all desired images. Deselect
all selected images by left-clicking on the canvas.

Wrapping label text
Select image(s), choose Edit: Format text option.

4.16 Mouse functionality

4.16.1 Left button

1. Click on node { the name of the node is displayed in the card's status line. If a current
annotation is selected that is legal for the node, it is dropped onto the node at the
mouse position.

aiai/hardy/um/1.3 Page 33

2. Click on arc { the name of the arc is displayed in the card's status line.

3. Click on a position in the canvas away from a node or arc { if a node is currently
selected on the
oating palette (indicated by the cross-hairs cursor), a new node is
placed on the canvas at the mouse position.

4. Click-and-drag a node { the node moves to the new mouse position. If the �nal position
of the node is over a container which can contain it, the user will be asked whether or
not the node should be placed inside the container or simply left on top of it.

5. Click-and-drag a selected arc label { the label moves to the new mouse position.

6. Click-and-drag a node selection handle { the node image is rescaled, based on the
direction of movement of the mouse.

7. Click-and-drag a divided node division control handle { the division is moved to the
new mouse position.

8. Click-and-drag on the selection handle of an arc at the end where it meets a node for
a diagram type that de�nes arc attachment points { the bullseye cursor appears and
the handle may be moved to a di�erent position at the same attachment point.

9. Click-and-drag on the canvas away from a node or arc { a rubberband box appears
which the user can drag so that it surrounds card items, i.e. nodes and arcs. When the
user releases the mouse button, the rubberband box disappears and the surrounded
nodes and arcs are selected and their selection handles are displayed.

10. Shift-click on a node or arc { if the node or arc was not already selected, its selection
handles are displayed, and the name of the node or arc is shown in the card's status
line. If the node or arc was already selected, it becomes deselected and its selection
handles disappear.

11. Control-click on a node or arc { if the node or arc type has de�ned attributes, an
Object Attribute Editor dialog box appears which allows attribute values to be set or
changed. See Section 4.6 .

12. Click on a card title in the Links or Reverse Links scrolling lists { the selected card is
opened.

4.16.2 Right button

1. Click on a node or arc { a Node or Arc Action Menu containing a list of useful
actions appears. Selecting an entry causes the appropriate action to be performed. An
Action Menu provides a short cut for accessing popular actions as an alternative to
�rst selecting the node or arc and then selecting an entry in one of the diagram card
menus. The actions available are:

(a) Edit attributes;

(b) Hyperlink to selection;

(c) Hyperlink to new card;

(d) Unlink item;

(e) Delete image.

aiai/hardy/um/1.3 Page 34

2. Control-click on a divided node { the Divided Object Properties dialog box pops up.
See Section 8.1.6 .

3. Control-click on a container { a menu pops up with four entries:

(a) Split horizontally { the region of the container node image in which the cursor
is positioned will be split into two sub-regions lying alongside each other.

(b) Split vertically { the region of the container node image in which the cursor is
positioned will be split into two sub-regions lying above and below each other.

(c) edit left edge { this allows the image properties of the left edge of the sub-region
of the container node image in which the cursor is positioned to be tailored. The
Division Properties dialog box appears, see Section 8.1 .

(d) edit top edge { this allows the image properties of the top edge of the sub-region
of the container node image in which the cursor is positioned to be tailored. The
Division Properties dialog box appears, see Section 8.1 .

4. Click-and-drag a node or node annotation { the outline of an arc is drawn from the
node or node annotation following the mouse. If the node or node annotation has
attachment points, the arc will come from the nearest attachment point to the initial
mouse position.

If the mouse button is released over a node or node annotation and there is a single
legal link in the diagram type de�nition between the initial node and this one, then
that arc is drawn.
If more than one type of link is legal between the nodes, the currently selected arc
in the
oating palette will be used to resolve the ambiguity if possible, otherwise a
dialogue is entered into with the user to specify which type of arc is intended.
When a legal arc has been drawn, the status line of the diagram card says:

\Linked a start node type name to a end node type name with a arc type name".

If the mouse button is released over a node and there is not a legal link in the diagram
type de�nition between the initial node and this one, then the status line of the diagram
card says:

\No legal arcs from a start node type name to a end node type name".

If the mouse button is released over one of several selected nodes, and there is a legal
multi-way arc between the nodes, a multi-way arc is drawn between the initial node
and all the selected nodes. If Auto dog-leg is set in the Junction Editor, an extra
control point will be inserted and the connections will be constrained to the horizontal
and vertical.

If the mouse button is released over the canvas away from a node, no arc is created.

5. Click-and-drag the selection handle of an arc that is attached to a node which has
multiple attachment points de�ned for it { the handle will follow the mouse so it can
be moved to a di�erent attachment point of the node, where the button is released.

aiai/hardy/um/1.3 Page 35

5 Text cards

The text card is the simplest form of card provided by Hardy. It consists of a text subwindow
which displays the contents of a �le.

Figure 5.1: Example Hardy text card

5.1 Editing text cards

When a text card is �rst created, there is no �le associated with it. Open a �le with
the File: Open �le option; if you edit the �le later, you can use the File: Save �le or
File: Save as... options to save the �le.

Text card �les are edited through the Edit: Run editor option. This uses the EDITOR
environment variable to allow you to specify your favourite editor. Under Unix, you must
save the �le and exit the editor to return control to Hardy; under Windows, a child process
returns control to the parent immediately. Alternatively, under Unix only, the subwindow
can be used to edit the text directly.

As with any card, the title may be changed using the File: Card title option.

To get back to the main Hardy control window, if it's buried under a pile of other windows,

aiai/hardy/um/1.3 Page 36

use the File: Goto control window option.

To delete the card, use the File: Delete card option. Remember that the di�erence between
quitting (File: Quit card) and deleting a card is that quitting is merely getting rid of the
physical display for the card, not deleting the actual card representation in the hypertext
index. If you have many new cards, you may wish to quit some of them to avoid a build
up of windows. Deleting, on the other hand, deletes the card from the hypertext index,
although it does not in general delete any �le which may be associated with that card.

5.2 Linking text cards

As a text card doesn't contain any items, you can only link the entire text card to other
items or other items to the entire text card.

To link a new card to the current text card, choose Hyperlinks: Link new card and
choose a card type to create when prompted. You will now get to the linked card by clicking
on the relevant title in the link panel display.

The default order of links in the Links panel may not be correct, especially for applications
such as on-line manuals. Use theHyperlinks: Order links option, and press on the Source
titles in the desired order. The Destination list shows the new order.

If the Links panel on the right-hand-side of the card is required, select theHyperlinks: Tog-
gle link panel display option. Use the same option again to hide it.

5.3 Mouse functionality

5.3.1 Left button

1. Click on a position in the text subwindow { under X only, the text editor cursor will
be positioned at the click.

2. Click on a card title in the Links or Reverse Links scrolling lists { the selected card is
opened.

5.3.2 Right button

No use is made of the right mouse button.

aiai/hardy/um/1.3 Page 37

6 Hypertext cards

The hypertext card is similar to the text card, in that it may display plain text �les and has
some of the same menu options.

Figure 6.1: Example Hardy hypertext card

However, it has the following distinguishing features:

� Text blocks may be marked with the mouse, and given di�erent font and colour at-
tributes. A text block is a hypertext item, in the same sense that a diagram node or
arc is an item, and may be linked with other cards and items.

� The text is not directly editable, unlike the text card under X, although a text editor
may still be invoked.

� The hypertext card has the concept of hypertext types in the same sense as diagram
types (see Section 9.1). Each hypertext card is an instance of a user-de�ned type,
although you can access a default type of hypertext card by creating a card called
simply \Hypertext card".

aiai/hardy/um/1.3 Page 38

� Hypertext cards have the concept of hypertext sections. You may de�ne a new section
by marking a block using a section block style. The Goto menu allows you to walk
sequentially through the sections, and to go to the �rst section.

6.1 Hypertext blocks

Although the hypertext card may display ordinary text, it will most often be used to mark
blocks of text and associate them with other cards and items. This causes codes to be stored
in the text. These are interpreted specially by Hardy, and are in LaTeX compatible format.

To mark a new block,drag the mouse holding the left button down from the top left of the
intended block to the bottom right (this may require some practice). Remember that you
should drag a bounding box that doesn't extend beyond the text characters you wish to
include: the box should be just inside the characters at the edge of the block. For instance,
if selecting the word `thing', the bounding box should start at the top left of the letter `t',
and stop at the bottom right of the letter `g'.

The selected blockwill go cyan (colour displays) or reverse video (monochrome displays).
Any selected block, whether new or old, will use this highlighting. A block will only be
remembered by Hardy if you choose a style for it with the Style menu. This allows you
to set font and colour attributes for the block. Once the style has been set, the block is a
Hardy hypertext item and can be linked with other cards and items in the usual way. You
may remove a block by selecting it (shift-left click) and choosing the Edit: Clear block
menu item. Blocks without a style set will simply be forgotten when deselected (shift-left
click).

6.2 Editing hypertext cards

Apart from adding and clearing blocks, running the editor from the Edit: Run editor
menu entry is the only way of editing a hypertext card's contents. You do this in exactly the
same way as you do for a text card (see Section 5.1). Be sure that you don't disturb the
embedded block codes. It will be more convenient to do as much editing as possible before
marking blocks.

6.3 Mouse functionality

6.3.1 Left button

1. Click on a block within the text canvas { the corresponding card to which the block is
hyperlinked will be selected and displayed, if one exists. If the block is not hyperlinked,
no action results.

2. Click-and-drag within the canvas { will de�ne and select a block speci�ed by its top
left corner being at the initial click position and its bottom right being at the release
position. This block is `temporary' until it has had a style set through the Stylemenu.
A block will always contain a piece of continuous text.

aiai/hardy/um/1.3 Page 39

3. Shift-click on a `temporary' block within the canvas { the block is deselected and its
highlight is removed.

4. Shift-click on a block with a set style { if the block was not already selected, it becomes
selected; if the block was already selected, it becomes deselected.

5. Click on an entry in either the Links or Reverse Links list boxes { the corresponding
card is selected and displayed.

6.3.2 Right button

1. Click on a block with a set style { a menu appears, presenting some of the most used
actions associated with blocks for easy access.

aiai/hardy/um/1.3 Page 40

7 Media cards

The media card is similar to the text card, in that it may display plain text �les and has
some of the same menu options.

However, it has the following distinguishing features:

� Text blocks may be marked with the mouse, and given di�erent font and colour at-
tributes. A text block is a hypertext item, in the same sense that a diagram node or
arc is an item, and may be linked with other cards and items.

� The text is not directly editable, unlike the text card under X, although a text editor
may still be invoked.

� The media card has the concept of media types in the same sense as diagram types (see
Section 9.1). Each hypertext card is an instance of a user-de�ned type, although you
can access a default type of media card by creating a card called simply \Media card".

Please note that the media card is experimental and may not be present in public distribu-
tions of Hardy.

7.1 Media blocks

Although the media card may display ordinary text, it will most often be used to mark
blocks of text and associate them with other cards and items.

To mark a new block,drag the mouse holding the left button down.

The selected blockwill go cyan (colour displays) or reverse video (monochrome displays).
Any selected block, whether new or old, will use this highlighting. A block will only be
remembered by Hardy if you choose a style for it with the Style menu. This allows you
to set font and colour attributes for the block. Once the style has been set, the block is a
Hardy hypertext item and can be linked with other cards and items in the usual way.

You may also mark text up using the default font attributes, accessed by via the items at
the top of the Style menu. Marking up in this way is purely visual and does not create a
hypertext block.

Currently, only one block may have a given start or end point, and blocks may not overlap.
Eventually it is intended to remove at least the �rst restriction. Blocks may not currently
be cleared once created, except by clearing all blocks, or by deleting the text and reinserting
it. Bitmaps may not be used as blocks.

7.2 Editing media cards

You may edit the text directly. Blocks will move around with the text; but if you delete
text at the start or end of the block, you may delete the block markers and cause the block
to disappear.

aiai/hardy/um/1.3 Page 41

Pictures may be inserted into the media card by selecting the Edit: Insert Image menu
item. A pictures is stored as a reference to the bitmap �lename, so this �le should be present
in the same place when you load the media �le.

7.3 Mouse functionality

7.3.1 Left button

1. Left click in the media card to set the caret position, where text is inserted.

2. Control-left click on a block within the text canvas { the corresponding card to which
the block is hyperlinked will be selected and displayed, if one exists. If the block is
not hyperlinked, no action results.

3. Click-and-drag within the canvas { this will select an area of text, for later marking
with a font or block style. A block will always contain a piece of continuous text.

4. Shift-left click on a block to select it.

5. Click on an entry in either the Links or Reverse Links list boxes { the corresponding
card is selected and displayed.

7.3.2 Right button

1. Click on a block with a set style { a menu appears, presenting some of the most used
actions associated with blocks for easy access.

aiai/hardy/um/1.3 Page 42

8 Symbols

Symbols are used to construct the images that are displayed on a diagram card. There
are two main types of symbol, node symbols and arc symbols, and a further type for arc
annotations (such as arrowheads). All the symbols that are recognised for a particular type
of diagram will be gathered together and presented as a
oating palette. Within the palette
the symbols are divided into Node symbols and Arc symbols. Annotation symbols may also
be shown separately.

A basic range of symbols is provided by Hardy in the Standard Symbol Library for use
when designing new diagram types. You can also construct new shapes when you require by
using the Node Symbol Editor and the Arc Symbol Editor (see Section 8.4 and Section 8.5
respectively). New symbols may also be held in symbol libraries for later use in exactly
the same way as for the standard symbols. Symbol libraries are organised by the Symbol
Librarian (see Section 8.2 .

Generally, symbols are used in two di�erent ways. The �rst, and more general, is the symbol
that is available in a symbol library. At this level, the symbol has got a de�ned shape, colour
and other general properties. It is then available for customising for use in the displayed
image of a particular type of node or arc in a particular type of diagram. Its shape cannot
be changed, but its colour, etc, properties may be over-ridden and other specialist properties
can be added. This will be done through the Node Type Editor or the Arc Type Editor (see
Section 9.1.2 and Section 9.1.9 , respectively).

8.1 Symbol properties

Symbols are made up of simple parts, largely lines and areas. Every line will have a width
(in pixels), a style (solid, dashed, etc), and a colour.

Areas are more complicated. They can be primitives, normally provided through the Stan-
dard Symbol Library, or they can be composites made up from primitives or other com-
posites. A primitive symbol has an outline with exactly the same properties as other lines
(width, style, and colour), and an area with a colour property (termed the �ll colour)
bounded by the outline. A composite symbol will be made up from simpler symbols; its
properties are the properties of its individual sub-symbols.

8.1.1 Meta�les

There are some shapes which would be (at best!) very di�cult to construct from other
standard symbols. In order to allow arbitrary shapes to be used, Hardy supports the use of
meta�les. Meta�les let you add new primitive symbols to your repertoire.

Meta�les de�ne drawings in terms of pens (for outlines), brushes (for \�ll" areas), and
shapes. As their contents are all relative to a starting position, the shape may be placed
wherever it's required and it can be scaled without loss of resolution. When a meta�le is
imported into Hardy from an external package for use as a node or arc symbol, selected pen
and brush instructions can be intercepted in such a way that the meta�le-de�ned symbol
will have the same outline and �ll properties as any other symbol.

aiai/hardy/um/1.3 Page 43

This is done using the Meta�le Colour Assignment dialog box which is opened from the
Node Symbol Editor when editing a symbol which has been de�ned through a meta�le. The
di�erent operations involved in de�ning the shape are shown in the list box labelled Opera-
tions. Each pen and brush operation is uniquely identi�ed so that it may be distinguished
and added to the lists of Outline operations (pens only) and Fill operations (brushes only)
by selecting it and pressing the Add button. Only these selected pens and brushes will be
altered if the symbol's outline or �ll characteristics are changed later.

The Clear buttons will clear any entries in the relevant list boxes.

8.1.2 Arc symbols

If we look at arc symbols, we see that they are basically lines which may carry annotations
(arrowheads, etc). If present, arc annotations are treated as part of the arc symbol and will
share common properties, i.e. changing the colour of the arc will change the colour of the
annotation. (Arc annotations have additional properties: see Section 8.1.3 .)

Every arc has a width (in pixels), a style (solid, dashed, etc), and a colour.

Arcs have three regions: their start, middle and end regions. Annotations and labels are
usually placed in one or other of these. Each region will support only a single label, though
several annotations can appear there.

8.1.3 Arc annotations

Arc annotations are symbols such as arrowheads that are used to decorate arcs. New symbols
may be imported through meta�les(see Section 8.1.1). They can either be part of an arc
symbol, or they can be added incrementally to a particular arc symbol as required when a
diagram is being constructed. Annotations may be placed in one of the start, middle or end
regions of the arc, and several annotations can appear in the same region.

Arc annotations can be customised by setting parameters which control their size and their
position on the arc. Size is the length of the annotation image in pixels. Position has three
separate aspects:

1. there is the gap, in pixels, allowed between one annotation and the next one in the
same region;

2. there is the X o�set of the annotation from the start of the arc. This is speci�ed as a
fraction: 0.0 means the start, 0.5 the middle, and 1.0 the end.

3. there is the Y o�set between the mid-point of the annotation symbol and the arc: a
positive o�set moves the annotation above the arc, a negative one moves it below.
This is speci�ed in pixels.

8.1.4 Node symbols

Node symbols are primitive or composite shapes. A primitive shape has an outline and an
enclosed area. The outline can be speci�ed in terms of its width (in pixels), style (solid,
dashed, etc), and colour. The enclosed area will have a colour: its �ll colour . Two special

aiai/hardy/um/1.3 Page 44

types of primitive symbol are provided: divided nodes and polyline symbols. These have
additional special properties (see Section 8.1.6 and Section 8.1.7).

Composite symbols are made up from other symbols, selected from existing Symbol Libraries
and glued together using the Node Symbol Editor (see Section 8.4). A composite symbol
will re
ect the properties of its sub-symbols. These can be changed as a whole, i.e. the
composite is treated as though it had a single outline and a single enclosed area like a
primitive, or sub-symbols can be selected and treated individually.

As well as the general display properties, node symbols have additional properties re
ecting
their behaviour.

1. Use attachments { this controls where arcs will attach to the node symbol. If attach-
ments are not used, arcs will appear as though they were connected to the centre of the
node symbol; if attachments are used, arcs will appear as though they were connected
to the nearest de�ned attachment point. See Section 8.1.5 for further details.

If the attachment point chosen by the system is not the one you want, you can move
the connection by selecting the arc and right-click-and-dragging the appropriate arc
selection handle to a di�erent attachment point of the same node.

2. Space attachments { if attachments are in use, they may be spaced or not. If attach-
ments are not spaced, all arcs will appear as though they were connected directly to
attachment points; if they are spaced, the arcs will automatically separate themselves
at each attachment point where two or more join.

If the ordering at any particular attachment point is not what you want, you can select
the arc and left-click-and-drag the appropriate selection handle to a di�erent position
at the same attachment point.

3. Shadow { if shadowing is set, the symbol will have a \shadow" of the same shape in
black and o�set slightly.

4. Fixed width { if this is set, the width of the symbol cannot be changed once it is in
use.

5. Fixed height { if this is set, the height of the symbol cannot be changed once it is in
use.

Additional properties hold if the symbol has been de�ned through a meta�le (see Sec-
tion 8.1.1).

8.1.5 Attachment points

A node symbol may have attachment points de�ned (see Section 8.1.4) to which arcs can
be connected. These rotate with the symbol when necessary.

The symbols provided in the Standard Symbol Library have pre-de�ned attachment points:

1. divided rectangles have a control point in the centre of their top and bottom edges,
and a further control point in the centre of the vertical edges of each region,

2. polyline Symbols (triangles and diamonds) have attachment points at each of their
vertices,

aiai/hardy/um/1.3 Page 45

3. other primitive symbols have attachment points in the centre of each edge of their
bounding box,

4. composite symbols have attachment points at each attachment point of their compo-
nent sub-symbols, and additional attachment points in the centre of each edge of the
overall bounding box.

The user may de�ne the attachment points for symbols that are imported as meta�les, and
may de�ne additional attachment points for standard symbols. This is accomplished through
the Attachment Point Editor which is invoked from the Attachment points... button of
the Node Symbol Properties dialog box.

The dimensions of the symbol (its bounding box, in pixels) are shown in the message area,
and the identi�ers of all current user de�ned attachment points are displayed in the Attach-
ment points list box. Pressing the New button generates a new unique identi�er which is
entered into the Attachment points list and selected. Alternatively you can select an existing
identi�er in the list. In either case, the currently selected identi�er will be shown together
with its position as X and Y o�sets (in pixels) from the symbol's reference point. These
values can now be changed: selecting another entry, or pressing New again or OK, will
accept them.

You can remove an entry by selecting it in the list and then pressing Delete.

8.1.6 Divided nodes

Divided node symbols are supplied by the Standard Symbol Library for e�ciency. They
provide rectangular shapes with more than one text region so that more than one label
can be displayed. This means there are two di�erences between these and normal primitive
symbols.

You can alter the position of the divisions between the di�erent regions by selecting the
symbol. This will display its selection handles, and you will see an extra handle at the
middle of each division. You can left-drag these to move the divisions to new positions
within the existing rectangle. Note that you can't move one division past another.

You can tailor the appearance of these divisions through the Divided Object Properties
dialog box which is invoked by control-right-clicking on a divided object in the Node Symbol
Editor (see Section 8.4). This shows the line colour and style for each of the divisions (top
one �rst), and these can be altered in the usual way.

8.1.7 Polyline symbols

A polyline symbol is a primitive used for constructing polygonal node symbols. Standard
polyline symbols are supplied through the triangle and diamond symbols which can be
modi�ed to produce most other shapes needed.

Unlike the other standard node symbols, polyline symbols have control points at each of
their vertices. These will be displayed when the symbol is selected, and can be moved
around by left-dragging on them. Additional control points may be added to or deleted
from polyline symbols in the Node Symbol Editor through the Edit: Add control point

aiai/hardy/um/1.3 Page 46

and Edit: delete control pointmenu items. Combining the number of control points with
their positions allows you to de�ne arbitrary polygonal shapes.

Every legal polyline symbol must have at least one control point.

8.2 Symbol librarian

8.2.1 Appearance and functionality

Symbols are organised in libraries which are managed by the Symbol Librarian. The Symbol
Librarian may be invoked from the Tools: Show symbol librarian menu of the Control
Window.

Figure 8.1: The Symbol Librarian

The Symbol libraries list box displays the names of all libraries which are currently open.
The Standard library, containing the primitive symbols, is always available.

8.2.2 Buttons

The buttons are arranged in two groups, one providing general facilities, the other providing
facilities for individual symbol libraries.

General

1. OK { the Symbol Librarian and any open Symbol Libraries are dismissed. If changes
have been made to any Symbol Libraries and these have not been saved, the user is
asked whether these changes should be saved.

aiai/hardy/um/1.3 Page 47

2. Load library { open and load a Symbol Library from disk using a File Selector dialog
box with the �lter initialised to *.slb. Add its name to the end of the Symbol Libraries
list.

3. Save library { save the contents of the currently selected Symbol Library to its
associated disk �le. If no disk �le is de�ned for the library, the File Selector dialog
box will appear.

4. Load list { open and load the Symbol Libraries whose names are speci�ed in
diagrams.def. Display their names in the Symbol Libraries list box.

5. Save list { save the names of the Symbol Libraries given in the Symbol Libraries list
box into the de�nition list �le (diagrams.def).

6. Help { for Hardy under X, the wxHelp program is started and information on the
Symbol Librarian is displayed. Under Windows, the Windows Help system is started
at the appropriate place in the Hardy manual.

Symbol libraries

1. New { create a new Symbol Library, add it to the list of loaded Symbol Libraries,
and make it the current selection.

2. Edit name { change the name of the currently selected Symbol Library.

3. Show { display the currently selected Symbol Library.

4. Delete { delete the currently selected Symbol Library from the list.

8.2.3 Mouse and cursor functionality

Left button

1. Clicking on an entry in the Symbol Libraries list box selects the Symbol Library with
that name.

2. Double-clicking on an entry in the Symbol Libraries list box selects that Symbol Library
and proceeds as though the Show button had been pressed.

Right button

No use is made of the right mouse button.

Cursor

No special cursor pattern is used.

aiai/hardy/um/1.3 Page 48

8.3 Symbol libraries

8.3.1 Appearance and functionality

A Symbol Library is opened from the Load library or Show buttons of the Symbol Li-
brarian, or by Double-clicking on an entry in its Symbol libraries list box.

Figure 8.2: A Symbol Library palette

The name of the Symbol Library is displayed in the title bar. The status line is used to
display the name of a symbol.

The Standard Library is provided with the system. The user cannot add further symbols to
it, or delete symbols from it.

8.3.2 Menu options

The Symbol Library has two menus { File and Help.

File menu

1. File: Edit selected symbol { if a symbol is selected in the Symbol Library, the Arc
or Node Symbol Editor is opened as appropriate, see Section 8.4 and Section 8.5 ,
and the symbol is read in so that it can be altered.

2. File: Delete selected symbol { if a symbol is selected in the Symbol Library and
the user con�rms that the symbol should be deleted, it is deleted.

3. File: Load symbol from meta�le { a symbol de�nition is read into the Symbol
Library from a �le speci�ed by the File Selector dialog box and named through the
Symbol Name dialog box.

aiai/hardy/um/1.3 Page 49

The name of the new symbol is entered into the text entry area labelled Name of new
symbol. The checkboxes allow the properties of the symbol to be set: whether it is a
node symbol or an arc annotation symbol, and whether the symbol should be rotated
or not when it is used as an arc annotation.

4. File: Exit symbol library { the Symbol Library is dismissed.

Help menu

1. Help: Help on symbol library { for Hardy under X, the wxHelp program is started
and information on the Symbol Library is displayed. Under Windows, the Windows
Help system is started at the appropriate place in the Hardy manual.

8.3.3 Mouse and cursor functionality

Left button

1. Clicking on an unselected symbol in the palette selects that symbol. Clicking on a
selected symbol deselects that symbol.

Right button

1. Clicking on a symbol in the library palette causes the same action as File: Edit
selected symbol, opening the appropriate Symbol Editor for that symbol. See Sec-
tion 8.4 and Section 8.5 . This has no e�ect for symbols held in the Standard Symbol
Library.

Cursor

The cursor takes standard default patterns in the Symbol Library. However, when a node
or arc symbol is selected in the library, the cursor in the Node or Arc Symbol Editor canvas
will change to the cross-hair pattern. This indicates that selecting any position on the
Symbol Editor canvas will add the selected symbol to the Symbol Editor (see Section 8.4
and Section 8.5).

As the cursor is moved over the palette, the name of the symbol under the cursor is shown
in the status line.

8.4 Node symbol editor

8.4.1 Appearance and functionality

The Node Symbol Editor allows the diagram type designer to create new node symbols from
existing symbols and to modify existing symbols. It is invoked from the Tools: Show
symbol editor menu of the Control Window, or by right-clicking on a node symbol in
a (non-Standard) symbol library. As well as shape, the Node Symbol Editor will support
tailoring of node symbol properties.

aiai/hardy/um/1.3 Page 50

Figure 8.3: The Node Symbol Editor

The title bar shows the name of the symbol under construction, and the canvas displays the
symbol currently being edited. The list box labelled Objects starts with the entry Composite,
if a new symbol is being created, or the name of the symbol being edited. This is followed
by the names of the di�erent constituent sub-symbols in the same order as they are added to
the canvas. Several names may be selected at once. The lower list box, labelled Constraints,
details the di�erent constraints in the order in which they were invoked.

8.4.2 Menu options

The Node Symbol Editor has three menus { File, Edit and Help.

File menu

1. File: Add to library { add the symbol under construction to the selected symbol
Library. If no Symbol Library is selected, the Symbol Librarian is opened so that a
selection can be made. The user is asked to supply a name for the symbol through a
Text Entry dialog box.

2. File: Update { if the Node Symbol Editor was called from the File: Edit selected
symbol menu of a Symbol Library, the symbol in the Symbol Library is updated and
the Node Symbol Editor is dismissed.

3. File: Exit { the Node Symbol Editor is dismissed and, if a symbol was being con-
structed and has not been saved, the user is asked whether it should be saved or
not.

aiai/hardy/um/1.3 Page 51

Edit menu

1. Edit: Add constraint { pops up a Choice dialog box of available constraints from
which one can be chosen. A Constraint Properties dialog box then allows the constraint
to be tailored. See Section 8.4.4 .

2. Edit: Edit symbol name { a Text Entry dialog box is popped up to allow a new
name to be speci�ed for the symbol under construction.

3. Edit: Edit selected object { a dialog box is popped up which presents information
about the current properties of the object selected in the Objects list box, and allows
them to be changed. See Section 8.1.4 .

4. Edit: Edit selected constraint { the Constraint Properties dialog box is opened to
allow values of the constraint selected in the Constraints list box to be changed. See
Section 8.4.4 .

5. Edit: Delete selected object { the object selected in the Objects list box is removed.

6. Edit: Delete selected constraint { the constraint selected in the Constraints list
box is removed.

7. Edit: Add control point { if the object selected in the Objects list box is a polyline
object, a further control point is added to produce a shape with one vertex more than
the previous shape.

8. Edit: Delete control point { if the object selected in the Objects list box is a
polyline object, an arbitrary control point is removed to produce a shape with one
vertex fewer than the previous shape. A polyline object cannot have fewer than one
control point.

9. Edit: Make symbol [not] a container { if the symbol has been imported from a
user-de�ned library (i.e. not the Standard library), it may be given container proper-
ties(see Section 9.1.7). If the symbol has container properties set, this menu item is
changed to allow them to be unset.

10. Edit: Deselect all | all current selections are cleared.

11. Edit: Refresh { clears the canvas and redisplays the symbol under construction.

Help menu

1. Help: Help on node symbol editor { for Hardy under X, the wxHelp program
is started and information on the Node Symbol Editor is displayed. Under Windows,
the Windows Help system is started at the appropriate place in the Hardy manual.

8.4.3 Mouse and cursor functionality

Left button

1. Click on item in the Objects list box { if the entry is not already selected, it is added
to the current selection; if it is already selected, it is now deselected. The composite
object under construction may be selected/deselected in this manner. All selected
items will be highlighted in the list box and have their selection handles displayed in

aiai/hardy/um/1.3 Page 52

the canvas. Unselected items are not highlighted in the list box and do not have their
selection handles displayed.

2. Click on a position in the canvas not on a node or arc when a symbol is selected in a
Symbol Library (indicated by the cross-hairs cursor pattern) { a copy of the selected
symbol is dropped onto the canvas at the selected point. The symbol in the Symbol
Library is then deselected.

3. Click-and-drag an item in the canvas { the entire composite symbol under construction
is moved as required. Note that all the current symbols are moved together. Relative
movement is speci�ed by de�ning suitable constraints.

4. shift-Click on an item in the canvas { if the item is not already selected, it is added
to the current selection; if it was already selected it is now deselected. All selected
items will be highlighted in the list box and have their selection handles displayed in
the canvas. Unselected items are not highlighted in the list box and do not have their
selection handles displayed.

5. Click-and-drag a selection handle in the canvas { the corresponding symbol is rescaled
in the direction of the dragging operation.

6. Click-and-drag a divided node symbol division control point in the canvas { the division
moves to the new position.

7. control-Click-and-drag a polyline control point in the canvas { the point is moved to
the new position, altering the shape of the symbol.

8. Click on an entry in the Constraints list box { the appropriate constraint with that
name is selected, the constrained objects are highlighted by displaying their selection
handles in the canvas, and the constraint description is displayed in the status line.

Right button

This provides short-cuts for commonly used menu entries.

1. Click on an item in the canvas { provides the Edit: Edit selected object facility
(see above).

2. control-Click on an item in the canvas { opens the Divided Object Properties dialog
box for a composite symbol. See Section 8.1.6 .

Cursor

1. The hand pattern is used within the canvas to indicate that items may be moved.

2. The cross-hairs pattern is used when a node symbol is selected in a Symbol Library
(see Section 8.3), to indicate that Clicking on a position on the canvas will place a
copy of the symbol there. Once the selected symbol has been placed on the canvas, the
symbol is deselected within the Symbol Library and the cursor reverts to the normal
pattern.

aiai/hardy/um/1.3 Page 53

8.4.4 Node symbol constraints

Node symbol constraints are used to specify the relative positioning of sub-symbols within
composite symbols under two di�erent circumstances:

1. when constructing new node symbols through the Node Symbol Editor;

2. when describing drop sites for a particular node type (see Section 9.1.6).

A constraint is always applied to at least two objects, one of which is taken as the reference
relative to which the others are constrained. Normally the reference object is the �rst one
that was selected selected. When de�ning drop sites, the reference object is the actual
drop site, and the other object(s) will be the node annotation symbol(s) which will not
be speci�ed until a particular diagram card is constructed. We refer to this as a partially
satis�ed constraint.

A �xed repertoire of constraints is provided:

Above: The Y co-ordinates of the bottom horizontal edges of the bounding boxes of the
constrained objects will be less than the Y co-ordinate of the top horizontal edge of
the bounding box of the constraining object.

Below: The Y co-ordinates of the top horizontal edges of the bounding boxes of the con-
strained objects will be greater than the X co-ordinate of the bottom horizontal edge
of the bounding box of the constraining object.

Left of: The X co-ordinates of the right hand vertical edges of the bounding boxes of the
constrained objects will be less than the X co-ordinate of the left hand vertical edge
of the bounding box of the constraining object.

Right of: The X co-ordinates of the left hand vertical edges of the bounding boxes of the
constrained objects will be greater than the X co-ordinate of the right hand vertical
edge of the bounding box of the constraining object.

Centre horizontally: The X co-ordinates of the centres of the bounding boxes of the
constrained objects and the constraining object will be the same.

Centre vertically

Centre horizontally

Centre

Centre vertically: The Y co-ordinates of the centres of the bounding boxes of the con-
strained objects and the constraining object will be the same.

Centre: The co-ordinates of the centres of the bounding boxes of the constrained objects
and the constraining object will be the same.

aiai/hardy/um/1.3 Page 54

Top-aligned: The Y co-ordinates of the top horizontal edges of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the top horizontal edge
of the bounding box of the constraining object.

Bottom-midaligned

Top-aligned

Bottom-aligned

Top-midaligned

Bottom-aligned: The Y co-ordinates of the bottom horizontal edges of the bounding boxes
of the constrained objects will be the same as the Y co-ordinate of the bottom hori-
zontal edge of the bounding box of the constraining object.

Top-midaligned: The Y co-ordinates of the centres of the bounding boxes of the con-
strained objects will be the same as the Y co-ordinate of the top horizontal edge of
the bounding box of the constraining object.

Bottom-midaligned: The Y co-ordinates of the centres of the bounding boxes of the
constrained objects will be the same as the Y co-ordinate of the bottom horizontal
edge of the bounding box of the constraining object.

Left-aligned: The X co-ordinates of the left hand vertical edges of the bounding boxes of
the constrained objects will be the same as the X co-ordinate of the left hand vertical
edge of the bounding box of the constraining object.

Left-aligned Right-aligned Left-midaligned Right-midaligned

Right-aligned: The X co-ordinates of the right hand vertical edges of the bounding boxes
of the constrained objects will be the same as the X co-ordinate of the right hand
vertical edge of the bounding box of the constraining object.

Left-midaligned: The X co-ordinates of the centres of the bounding boxes of the con-
strained objects will be the same as the X co-ordinate of the left hand vertical edge of
the bounding box of the constraining object.

Right-midaligned: The X co-ordinates of the centres of the bounding boxes of the con-
strained objects will be the same as the X co-ordinate of the right hand vertical edge
of the bounding box of the constraining object.

aiai/hardy/um/1.3 Page 55

Once the required constraint has been chosen, an o�set can be given between the reference
points of the constraining and the constrained objects. This is speci�ed as X and Y spacings,
in pixels.

8.5 Arc symbol editor

8.5.1 Appearance and functionality

The Arc Symbol Editor allows the diagram type designer to de�ne and modify the ap-
pearance of arc symbols held in Symbol Libraries. It is invoked from the Tools: Show
symbol editor menu of the Control Window, or by right-clicking on an arc symbol in a
(non-Standard) symbol library.

Figure 8.4: The Arc Symbol Editor

There are three menus { File, Edit and Help. The canvas displays the current properties
of the arc image. It is initialised to a solid black line.

8.5.2 Menu options

File menu

1. Edit: Add to library { the arc symbol under construction is added to the currently
selected Symbol Library. If no library is selected, a warning message is shown and the
Symbol Library Manager is opened, if it is not already open, so that a selection can
be made.

aiai/hardy/um/1.3 Page 56

2. File: Update { if the Arc Symbol Editor was called from the File: Edit selected
symbol menu of a Symbol Library, the symbol in the Symbol Library is updated and
the Arc Symbol Editor is dismissed.

3. File: Exit { the Arc Symbol Editor is dismissed and, if a symbolwas being constructed
and has not been saved, the user is asked whether it should be saved or not.

Edit menu

1. Edit: Edit symbol name { a Text Entry dialog box is popped up to allow a new
name to be speci�ed for the symbol under construction.

2. Edit: Edit arc properties { a dialog box is popped up which presents information
about the current properties of the selected arc symbol and allows them to be changed.
See Section 8.1.2 .

3. Edit: Edit annotation properties { a dialog box is popped up which presents
information about the current properties of the arc annotations and allows them to be
changed. See Section 8.1.3 .

4. Edit: Clear symbols { any arc annotations that have been speci�ed are cleared from
the displayed arc symbol.

5. Edit: Refresh { clears the canvas and redisplays the symbol under construction.

Help menu

1. Help: Help on Arc Symbol Editor { for Hardy under X, the wxHelp program is
started and information on the Arc Symbol Editor is displayed. Under Windows, the
Windows Help system is started at the appropriate place in the Hardy manual.

8.5.3 Mouse and cursor functionality

Left button

1. Clicking on the canvas when an arc annotation symbol is selected in a Symbol Library
will place that symbol at the right hand end of the displayed arc symbol. Arbitrary,
multiple annotations may be constructed. When an annotation has been added to the
current symbol, it is deselected in its Symbol Library.

Right button

No use is made of the right mouse button.

Cursor

1. The hand cursor is the default within the canvas.

2. The cross-hairs cursor within the canvas indicates that an arc annotation symbol is
currently selected in a Symbol Library.

aiai/hardy/um/1.3 Page 57

9 Card types

This section is concerned with setting up customised card types. This is done by the Card
Type Designer, and we will reserve the term user throughout this section to refer to a person
who makes use of a type of card that the Card Type Designer has de�ned. A user doesn't
want to see the diagram type de�nition, and will be restricted in node and arc repertoire,
node shape, etc. by the decisions you, the card type designer, have made in the card type
de�nition.

Diagram and hypertext type de�nitions are held in �les, usually with the �le extension of
.def, and it is necessary for the de�nition to be loaded before a diagram of that type can be
created or edited (obviously!). When Hardy starts up, it looks for a de�nition list �le (by
default called diagrams.def) which contains a list of these �lenames, each �le containing
a card type de�nition (see Section 2.5). The consequence to the user of adding a new
type will be a new menu item in the dialogue requesting a card type selection when the user
comes to create a new card (i.e. an instance of that card type).

Standard types of text card and hypertext card are provided. New types of diagram card
(see Section 9.1) and hypertext card (see Section 9.2) can be created.

The di�erent types of card available can be organised by the card type designer into categories
if required. This allows di�erent types which are in some way related to be presented as a
group, rather than mixed up with other types.

9.1 Diagram card types

9.1.1 New diagram types

You create new diagram types or modify existing ones, through the Hardy Diagram Type
Manager which is accessed from Tools: Show diagram type manager on the Hardy
Control Window.

Figure 9.1: The Hardy Diagram Type Manager

aiai/hardy/um/1.3 Page 58

You'll be presented with three lists. The �rst allows you to select a diagram type de�nition
to work with, the second shows you all the node de�nitions for the selected diagram type,
and the third shows you its arc de�nitions. As this implies, a diagram type de�nition consist
of the diagram type name, a list of node de�nitions, and a list of arc de�nitions.

The operation of the Diagram Type Manager is controlled by various buttons. To create a
new diagram type, press the New button underneath the Diagram types list, and you'll be
asked to supply a new name for the card type. (You may supply a category for it as well,
though this isn't necessary.) To edit a diagram type, select the diagram type name and
press the Edit button.

Buttons

The buttons are organised into four groups: one for general operations, and one each for the
three lists.

General

1. OK { the Diagram Type Manager is dismissed, and, if changes have been made to
any diagram type de�nitions, you are asked whether these are to be saved or not.

2. Load type { the File Selector dialog box appears with the �lter string set to *.def.
You can select a particular diagram type de�nition �le which will be opened, when its
node and arc types will be listed in the Node types and Arc types list boxes.

3. Save type { the File Selector dialog box appears, and you can save the particular
diagram type de�nition �le.

4. Load list { the File Selector dialog box appears to allow you to specify the name of
the diagram de�nition list �le. By default, this is diagrams.def.

5. Save list { the File Selector dialog box appears with the �lter initialised to *.def to
allow a name for the de�nition �le to be selected.

6. Custom menu { a dialog box appears, allowing you to specify, for the selected di-
agram type, the title of a custom menu, and to add or delete menu items from this
custom menu. See Section 9.3 .

7. Options { a dialog box appears, allowing you to specify, for the selected diagram
type, various properties of the diagram type that a�ect the appearance of a card of
that type. These properties include whether the palette is displayed, the toolbar is
displayed, and which menus are present.

8. Help { for X versions of Hardy, the wxHelp program is started and the Hardy manual
is loaded and opened at the section concerning the DiagramType Manager. For Hardy
for Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

Diagram types

1. New { a Diagram Type dialog box appears, allowing you to specify the new diagram
type required in the text entry area, labelled Type. Types may be grouped together by

aiai/hardy/um/1.3 Page 59

de�ning categories and then assigning each type to a particular category. If required,
a category can be selected from the list of existing categories shown in the Categories
choice box, or a new category name can be typed into the Category text input area.
When �nished, you should press theOK button to accept your speci�cation, when your
new name will appear in the Diagram types list, and Hardy will select it. Otherwise,
you can abandon the operation by pressing Cancel.

2. Edit name { a Text Entry dialog box appears, allowing you to edit the name of the
selected diagram type. The new name replaces the previous name in the existing entry
in the Diagram types list.

3. Delete { the selected diagram type is deleted, and the topmost diagram type in the
list becomes selected.

Node types

1. New { a Text Entry dialog box appears, allowing you to type in the name of the new
node type. An entry with that name then appears in the Node types list and the newly
created entry is selected. The Node Type Editor then appears (see Section 9.1.2),
allowing you to edit the properties of the new node type (see Section 9.1.3).

2. Edit { the Node Type Editor appears, showing the information for the selected node
type (see Section 9.1.2).

3. Delete { the selected node type is deleted, and the topmost entry in the Node types
list becomes selected.

Arc types

1. New { a Text Entry dialog box appears, allowing you to specify the name of the
new arc type. An entry with that name then appears in the Arc types list and the
newly created entry is selected. The Arc Type Editor then appears(see Section 9.1.9
), allowing you to edit the properties of the new arc type.

2. Edit { the Arc Type Editor appears, showing the information for the selected arc type
(see Section 9.1.9).

3. Delete { the selected arc type is deleted and the topmost entry in the Arc types list
becomes selected.

Mouse and cursor functionality

Left button

1. Clicking on an item in the Diagram types list selects that diagram type, and its node
and arc types are displayed in the Node types and Arc types lists.

2. Clicking on an item in either the Node types or Arc types lists selects that item. Any
previous selection in the list will be deselected.

3. Double-click an item in either the Node types or Arc types lists selects that item and
proceeds as though the corresponding Edit button had been pressed. Any previous
selection in the list will be deselected.

aiai/hardy/um/1.3 Page 60

Right button
No use is made of the right mouse button.

Cursor
No special cursor pattern is used.

9.1.2 Node type editor

The Node Type Editor allows you to tailor the properties of a node type. This includes the
displayed symbol shape, scale, colour, etc, as well as the user de�ned attributes. The Node
Type Editor is invoked by selecting an entry in the Node types list of the Diagram Type
Manager.

Figure 9.2: The Node Type Editor

A text entry area, labelled Name, allows the node type to be named. One list box, labelled
Attributes, allows attributes of the node to be de�ned and edited. The other list, labelled
Text regions, allows individual text regions to be selected so that the format and contents
of the text string displayed in the region may be modi�ed.

aiai/hardy/um/1.3 Page 61

The preview canvas displays the current appearance of the node and is not directly editable.
You can load a symbol into the editor either by selecting the symbol you require from a
symbol library (see Section 8.3) and then clicking on the preview canvas. Alternatively, to
modify an existing symbol, you can right-click on the symbol in a library (not the standard
symbol library) to open the editor with the symbol loaded. Changing the properties of the
node will change its appearance in the preview canvas.

Buttons

Buttons are organised into three groups: one for general operations and one each for the
Attributes and Text regions lists.

General

1. OK { the Node Type Editor is dismissed and, if changes have been made to node
de�nitions, you will be asked whether these should be saved or not.

2. Image properties { pops up a dialog box which allows the properties of the displayed
image to be altered (see Section 9.1.3).

3. Drop sites { if the symbol in the preview canvas has partially satis�ed constraints
(see Section 8.4.4), the Drop Sites dialog box appears (see Section 9.1.4).

4. Containment { the Containment dialog box is opened, see Section 4.12 ,allowing
the node to become a container.

5. Symbol librarian { invokes the Symbol Librarian (see Section 8.2).

6. Help { for X versions of Hardy, the wxHelp program is started and the Hardy manual
is loaded and opened at the section concerning the Node Type Editor. For Hardy for
Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

Attributes

1. New { a Text Entry dialog box appears allowing a new attribute name to be speci�ed.

2. Edit { a Text Entry dialog box appears, allowing you to edit the name of the selected
attribute. The new name replaces the previous name in the existing entry in the
Attributes list.

3. Delete { deletes the currently selected attribute.

Text regions

1. Edit { if an entry is selected in the Text regions area, the Region Properties dialog
box will be opened, allowing the properties of the selected text region to be tailored.
See Section 9.1.8 .

aiai/hardy/um/1.3 Page 62

Mouse and cursor functionality

Left button

1. Click on any point in the preview canvas to replace the symbol currently being dis-
played with the node symbol currently selected in a Symbol Library. The Symbol
Library symbol will then be deselected. If no Symbol Library has a currently selected
node symbol, no action results.

2. Click-and-drag a symbol in the preview canvas to change the displayed position of the
symbol.

3. Click on an item within the Attributes list box selects that item.

4. Double-click on an item within the Attributes list box selects that item and proceeds
as though the Edit button had been pressed.

5. Click on an item within the Text regionslist box selects that item. The name of the
selected region is shown in the preview canvas.

6. Double-click on an item within the Text regions list box selects that item and proceeds
as though the Edit button had been pressed.

Right button
No use is made of the right mouse button.

Cursor

1. The hand pattern is the default cursor in the preview canvas.

2. The cross-hairs pattern in the preview canvas indicates that a symbol is currently
selected in a Symbol Library.

9.1.3 Node images

The node images speci�ed for a particular diagram type are based on symbols held in some
symbol library(see Section 8.3), but tailored specially for that diagram type through the
Node Image Properties dialog box that is invoked by pressing the Image properties button
of the Node Type Editor.

In addition to the basic properties that it already has, see Section 8.1.4 , when a node
symbol is used in a diagram type it has additional features:

1. Abbreviation format string { determines how abbreviated references to the node (e.g.
in the status line) should be written. See Section 9.1.8 .

2. Width { the default width of the node in pixels when it is �rst placed on to a diagram
card. If the �xed width property is also set(see Section 8.1.4), the width will always
be this value.

aiai/hardy/um/1.3 Page 63

3. Height { the default height of the node in pixels when it is �rst placed on to a diagram
card. If the �xed height property is also set(see Section 8.1.4), the width will always
be this value.

4. whether or not attachments are used{ see Section 8.1.5 .

5. whether or not connected arcs are equally spaced at attachment points { see Sec-
tion 8.1.5 .

6. whether or not the Node Image should be highlighted if it is hyperlinked to another
Item.

7. whether or not the symbol should be displayed on the Symbol Palette { this will
prevent the user from creating particular symbols which you may need to control.

9.1.4 Drop sites

Drop sites may be de�ned for node symbols by establishing partially satis�ed constraints(see
Section 8.4.4) which will be fully satis�ed by node annotation symbols (see Section 9.1.6
) which can be \dropped" onto the node symbol when a particular diagram card is being
constructed.

Drop sites are established or modi�ed for a node symbol through the Drop Sites dialog box
which is invoked from the Drop sites button of the Node Type Editor. This will show you
the names of all existing drop sites for that node type in the Drop sites list.

To add a new drop site, press theNew button to open the Drop Site Editor(see Section 9.1.5
). Its name will be added to the list on exit. To modify an existing drop site, select its entry
in the list, press the Edit button, and the Drop Site Editor will again be opened. If you
want to throw a de�ned drop site away, select it in the list and press Delete.

9.1.5 Drop site editor

The Drop Site Editor allows you to name a drop site and its associated symbol, and to de�ne
its constraints. It is invoked from the New and Edit buttons of the Drop Sites dialog box
(see Section 9.1.4).

The drop site name is speci�ed in the Drop site name text entry area. You specify the node
annotation symbol associated with the drop site by selecting a node symbol in a symbol
library, then pressing the Assign new symbol button. The name of the symbol will be
shown in the label of the Annotation name area. This is a logical name that you can specify
by typing it in.

The range of partially satis�ed constraints, previously de�ned for the node symbol through
the Node Symbol Editor(see Section 8.4), is displayed in the Available constraints list box.
You build up the particular combination of constraints that you want, shown in the Drop
sites constraints list box. by using the Add {> and Delete buttons. The Add {> button
adds the currently selected entry in the Available constraints list to the end of theDrop sites
constraints list. The Delete button deletes the currently selected entry from the Drop sites
constraints list.

The Edit symbol properties button will open the Node Annotation Symbol Properties
dialog box to allow you to tailor the properties of the annotation symbol (see Section 9.1.6

aiai/hardy/um/1.3 Page 64

).

9.1.6 Node annotation symbols

A node annotation is a node symbol which is associated with a particular node type. It may
be \dropped" onto a node at a de�ned drop site when a particular diagram is being built.
Arcs may be connected to this symbol, and it can have attachment points in the same way
as to any other node symbol.

The Node Annotation Symbol Properties dialog box allows you to tailor a node annotation
symbol for a particular node type. It is invoked from the Edit symbol properties button
of the Drop Site Editor.

As well as the usual properties governing the appearance of the symbol (see Section 8.1.4),
you can specify whether or not attachments are used, and whether or not arcs to attachment
points should be equally spaced.

9.1.7 Containment

Containers are nodes which can contain other nodes of speci�ed types (see Section 4.12).
The Containment dialog box allows you to set the container properties for a particular node
type. It is invoked from the Containment button of the Node Type Editor Editor.

The box labelled Available nodes allows you to choose from the recognised node types for
the diagram or the *" wild card, signifying any type. Once you have selected a type you
want, press the Add button and it will be added to the end of the Containable nodes list
which displays the di�erent types of node that may be contained in this type of container
node. If you want to change your mind and delete an entry, select it in the Containable
nodes list, press Delete, and it will disappear from the list.

9.1.8 Regions

Labels are displayed in text regions, one label per region. Each label needs two parts: the
text string to be displayed, and formatting information to determine how it looks. The text
of an item's label is usually held as one of the item's attributes (see Section 4.6). The
formatting information for the region is stored and altered through the Region Properties
dialog box which is invoked by selecting the region from the Text regions list of the Node
Type Editor and then pressing its Edit button.

The text entry area labelled Format string allows the text region format string to be speci�ed
(see below). The text entry area labelled Point size accepts an integer specifying the text
size. Choice boxes labelled Format mode, Text colour, Font family, Font style, and Font
weight allow choices to be made from the range of values supported by Hardy.

The format string

The format string is a simple way of specifying the label for a region of a node or arc. In
particular, it allows you to display the values of an item's attributes in its image.

aiai/hardy/um/1.3 Page 65

The format string may contain literal text and control characters (introduced by a \%"
character) as follows:

1. %% { inserts the \%" character,

2. %n { inserts a new line,

3. %1 - %9 { inserts a node or arc attribute, where the number corresponds to the position
of the attribute in the attribute list as displayed in the node or arc type dialogue.

By convention, the �rst attribute is used to hold an item's label, so the default format
string is %1. A more complex example might be Name: %1%nValue: %2. The %n control
character may also be inserted in arc and node attributes, for example to prevent overlapping
by adding some manual formatting.

9.1.9 Arc type editor

The Arc Type Editor allows you to tailor the properties of an arc type. This includes
the displayed line shape, permitted annotations, scale, colour, etc, as well as user de�ned
attributes. The Arc Type Editor is invoked through the New and Edit buttons of the Arc
types scrolling list of the Diagram Type Manager.

Arc attributes and text regions (labels) are treated in the same way as for nodes in the
Node Type Editor(see Section 9.1.2), with an arc always having three regions de�ned:
Start, Middle, and End. These are displayed in the Text regions list. Two additional lists,
Arc constraints and Arc images, allow arc constraints and arc images to be speci�ed and
selected.

The displayed image of the arc in the preview canvas, labelled Arc image followed by its
name, will re
ect its current image properties and the current choice of annotations. It is
not directly editable, but changing the properties of the arc will change its appearance in
the preview canvas.

If a Junction Symbol has been selected through the Junction Editor (see Section 9.1.13),
it will be displayed separately in the preview canvas and labelled Junction image.

Buttons

Buttons are arranged in �ve groups, a general group for the editor and one each for the
Attributes, Text regions, Arc constraints, and Arc images list boxes.

General

1. OK { the Arc Type Editor is dismissed, and, if changes have been made to arc de�-
nitions and these have not already been saved, you will be asked whether they are to
be saved or not.

2. Junction editor { pops up the Junction Editor dialog box, see Section 9.1.13 , to
allow a junction symbol to be chosen and given appropriate properties. If a Junction
Symbol is chosen, it will be displayed in the preview canvas.

aiai/hardy/um/1.3 Page 66

Figure 9.3: The Arc Type Editor

3. Symbol librarian { opens the Symbol Librarian.

4. Help { for X versions of Hardy, the wxHelp program is started and the Hardy manual
is loaded and opened at the section concerning the Arc Type Editor. For Hardy for
Windows, the Windows Help system is started at the appropriate place in Hardy's
manual.

Attributes

1. New { a Text Entry dialog box appears, allowing a new attribute to be speci�ed.

2. Edit { a Text Entry dialog box appears, allowing you to edit the name of the selected
attribute. The new name replaces the previous name in the existing entry in the
Attributes scrolling list.

3. Delete { deletes the currently selected attribute.

Text regions

1. Edit { if an entry is selected in the Text regions area, the Region Properties dialog
box will be opened, allowing the properties of the selected text region to be tailored.

aiai/hardy/um/1.3 Page 67

See Section 9.1.8 .

Arc constraints

1. New { an Arc Constraint dialog box appears allowing a new constraint to be speci�ed
(see Section 9.1.10). The choice boxes in this dialog box contain all the nodes types
de�ned for this diagram type.

2. Delete { deletes the currently selected constraint.

Arc images

1. New { a Text Entry dialog box appears, allowing a name to be given for the new
image. When a name has been speci�ed, the Arc Image Properties dialog box appears
(see Section 9.1.11).

2. Edit { the Arc Image Properties dialog box appears (see Section 9.1.11), allowing
you to edit the properties of the arc symbol for the currently selected arc type.

3. Delete { deletes the currently selected arc symbol.

Mouse and cursor functionality

Left button

1. Click on a point in the preview canvas, if a node annotation symbol is currently
selected in any Symbol Library, places that symbol on the nearest text region of the
arc symbol currently being displayed. Any annotation symbol already at that site will
be replaced. The Symbol Library symbol will then be deselected. If no Symbol Library
has a currently selected arc annotation symbol, no action results.

2. Click on an item within the Attributes list box selects that item.

3. Double-click on an item within the Attributes list box selects that item and proceeds
as though the Edit button had been pressed.

4. Click on an item within the Text regions list box selects thatitem. The name of the
selected region is shown in the preview canvas.

5. Double-click on an item within the Text regions list box selects that item and proceeds
as though the Edit button had been pressed.

6. Click on an item within the Arc constraints list box selects that item.

7. Click on an item within the Arc images list box selects that item.

8. Double-click on an item within the Arc images list box selects that item and proceeds
as though the Edit button had been pressed.

Right button
No use is made of the right mouse button.

aiai/hardy/um/1.3 Page 68

Cursor
No special cursor pattern is used.

9.1.10 Arc constraints

The Arc Constraints dialog box allows you to specify between which types of node the arc
is legal. It is invoked from the New button of the Arc constraints area of the Arc Type
Editor.

The two boxes allow you to choose from the types of node that are de�ned for the diagram
type or the *"wild card, signifying any type. They are labelled Constrain from and Con-
strain to, in the expected manner. When you have chosen a type for each end, press the
OK button to dismiss the dialog box.

9.1.11 Arc images

The Arc Image Properties dialog box allows you to tailor the image properties of an arc
type symbol, such as its line width, style, colour, etc. The Arc Image Properties dialog box
is invoked by selecting an entry in the Arc images scrolling list in the Arc Type Editor and
pressing the Edit button. This dialog box will also appear when a new Arc Image is being
de�ned, after specifying the Arc Image's name.

In addition to the basic properties that it already has, see Section 8.1.2 , when an arc
symbol is used in a diagram type, it has additional features:

1. Abbreviation format string,

2. whether the arc is drawn as a straight line or a spline curve and, if it is a straight line,
whether it should be drawn as a spline if it connects one node to the same node.

3. whether annotations are divisible or not, i.e. presented in a separate section on the
diagram symbol palette.

4. whether or not the symbol should be displayed on the Symbol Palette.

Pressing the Annotation properties... button opens the Arc Type Annotation Properties
dialog box, see Section 9.1.12 ,allowing high-level properties of any arc annotations to be
set.

9.1.12 Arc type annotations

The Arc Type Annotation Properties dialog box is invoked from the Annotation prop-
erties... button of the Arc Image Properties dialog box. It allows allows properties of arc
annotations to be set for a particular type of arc.

Each entry corresponds to an annotation speci�ed for the region, and consists of:

1. its symbol name,

2. a checkbox indicating whether the annotation will always be present on the arc or
whether it will be added incrementally by the user as desired, and

3. a text entry area allowing a logical name to be given to the annotation.

aiai/hardy/um/1.3 Page 69

9.1.13 Multi-way arcs and junction symbols

Multi-way arcs allow you to connect one node to several others with the same arc type and
have the diagram display the result as a single leg emerging from the source node, joining it
to a multi-way junction symbol. The destination nodes are then all joined to this junction
symbol. This can result in tidier diagrams, particularly if some grid constraints are applied
to the arc segments (see Figure 9.4, below).

Figure 9.4: Using a multi-way arc Normal one-to-one arcs

A junction symbol is a node symbol which has been specially selected for the role using
the Junction Editor dialog box, invoked from the Junction editor button of the Arc Type
Editor.

This allows you to specify several important properties:

1. selecting the junction symbol { there is a message at the foot of the dialog box, asking
you to select the node symbol that you want from some symbol library. (You do this
in the usual way, opening the Symbol Librarian if necessary from the Arc Type Editor
or the Control Window's Tools menu.) Once the symbol is selected, you will see the
cross-hairs cursor pattern when you move into the preview window of the Arc Type
Editor. Clicking here will \drop" the selected symbol onto the preview window and
the label Junction symbol followed by the name of the symbol will be shown below it.

2. changing the junction symbol { press the Clear Junction button, and the current
junction symbol image displayed in the Arc Type Editor preview window is cleared.

3. size { you can specify the height and width of the displayed symbol, in pixels.

4. two-way arcs { you can decide whether or not the junction symbol should appear when
the source node is connected to a single destination node.

5. grid geometry { if auto dog-leg is set, an extra control point will be added to each
leg connecting the junction symbol to the destination nodes. Hardy will then alter
these arcs so that they are horizontally and vertically aligned. (as though Layout:
Straighten lines had been selected.)

6. specifying attachment points { this uses the numbered identi�ers of the junction sym-
bol's attachment points to specify �ner detail for tidier diagrams:

Input: the attachment point id used for connecting the input (source) node,

aiai/hardy/um/1.3 Page 70

One output: the attachment point id used for connecting the output node when
there is only one (a two-way arc),

Two outputs (1): the attachment point id to be used for connecting the �rst of more
than one output arcs (a multi-way arc),

Two outputs (2): the attachment point id to be used for connecting the second of
more than one output arcs,

Three outputs: the attachment point id to be used for connecting the third and
subsequent output arcs.

Pressing the OK button accepts the current values and dismisses the dialog box.

9.2 Hypertext card types

As for diagrams, it is possible to create hypertext card types which modify the default capa-
bilities of the standard hypertext card. Di�erences between one type and another all relate
to alternative styles for marking-up text blocks and the use of custom menus. The text is
marked-up by selecting blocks of text|phrases, sentences, paragraphs, etc|and associating
block types with them. Each block type is mapped onto a particular style which allows the
block to be distinguished from the surrounding text in terms of its font, colour, etc. To
understand the process of building a new card type, please read the chapter on creating a
new diagram type �rst (Section 4.1).

9.2.1 New hypertext types

The Hardy Hypertext Type Manager, accessed from the Tools: Show hypertext type
manager menu item of the Hardy Control Window, allows the default capabilities of the
standard hypertext card to be modi�ed so that the user can create di�erent hypertext card
types.

The Hypertext Type Manager presents you with a list of currently de�ned hypertext types
and a selection of buttons, many of which are identical to those of the DiagramType Manager
(see Section 9.1.1).

To create a new type, press the New button, and enter a name for the hypertext type. To
alter the name of an existing type, select the one you want from the Hypertext types list and
press the Edit name button and you'll be asked for the new name. You can also change
its category(see Section 9.1.1) if you want to, though this isn't necessary. You can delete
a type by selecting the entry you want to remove from the list, then pressing the Delete
button.

The actual work of de�ning the hypertext type is done through altering hypertext block
mappings. You open the Block Mappings dialog box by pressing the Edit block mappings
button(see Section 9.2.2).

Buttons

The buttons are arranged in two groups, one group providing general facilities, the other
dealing with facilities for the type currently selected in the Hypertext types list box.

aiai/hardy/um/1.3 Page 71

Figure 9.5: The Hardy hypertext type manager

General

1. OK { the Hypertext Type Manager is dismissed and, if changes have been made to any
hypertext type de�nitions and these have not been saved, the user is asked whether
these should be saved or not.

2. Load type { the File Selector dialog box appears with the �lter string set to *.def.
The user can select the hypertext type de�nition �le to open, and this is then loaded
and displayed in the Hypertext types list box.

3. Save type { the File Selector dialog box appears, and the user can specify a �le name
for saving the hypertext type de�nition �le.

4. Load list { the File Selector dialog box appears to allow the user to specify the name
of the hypertext de�nition list �le. By default, this is diagrams.def.

5. Save list { the File Selector dialog box appears with the �lter initialised to *.def to
allow a name for the de�nition �le to be selected.

6. Custom menu { if a hypertext type is currently selected in the Hypertext types list
box, a dialog box appears, allowing the user to specify for that hypertext type the
title of a custom menu, and to add or delete menu items from this custom menu. See
Section 9.3 .

7. Help { for X versions of Hardy, the wxHelp program is started and the Hardy manual
is loaded and opened at the section concerning the Hypertext Type Manager. For
Hardy for Windows, the Windows Help system is started at the appropriate place in
Hardy's manual.

Hypertext types

aiai/hardy/um/1.3 Page 72

1. New { a Text Entry dialog box appears, allowing the user to type in the name of a
new hypertext type. An entry with that name then appears in the Hypertext types
scrolling list, and the newly created hypertext type is selected.

2. Edit name { a Text Entry dialog box appears, allowing the user to change the name
of the selected hypertext type. An entry of that name then appears in the Hypertext
types scrolling list, replacing the previous entry.

3. Edit block mappings { if a hypertext type is selected in the Hypertext types scrolling
list, a Block Mapping dialog box appears (see Section 9.2.2 below), allowing the user
to alter the mappings between block types and their displayed styles.

4. Delete { the selected hypertext type is deleted from the hypertext type de�nition list
and the corresponding entry is removed from the Hypertext types list box.

9.2.2 Hypertext block mappings

The block type mapping de�nes how the type identi�er of a text block is interpreted in terms
of text colour and style. Using di�erent block type mappings on the same hypertext �les
results in the same text being displayed di�erently. When a hypertext type is �rst created,
the default block styles are given. You may wish to modify these for your own application.
Note that the block type identi�er must be unique for each block type mapping.

A block type can have the following characteristics:

font family (Swiss, Roman, Modern or Default),

point size (such as 10, 12, 24),

style (Normal, Italic or Default),

weight (Normal, Bold, Light or Default),

colour (such as BLACK, RED, FOREST GREEN, BLUE, CYAN or Default).

A block may, in fact, have some of the attributes speci�ed as Default, which means \use
whatever was speci�ed before this block". The point size value representing the default is -1.
When a block ends, the attributes revert to their previous values. This means that a block
need only change one or two attributes, such as colour or weight. Blocks may be nested:
for example, within an Italic block, a word could be highlighted in RED. If the RED block
type speci�ed \Default" for text style, the block would be RED and Italic.

An additional characteristic is whether or not it supports sections. If sections are supported
by a particular hypertext type, cards of this type will be able to move backwards and
forwards using the Goto: Top, Goto: Next section, and Goto: Previous section
menu options.

The Block Mapping dialog box allows the user to alter the mappings between hypertext
block types and their displayed styles. It is invoked from the Edit block mappings button
of the Hypertext Type Manager,see Section 9.2.1 .

The names of the di�erent block styles are listed in the Blocks area. The type id correspond-
ing to the currently selected block is shown in the Block type area. Details of the text font
and other characteristics are shown and may be altered in the other areas.

aiai/hardy/um/1.3 Page 73

To add a new block type name, press the Add button. A Text Entry dialog box will
appear, allowing you to type in the name required. An entry with that name will appear in
the Blocks list and that entry will be selected. You can alter the name of a type by selecting
it in the Blocks list, then pressing the Change name button. The Text Entry dialog box
will appear, allowing you to edit the selected name. The new name will replace the old name
in the existing entry in the list. To delete a type, select the one you want to remove from
the Blocks list, press Delete, and the entry will disappear from the list.

9.3 Custom menus

Diagram types and hypertext types may have a extra menu added to the card's menu bar.
This supports an interface to foreign code which intercepts particular mouse and menu events
for the card type.

You specify your menu requirements using the Custom Menu dialog box which is invoked by
pressing the Custom menu button of either the Diagram Type Manager or the Hypertext
Type Manager. This lets you specify the menu name and add or delete menu entries.

The menu title is speci�ed in the area labelled Menu title and the selectable names of the
menu entries are shown in the Menu items list. To add a new entry, type its name into the
Menu item name area and press the Add button. What you typed will now be added to
the end of the Menu items list and Menu item name will be cleared. To change the name
of an entry, select the name you want to change in the Menu items list, type the new name
into Menu item name, and press the Save name button. What you typed will now replace
the selected entry in the list. To remove an entry, select the name you want removed from
the Menu items list and press the Delete button. The selected entry will be removed from
the list.

Pressing OK commits to the current settings and dismisses the dialog box.

9.4 Saving card type de�nitions

Once you have �nished de�ning or changing a card type, go to the type manager (the
Diagram Type Manager or the Hypertext Type Manager as appropriate) and press the
Save type button to save the currently selected type. You will be prompted for �le names
if any �les are needed that you haven't referred to before.

To update the de�nitions list �le, use the Save list button of the type manager.

9.5 Editing previously created card type de�nitions

Assuming the type de�nition is available from the type manager (the DiagramType Manager
or the Hypertext Type Manager as appropriate), select it in the Diagram types list (by
clicking on its name), then press the Edit name button to change its name, or the Delete
button to delete the whole type completely from the type index. (The �le will remain on
the disk.)

aiai/hardy/um/1.3 Page 74

To edit an existing node or arc type in the Diagram Type Manager, make selections in the
same way as above, but using the Node types or Arc types lists instead.

NOTE that it can be dangerous to change diagram type settings when a diagram of that
type is being edited, and it is possible to get Hardy to crash this way. For many settings,
however, old diagram �les will continue to work correctly using the new de�nitions. However,
this should be done with caution.

The Layout: Apply de�nitions menu option of a diagram card does let you update a
displayed card if you have, in the meantime, changed its Diagram Type de�nition; existing
values of various properties of the displayed items will be updated where possible.

aiai/hardy/um/1.3 Page 75

10 Di�erences between the X and Windows

versions

Since the X and Windows windowing systems have di�erences in philosophy and design,
some speci�c features are necessary for each platform. These have been kept to a minimum
to avoid inconsistency.

10.1 Printing

Under X, the only form of printing is to PostScript �les or printers. Hardy for Windows
provides the same options, but will also support copying diagrams to the Windows clipboard
though the Edit: Copy option.

10.2 The clipboard

Hardy for Windows has an option in the diagram card Edit: Copy menu for copying a
meta�le version of the diagram to the clipboard. See Section 4.13.2 .

10.3 MDI mode

Under Windows, MDI (Multiple Document Interface) is a style used by most modern ap-
plications where child windows are constrained by the top level window. For applications
which allow many documents to be open at once, it is more convenient to hide all windows
when the top level window is iconised than to have to close many windows individually.
The application e�ectively has its own desktop, on which document windows may be placed
and iconised. The menu bar for each window is always placed on the top level window, and
changes according to which child window is currently activated.

In addition, MDI applications have an extra menu calledWindow, with standard Cascade,
Tile Arrange icons and Next options, and a list of MDI child windows which can be
activated.

Hardy supports MDI mode under Windows (in fact it's the default) using the -mdi command
line switch. The switch -sdi selects SDI (Single Document Interface) mode, for those who
dislike the MDI style. Hardy is probably unique amongst Windows applications to o�er this
choice! In MDI, the hypertext tree browser is displayed in a separate child window; this is
now synonymous with the control window, taking on the top level window menu bar (main
menu). You can get to the main menu by activating the browser window or using the Goto
control window menu item from a card's File menu.

aiai/hardy/um/1.3 Page 76

10.4 Text editing

Plain text cards cannot be edited directly under Windows. A separate text editor must be
invoked, and the �le read back into the card explicitly.

aiai/hardy/um/1.3 Page 77

11 Programming Hardy

Hardy has a built-in language based on NASA's CLIPS 6.0. For detailed information on
CLIPS, please refer to the CLIPS user and reference manuals. This chapter describes the
simple CLIPS development environment included with Hardy, and lists the Hardy-speci�c
CLIPS functions; the function reference may be viewed on-line from the CLIPS help menu
by selecting.

After the Hardy speci�c functions, a separate section lists CLIPS functions relevant to
lower-level construction and manipulation of windows and other interface components. This
reference is also accessible from the CLIPS help menu as Interface functions reference.

11.1 The Hardy CLIPS environment

Hardy comes with a cut-down version of the embeddable expert system shell, CLIPS. There
are new Hardy-speci�c functions which may be called from CLIPS, allowing Hardy to be
tailored to a greater degree than by using the diagram type manager alone.

The Tools menu on the control window has a Show Development window option. Se-
lecting this displays the Hardy CLIPS development window consisting of a menu bar, a
command prompt, and a text output window. Some CLIPS operations may be achieved
using the menu such as loading a CLIPS de�nition �le, and all may be accessed from the
command prompt. To execute an arbitrary CLIPS command, type in the command and
press the Do button. The command is echoed on the text output window, and any results
of the executed command are also displayed.

The end user will normally not use the Hardy CLIPS window. When your CLIPS code has
been debugged, it can be loaded at runtime using the -clips �lename command line option.
Any function calls in the �le will also be executed (for example to register Hardy event
handlers, or load further de�nitions).

To load functions, you may use the File: Batch or File: Load menu options. The
Load option checks constructs such as functions, printing out error messages; however, only
construct de�nitions are allowed, so functions cannot be executed from a �le. The Batch
option allows both construct de�nitions and the use of these constructs (e.g. to register
interest in a Hardy event); however, construct error messages are not given. The -clips
command line switch uses the batch method.

It is strongly recommended that you use at least two CLIPS �les: a small loader and one or
more constructs �le. The loader loads the main �le or �les, and then calls the appropriate
event handler registration functions.

For example:

(load "constructs.clp")

(register-event-handler NodeLeftClick "KADS Inference" node-left-click)

This is very much quicker than having all the code in the top-level batch �le.

Also, you may wish to execute the command (unwatch all), or put it early on in your
program. This cuts down on the amount of information CLIPS displays on the window,

aiai/hardy/um/1.3 Page 78

which can be time consuming.

11.2 Debugging CLIPS code

At present, there are few facilities for debugging CLIPS code. For trying out small code
fragments, you can type in one command at a time in the text input panel. Once one or more
functions have been written, print statements at important points in the code are probably
the best way to proceed. A single-stepping facility may be incorporated in later versions of
Hardy. This might be emulated for now by placing dummy read-string statements in the
code to prevent the code proceeding until the user allows it.

Also, typing (watch all) makes CLIPS show a trace of function calls and execution of
other CLIPS constructs. The (dribble-on file) command writes CLIPS error messages
and other output that would normally be written to the development window, into a �le.
(dribble-off)
ushes and closes the dribble �le.

Type errors in early versions of Hardy tended to be fatal, since Hardy could not check that
an identi�er referred to an existing object of a di�erent type (such as a node object instead
of a node image). Type checking is now performed on all objects, so such mistakes should
be more readily identi�able.

A common error is forgetting a closing bracket. This may not cause any error message when
a �le is loaded into CLIPS, but the de�nitions or function calls after the error will not be
made, and so code will not appear to be working. It may be convenient to put a print
statement at the end of a �le you are debugging: if all is well, a message will be printed;
otherwise, there may be a problem with brackets.

Another thing to watch out for is non-reentrant loops. All the CLIPS for Hardy functions
whose names contain get-�rst- cannot be used within a loop which already makes use of
this function. To get around this, �rst build a list of identi�ers using the get-�rst- and get-
next- functions and the CLIPS mv-append function, and iterate through this list instead.
For example,

(bind ?id (diagram-card-get-first-node ?card))

(bind ?list (mv-append))

(while (> ?id -1) do

(bind ?list (mv-append ?list ?id))

(bind ?id (diagram-card-get-next-node))

)

; The following loop can now call other functions which use

; get-first-card-node

(bind ?counter 1)

(while (> ?counter (length ?list)) do

(bind ?element (nth ?counter ?list))

...

(bind ?counter (+ ?counter 1))

)

aiai/hardy/um/1.3 Page 79

11.3 Diagram and hypertext structures

The specialized Hardy CLIPS functions manipulate various structures essential to Hardy,
which must be understood before any code can be written.

Most accessible structures are referred to in CLIPS code by integer identi�ers, except for
named node, arc and other types (as opposed to instances of structures of that type) which
are referred to by name. For example, a node image of type \Knowledge Role" may have
identifer 187.

A Hardy diagram card has an integer identi�er, retrievable via the arguments of an event
handler function or by other means. There are two sorts of diagram card: top-level, and
expansion. The top-level card is the one �rst created, and has menu options for �le saving
and loading. For simple diagrams, this type may be all that is required. An expansion card
is a diagram card which `hangs o�' the top-level diagram card or another expansion card,
and may be used to build up a hierarchical diagram. Only one �le is used to save a hierarchy
of diagrams. Most operations may be done on diagram cards without worrying whether it
is an expansion or the top-level diagram card.

A Hardy diagram consists of an underlying network of nodes and arcs (referred to generically
as objects). They are visually represented by node and arc images. The distinction is
necessary to accommodate multiple images for one object (for example, the same node
appearing on di�erent cards). Usually, there will be only one image for each node or arc.
At present there are no functions to allow creating additional images for existing objects.
When an image is created, an underlying object is automatically created, the id of which
can be retrieved from the image if required. Objects are associated with the top-level card,
whereas images are associated with the card on which they are displayed.

Node and arc objects have string attributes, some of which are hard-wired (such as \type")
and some of which are de�ned by the user in the diagram type manager. One or more of
the user-de�nable attributes may be used in the image label, determined by a user-supplied
format string. The user-de�nable attributes may be set and retrieved via CLIPS or by the
user.

The hypertext structure is based on the concept of the hypertext item. Each type of card
has its own idea of what corresponds to an item | for the diagram card, each image is
conceptually an item and therefore contains an item structure. Items may be linked to
other items by hypertext links (or hyperlinks). A card always has at least one item, called
the special item, so that a card which either does not support the concept of items (e.g. the
text card), or has no appropriate items, may still be linked to another card or item.

Using the appropriate functions, items may be retrieved from images, and any links attached
to the items may be traversed, to access other connected items, cards or images. For
convenience, there are functions to manipulate expansion cards (which are cards linked to
image items via special links) without needing to access the items and traverse the links
explicitly.

For further information and some simple examples, please refer the Hardy Software Devel-
opment Kit and the accompanying Frequently Asked Questions document.

aiai/hardy/um/1.3 Page 80

12 Hardy Functions Reference

This section speci�es the functions that provide the functionality of Hardy at a card and
item level. Display functionality is speci�ed in Section ?? .

This section is presented in �ve parts based on the card index and the di�erent available
card types, with miscellaneous functionality being gathered together at the end.

In the de�nitions below, function names and parameter names are shown in bold face, with
types being shown in italics. The types used are as follows:

1. double is a double-precision
oating point number.

2. long is a long integer.

3. string is a double-quoted ASCII string.

4. word is an unquoted string.

Functions involving diagram images, objects and hypertext items will use the diagram card
identi�er, an integer, to ensure uniqueness.

Parameters can be optional, in which case the defaults are speci�ed.

Function names are constructed by appending an `action' to an `object', for instance
card-get-string-attributeand diagram-image-get-width.

There is an implicit type hierarchy which allows some functions to be general purpose,so
card-get-special-item can refer to all card types, whereas diagram-card-find-root

operates on diagram cardsonly. Similarly, a diagram-object can be used fornode-objects
and arc-objects, and diagram-image can be used fornode-images and arc-images.

Note: In Windows NT or WIN32s versions of Hardy, integer identi�ers can be negative. So
when validating integer identi�ers, test for values of zero or -1, rather than for values less
than zero.

aiai/hardy/um/1.3 Page 81

12.1 Card index functions

hardy-clear-index

long (hardy-clear-index)

Clears the hypertext index, with no user con�rmation. Returns 1 if successful, 0 otherwise.

hardy-get-�rst-card

long (hardy-get-�rst-card)

Gets the �rst card in the index. Returns -1 if there are no cards, or a card id otherwise. Use
hardy-get-next-card for retrieving further cards.

hardy-get-next-card

long (hardy-get-next-card)

Gets the next card in the index. Returns -1 if there are no more cards, or a card id otherwise.
Use hardy-get-first-card to start iterating through cards.

Note that if you perform an operation that deletes a card during an iteration through the
index, this function could give an error. A possible solution is to put all card ids in a list,
iterate through this list, and use card-is-valid to check if the card still exists.

hardy-get-top-card

long (hardy-get-top-card)

Returns the id of the top card, or -1 if none.

hardy-load-index

long (hardy-load-index string �le)

Loads the hypertext index from the speci�ed �le, returning 1 if successful, 0 otherwise.

hardy-save-index

long (hardy-save-index string �le)

Saves the hypertext index in the speci�ed �le, returning 1 if successful, 0 otherwise.

aiai/hardy/um/1.3 Page 82

12.2 Card functions

The following functions apply to any card.

card-create

long (card-create long parent id, string card type, optional long iconic = 0, optional
long x = -1, optional long y = -1, optional long width = -1, optional long height
= -1, optional long window = 0)

Creates a new card and returns the id, or -1 if the call failed. parent id may be zero (no
parent) or a valid parent card id. card type should be a string: the only valid value at present
is \Text card" (diagram cards are created using diagram-card-create).

If iconic is 1, the card will be created in iconic (minimized) form.

The position and size arguments are optional; if they are omitted or take the value -1, their
values will be given defaults.

window may contain the identi�er of the frame to display the card in. If window is present
and non-zero, the card is not already displayed in a window, and the card that is already
displayed in window is of the same type, then the card will be displayed in this window.

card-delete

long (card-delete long card id, optional long warn = 1)

Deletes the given card; returns 1 for success and 0 for failure.

If warn is 1 (the default), the user will be asked for con�rmation before deleting, otherwise
the card will be deleted silently.

card-deselect-all

long (card-deselect-all long card id)

Deselects all images on the given card; returns 1 for success and 0 for failure.

card-�nd-by-title

long (card-�nd-by-title string name, optional long substring=1)

Finds card for �rst matching title. name may be a substring (if substring is 1). This
function is useful for testing against cards which have been created manually and whose id
is, therefore, not known.

card-get-canvas

long (card-get-canvas long card id)

Returns the id for the canvas of a card, if the card currently has a physical window. The
canvas is the main subwindow of a card, such as the diagram editing canvas of a diagram
card.

aiai/hardy/um/1.3 Page 83

card-get-frame

long (card-get-frame long card id)

Returns the frame identi�er associated with the card, returning 0 if there is no frame. This
allows, for example, a card frame to be used as a parent for a dialog box.

card-get-�rst-item

long (card-get-�rst-item long card id)

Gets the �rst hypertext item associated with the given card. Returns -1 for end of list.
Further items are returned by calls of card-get-next-item.

card-get-height

long (card-get-height long card id)

Returns the height of the card's window.

card-get-next-item

long (card-get-next-item)

Following a call of card-get-first-item which returns the �rst hypertext item associated
with a speci�ed card, this gets the next hypertext item for that card. Returns -1 for end of
list.

card-get-special-item

long (card-get-special-item long card id)

Returns the \special" hypertext item for the given card. The \special" item always exists,
even for empty cards, for the purpose of linking one card to another.

card-get-string-attribute

string (card-get-string-attribute long card id, string attribute name)

Get the value of the given string attribute associated with the card. attribute name may be
one of:

1. diagram-type: for diagram or expansion cards only, returns user-de�ned diagram type;

2. �lename;

3. print-�le (diagram or expansion cards only);

4. title;

5. type: returns \Text card", \Diagram card", \Hypertext card" or \Diagram expan-
sion".

aiai/hardy/um/1.3 Page 84

card-get-toolbar

long (card-get-toolbar long card id)

Returns the toolbar id for the card, if the card currently has a physical window and if there
is a toolbar associated with the card. Returns 0 otherwise.

Note that you should only perform window or toolbar operations on this id if it has been
created by a wxCLIPS operation (i.e., is not a Hardy-created toolbar).

card-get-width

long (card-get-width long card id)

Returns the width of the card's window.

card-get-x

long (card-get-x long card id)

Returns the x coordinate of the top left corner of the card's window.

card-get-y

long (card-get-y long card id)

Returns the y coordinate of the top left corner of the card's window.

card-iconize

long (card-iconize long card id, optional long iconic = 1)

Iconizes or restores the given card, if it has a physical window associated with it. If iconic
is 1, the card will be iconized. If 0, it will be restored.

card-is-modi�ed

long (card-is-modi�ed long card id)

Returns 1 if the given card has been modi�ed and needs to be saved, 0 otherwise.

card-is-shown

long (card-is-shown long card id)

Returns 1 if the given card is displayed on the screen (i.e. has a physical window associated
with it), 0 otherwise. See also card-show.

card-is-valid

long (card-is-valid long card id)

Returns 1 if the card exists, 0 otherwise.

aiai/hardy/um/1.3 Page 85

card-move

long (card-move long card id, long x, long y)

Moves the given card to the speci�ed position on the screen. Returns 1 if successful, 0
otherwise.

card-quit

long (card-quit long card id, optional longquit level=0)

Quits the given card, i.e. deletes the physical window associated with the card, but does
not delete the card from the hypertext index. Returns 1 if successful, 0 otherwise.

Action depends on value of quit level:

0: full user prompting,

1: if the card has a �lename, save and quit without prompting,

2: don't save anything and quit without prompting.

card-select-all

long (card-select-all long card id)

Selects all images on the given card. Returns 1 if successful, 0 otherwise.

card-send-command

long (card-send-command long card id, long command id)

Sends a menu command identi�er to the card, which must be displayed. command id is an
internal identi�er that can be obtained from an equivalent string form using Section 12.21 .

This function can be used in custom code to provide features that the default user interface
normally provides.

See Section 12.22 for a list of identi�ers you can use in conjunction with this function.

card-set-icon

long (card-set-icon long card id, long icon id)

Sets the icon for a card, where icon id is a valid icon created with a wxCLIPS function.

card-set-modi�ed

long (card-set-modi�ed long card id, optional long modi�ed = 1)

Sets the card `modi�ed'
ag, to 1 by default.

aiai/hardy/um/1.3 Page 86

card-set-status-text

long (card-set-status-text long card id, string text)

Sets the status line of the given card to display the given text (only if the card has a status
line|all diagram cards do, text cards currently do not). Use the empty string (\") to clear
the status line. Returns 1 if successful, 0 otherwise.

card-set-string-attribute

long (card-set-string-attribute long card id, string attribute, string value)

Sets the attribute of the given card to the given value. Returns 1 if successful, 0 otherwise.

The attribute parameter may be one of the following:

1. �lename,

2. print-�le (diagram card only),

3. title.

card-show

long (card-show long card id, optional long iconic = 0, optional long window=0)

Shows the given card. If the card is being displayed, it is brought to the fore. If it is not
being displayed, it is given a new physical window, its contents loaded, and it is brought to
the fore (or iconised if there is a second argument which is non-zero).

window may contain the identi�er of the frame to display the card in. If window is present
and non-zero, the card is not already displayed in a window, and the card that is already
displayed in window is of the same type, then the card will be displayed in this window.

aiai/hardy/um/1.3 Page 87

12.3 Item functions

The following functions apply to hypertext items.

item-get-�rst-link

long (item-get-�rst-link long card id, long item id)

Gets the �rst link associated with the item. Returns -1 for end of list. Further links are
returned by calls of item-get-next-link.

item-get-kind

string (item-get-kind long card id, long item id)

Gets the kind of the item. The `kind' is a way of labelling an item without deriving a new
C++ class, and is currently unused.

item-get-next-link

long (item-get-next-link)

Following a call of item-get-first-link which returns the �rst link associated with a
speci�ed item, this gets the next link for that item. Returns -1 for end of list.

item-get-type

string (item-get-type long card id, long item id)

Gets the type of the item. A type refers to the item's C++ class, and may currently be
\Default item" or \Diagram item".

item-goto

long (item-goto long card id, long item id, optional long iconic = 0)

Highlight the item on the given card, optionally iconising the card if a new physical window
needs to be created for the card. item id can be -1 to use the special item.

Returns the id of the top card, or -1 if none.

item-set-kind

long (item-set-kind long card id, long item id, string kind)

Sets the kind of the item. This string value is not used by Hardy but might be used by an
application for some purpose.

aiai/hardy/um/1.3 Page 88

12.4 Link functions

The following functions apply to hyperlinks.

link-get-card-from

long (link-get-card-from long link id)

Returns the card owning the item pointed from by the link, or -1 if unsuccessful.

link-get-card-to

long (link-get-card-to long link id)

Returns the card owning the item pointed to by the link, or -1 if unsuccessful.

link-get-item-from

long (link-get-item-from long link id)

Returns the item pointed from by the link, or -1 if unsuccessful.

link-get-item-to

long (link-get-item-to long link id)

Returns the item pointed to by the link, or -1 if unsuccessful.

link-get-kind

string (link-get-kind long link id)

Gets the kind of the link. The `kind' is a way of labelling a link without deriving a new
C++ class, and may currently be \Expansion", for an expansion link, or the empty string.

link-get-type

string (link-get-type long link id)

Gets the type of the link. A type refers to the link's C++ class, and may currently be one
of \Default link" and \Expansion link".

link-cards

long (link-cards long from card, long to card)

Creates a default hyperlink between the two cards, returning the link id if successful or -1
if unsuccessful.

aiai/hardy/um/1.3 Page 89

link-items

long (link-items long from card, long from item, long to card, long to item)

Creates a hyperlink between the two items, returning the link id if successful or -1 if unsuc-
cessful.

link-set-kind

long (link-set-kind long link id, string kind)

Sets the kind of the link. This string value is not used by Hardy but might be used by an
application for some purpose (such as providing `typed' links).

aiai/hardy/um/1.3 Page 90

12.5 Arc image functions

The following functions apply to arc images.

arc-image-change-attachment

long (arc-image-change-attachment long card id, long image id, long end, long at-
tachment, long position=-1)

This function allows the programmer to change the attachment point at which the arc enters
or leaves the node. Attachment points start from zero and are either hard-wired or de�ned
in the symbol editor. For example, rectangles, circles and ellipses have four attachment
points, starting from the top and going clockwise from zero to three.

If the �nal position argument is given (and more than -1), the function can change the
position of the arc relative to the arcs connected at the same attachment point. If zero, the
arc will be drawn at the �rst position. If a very large number, it will be drawn at the last
position.

Note that these attachment points are only valid if the node image has attachments switched
on (from the symbol editor or node type editor).

If end is 1, the 'to' end of the arc is acted on. If end is 0, the 'from' end is acted on.

attachment should be a valid attachment point. After the function is called, the arc will be
redrawn at the given attachment point.

position, if supplied, speci�es the position of the arc relative to other arcs connected to the
node at this attachment point.

arc-image-control-point-add

long (arc-image-control-point-add long card id, long image id)

Adds a control point to the arc image (between the middle two points). If the arc image is
selected, the application must deselect it before calling this function (and select it again if
necessary).

arc-image-control-point-count

long (arc-image-control-point-count long card id, long image id)

Counts the number of control points in the arc image. This number will be at least two (one
for each end).

arc-image-control-point-move

long (arc-image-control-point-move long card id, long image id, long point id, dou-
ble x, double y)

Moves the given control point to an absolute position on the canvas. If the arc image is
selected, the application must deselect it before calling this function (and select it again if
necessary). The application must redraw the arc image after this function is called.

aiai/hardy/um/1.3 Page 91

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-control-point-remove

long (arc-image-control-point-remove long card id, long image id)

Removes an abitrary control point from the arc image. If the arc image is selected, the
application must deselect it before calling this function (and select it again if necessary).

arc-image-control-point-x

double (arc-image-control-point-x double card id, long image id, long point id)

Gets the X position of the control point.

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-control-point-y

double (arc-image-control-point-y double card id, long image id, long point id)

Gets the Y position of the control point.

The point id must be between 1 and the number of control points in the line. The coordinate
system has an origin at the top left of the canvas.

arc-image-create

long (arc-image-create long card id, string arc type,
long from node, long to node,
optional long from attachment, optional long to attachment, optional string al-
ternative image)

Creates a new arc and arc image between the given node images. The new arc is stored
at the root of the diagram hierarchy; the arc image is associated with the displaying card
and its id is returned if the operation is successful. The arc type parameter must be a valid
arc type for this diagram type, as de�ned interactively using the Diagram Type Manager.
The optional attachment points refer to where the arc should be attached at the node image
end-points; usually the attachment option will not have been activated in the diagram type
manager so these will have no e�ect.

The optional parameter alternative image can specify an alternative image name if the arc
de�nition has more than one image de�nition de�ned.

Returns -1 if unsuccessful.

Unlike with node-image-create, the arc image is drawn immediately and no further oper-
ation is required to make it visible.

aiai/hardy/um/1.3 Page 92

arc-image-get-alignment-type

string (arc-image-get-alignment-type long card id, long image id, long end)

Gets the alignment type for a particular end of the line.

end should be 1 for the arc image end, 0 for the arc image start.

The returned type will be ALIGN TO NEXT HANDLE or ALIGN NONE.

See also Section 12.5 .

arc-image-get-attachment-from

long (arc-image-get-attachment-from long card id, long arc image id)

Given a diagram card id and the id of an arc image on that card, retrieves the attachment
point of the node image at the `from' end of the arc. Returns -1 on failure.

The value of the attachment point depends on the type of node, whether attachment mode
is on for this node, and where the arc has been drawn from. By default, the value is zero,
which if attachment mode is o� means that the arc is drawn from the centre of the node.
For a rectangle, circle or ellipse, there are four attachment points numbered zero to three
clockwise, at the main points of the compass. A polyline's attachment points are at its
vertices.

arc-image-get-attachment-to

long (arc-image-get-attachment-to long card id, long arc image id)

Given a diagram card id and the id of an arc image on that card, retrieves the attachment
point of the node image at the `to' end of the arc. Returns -1 on failure.

The value of the attachment point depends on the type of node, whether attachment mode
is on for this node, and where the arc has been drawn to. By default, the value is zero,
which if attachment mode is o� means that the arc is drawn from the centre of the node.
For a rectangle, circle or ellipse, there are four attachment points numbered zero to three
clockwise, at the main points of the compass. A polyline's attachment points are at its
vertices.

arc-image-get-image-from

long (arc-image-get-image-from long card id, long arc image id)

Given a diagram card id and the id of an arc image on that card, retrieves the id of the node
image at the `from' end of the arc. Returns -1 on failure.

arc-image-get-image-to

long (arc-image-get-image-to long card id, long arc image id)

Given a diagram card id and the id of an arc image on that card, retrieves the id of the node
image at the `to' end of the arc. Returns -1 on failure.

aiai/hardy/um/1.3 Page 93

arc-image-is-leg

long (arc-image-is-leg long card id, long image id)

Returns 1 if the arc image is a leg joining a junction image to a node image, otherwise 0.

arc-image-is-spline

long (arc-image-is-spline long card id, long arc image id)

Returns 1 if the image is a spline, or 0 if the image is a line.

arc-image-is-stem

long (arc-image-is-stem long card id, long image id)

Returns 1 if the arc image is a stem joining a from node image to a junction image, otherwise
0.

The junction image can be found from a stem or leg by following the from and to pointers in
the normal way. Similarly, if the junction image is known, the arc images can be determined.

arc-image-set-alignment-type

long (arc-image-set-alignment-type long card id, long image id, long end, string type)

Sets the alignment type for a particular end of the line.

end should be 1 for the arc image end, 0 for the arc image start.

type can be ALIGN TO NEXT HANDLE or ALIGN NONE. If the former, the point at
which the arc image hits the node image is calculated by looking at the next handle (control
point) along. Depending on the attachment point, the x or y coordinate is set to the same
position as the next handle.

This only applies if attachment mode is on, and the attached node image is rectangular.
The alignment position is bounded by the size of node image.

See also Section 12.5 .

arc-image-set-spline

long (arc-image-set-spline long card id, long arc image id, long is spline)

Sets the arc image to be a spline (is spline is 1) or a line (is-spline is 0). Returns 1 if
successful, 0 otherwise.

aiai/hardy/um/1.3 Page 94

12.6 Diagram card functions

The following functions apply to diagram cards.

diagram-card-clear-canvas

long (diagram-card-clear-canvas long card id)

Clears the canvas associated with the given diagram card. This does not delete any images,
it merely blanks the canvas: calling diagram-card-redrawwill bring back the diagram. Use
diagram-card-delete-all-images to actually destroy all diagram images.

diagram-card-copy

long (diagram-card-copy long card id)

Copies the selected images of the card card id into the Hardy clipboard bu�er (and onto the
Windows clipboard if running under Windows), if the cards are of the same diagram type.
Returns 1 if successful, 0 otherwise.

The function diagram-card-pastemay be used to paste the clipboard bu�er contents onto
another card. The function diagram-card-cut copies and then deletes the selected images.

diagram-card-cut

long (diagram-card-cut long card id)

Copies the selected images of the card card id into the Hardy clipboard bu�er (and onto the
Windows clipboard if running under Windows), and then deletes the selected images from
the card if the cards are of the same diagram type. Returns 1 if successful, 0 otherwise.

The function diagram-card-pastemay be used to paste the clipboard bu�er contents onto
another card. The function diagram-card-copy will copy without deleting the selected
images.

diagram-card-create

long (diagram-card-create
long parent id, string diagram type, optional long iconic=0, optional long x
= -1, optional long y = -1, optional long width = -1, optional long height =
-1, optional long window=0)

Creates a new diagram card and returns the id, or -1 if the call failed. parent id may be
zero (no parent) or a valid parent card id. diagram type should be a valid diagram type, as
de�ned using the interactive Diagram Type Manager.

If iconic is 1, the card will initially be shown in the iconic state.

The position and size arguments are optional; if they are omitted or take the value -1, their
values will be given defaults.

window may contain the identi�er of the frame to display the card in. If window is present
and non-zero, the card is not already displayed in a window, and the card that is already

aiai/hardy/um/1.3 Page 95

displayed in window is of the same type, then the card will be displayed in this window.

diagram-card-create-expansion

long (diagram-card-create-expansion long parent id, long image id, optional
longwindow=0)

Creates a new diagram expansion card and returns the id, or -1 if the call failed. parent id
must be a valid parent card id. image id should be a valid node or arc image id to be
expanded, or -1 to signify the card should be linked to the parent card itself and not an
image within it.

window may contain the identi�er of the frame to display the card in. If window is present
and non-zero, the card is not already displayed in a window, and the card that is already
displayed in window is of the same type, then the card will be displayed in this window.

diagram-card-delete-all-images

long (diagram-card-delete-all-images long card id)

Attempts to delete all the images on the canvas of the given diagram card. It may fail if
images are connected to expansion cards. Returns 1 if successful, 0 otherwise.

diagram-card-�nd-root

long (diagram-card-�nd-root long card id)

Given a diagram card id, �nds the id of the diagram card at the base of the diagram hierarchy
(not necessarily of the whole hypertext hierarchy). This may or may not be the same as
card id. Returns -1 for failure.

For example, if a callback provides a diagram id which is that of an expansion card somewhere
in the hierarchy, supplying the id to this function will return the root of the hierarchy (not
the `top card', which is something else entirely!).

diagram-card-get-�rst-arc-�rst-image

long (diagram-card-get-�rst-arc-�rst-image long card id optional long arc id optional
long selected)

Given a diagram card id, retrieves the id of the �rst arc image on the card (or
another card on the same hierarchy). Further arc images are accessed by calls to
diagram-card-get-next-arcImage. Returns -1 on failure.

arc id may be omitted or zero to all return arc images for this card regardless of arc object;
or a valid arc object id to restrict the images to those belonging to the arc object.

If selected is 1, the images returned will be those currently selected, in the order in which
they were selected. If zero, all arc images will be returned.

aiai/hardy/um/1.3 Page 96

diagram-card-get-�rst-arc-�rst-object

long (diagram-card-get-�rst-arc-�rst-object long card id)

Given a diagram card id, retrieves the id of the �rst arc (not arc image)
on the card (or root of this card). Further arcs are accessed by calls to
diagram-card-get-next-arc-next-object. Returns -1 on failure.

diagram-card-get-�rst-descendant

long (diagram-card-get-�rst-descendant long card id)

Get the �rst expansion card (always a diagram card) of a card. Returns -1 if no expansion
cards.

Used with diagram-card-get-next-descendant, allows iteration on all expansion cards
which are descendants from a given root card, without having to follow the hypertext links
attached to diagram images.

diagram-card-get-�rst-node-�rst-image

long (diagram-card-get-�rst-node-�rst-image long card id optional long node id op-
tional long selected)

Given a diagram card id, retrieves the id of the �rst node image on the card. Further node
images are accessed by calls to diagram-card-get-next-node-next-image. Returns -1 on
failure.

node id may be omitted or zero to all return node images for this card regardless of node
object; or a valid node object id to restrict the images to those belonging to the node object.

If selected is 1, the images returned will be those currently selected, in the order in which
they were selected. If zero, all node images will be returned.

diagram-card-get-�rst-node-�rst-object

long (diagram-card-get-�rst-node-�rst-object long card id)

Given a diagram card id, retrieves the id of the �rst node (not node image)
on the card (or root of this card). Further cards are obtained by calling
diagram-card-get-next-node-next-object. Returns -1 on failure.

diagram-card-get-grid-spacing

long (diagram-card-get-grid-spacing long card id)

Returns the current grid spacing for the card; a value of zero means that snap-to-grid is
switched o�.

diagram-card-get-parent-card

long (diagram-card-get-parent-card long card id)

aiai/hardy/um/1.3 Page 97

If the card is an expansion card, returns the id of the parent diagram card. Otherwise
returns -1.

diagram-card-get-parent-image

long (diagram-card-get-parent-image long card id)

If the card is an expansion card, returns the id of the connected node or arc image on the
parent diagram card. Otherwise returns -1.

diagram-card-get-next-arc-next-image

long (diagram-card-get-next-arc-next-image)

Following a call of diagram-card-get-first-arc-first-image for a speci�ed card, re-
trieves the id of the next node image on the card. Returns -1 on failure or to signify no more
images.

diagram-card-get-next-arc-next-object

long (diagram-card-get-next-arc-next-object)

Following a call of diagram-card-get-first-arc-first-object for a speci�ed diagram
card id, this retrieves the id of the next arc (not arc image) on the card (or root of this
card). Returns -1 on failure or to signify no more arcs.

diagram-card-get-next-descendant

long (diagram-card-get-next-descendant)

Following a call of diagram-card-get-first-descendant for a speci�ed node, get the next
expansion card for that node Returns -1 if no more expansion cards.

diagram-card-get-next-node-next-image

long (diagram-card-get-next-node-next-image)

Following a call of diagram-card-get-first-node-first-image for a speci�ed card, re-
trieves the id of the next node image on the card. Returns -1 on failure or to signify no more
images.

diagram-card-get-next-node-next-object

long (diagram-card-get-next-node-next-object)

Following a call of diagram-card-get-first-card-first-nodeObject for a speci�ed card,
retrieves the id of the next node on the card (or root of this card). Returns -1 on failure or
to signify no more nodes.

aiai/hardy/um/1.3 Page 98

diagram-card-get-print-height

long (diagram-card-get-print-height long card id)

Returns the height of the diagram card's Postscript image in points. This call must be made
after a call to diagram-card-print-hierarchy, which calculates the print size.

diagram-card-get-print-width

long (diagram-card-get-print-width long card id)

Returns the width of the diagram card's Postscript image in points. This call must be made
after a call to diagram-card-print-hierarchy, which calculates the print size.

diagram-card-get-scale

double (diagram-card-get-scale long card id)

Returns the scaling factor for the card.

diagram-card-layout-graph

long (diagram-card-layout-graph long card id)

Lay out the given diagram using a simple graph layout algorithm. The current layout
parameters, set through diagram-card-set-layout-parameters, are used.

diagram-card-layout-tree

long (diagram-card-layout-tree long card id, long image id, long orientation)

Lay out the given diagram as a tree, using the given image as root. The current layout
parameters, set through diagram-card-set-layout-parameters, are used.

If orientation is 1, the layout is top to bottom, otherwise it is left to right.

diagram-card-load-�le

long (diagram-card-load-�le long card id, string �lename)

Loads the given diagram �le onto the given card. Returns 1 for success, 0 for failure.

diagram-card-paste

long (diagram-card-paste long card id)

Copies images from the Hardy clipboard bu�er onto the card card id, if the diagram
types of bu�er and card match. The clipboard bu�er should have been �lled with
diagram-card-copy or diagram-card-cut prior to this operation. Returns 1 if success-
ful, 0 otherwise.

The function diagram-card-copy will copy without deleting the selected images. The func-
tion diagram-card-cut copies and then deletes the selected images.

aiai/hardy/um/1.3 Page 99

diagram-card-popup-menu

long (diagram-card-popup-menu long card id, long menu id, double x, double y)

Popups up a menu previously created using menu-create in wxCLIPS.

diagram-card-print-hierarchy

long (diagram-card-print-hierarchy long card id)

Prints the diagram card hierarchy to separate PostScript �les, prompting for �lenames if
necessary.

diagram-card-redraw

long (diagram-card-redraw long card id)

Redraws the entire diagram, returning 1 for success, 0 otherwise.

diagram-card-save-bitmap

long (diagram-card-save-bitmap long card id, string �lename)

For Windows version only: saves the diagram in a Windows RGB-encoded bitmap (usual
extension .BMP). Returns 1 if successful, 0 otherwise.

diagram-card-save-�le

long (diagram-card-save-�le long card id, string �le)

Saves the diagram on the given card in the speci�ed �le, returning 1 if successful, 0 otherwise.

diagram-card-save-meta�le

long (diagram-card-save-meta�le long card id, string �lename, optional double scale
= 1.0)

For Windows version only: saves the diagram in a Windows meta�le (usual extension .wmf).
Returns 1 if successful, 0 otherwise.

The optional scale parameter defaults to 1.0, and is used to reduce or enlarge the meta�le.

A meta�le is a `recording' of the graphics functions used to draw a picture. Its chief merits
are its scaleability, and its economy of disk space for many types of picture. Meta�les may
be included in RTF (Rich Text Format) �les to allow programmatic construction of word
processor documents containing text and pictures.

diagram-card-set-grid-spacing

long (diagram-card-set-grid-spacing long card id long grid spacing)

Sets the grid spacing for the card; a value of zero switches snap-to-grid o�.

aiai/hardy/um/1.3 Page 100

diagram-card-set-layout-parameters

long (diagram-card-set-layout-parameters long card id,
double left margin, double right margin, double width, double height,
double spacing x, double spacing y)

Sets layout parameters used by auto-layout functions.

diagram-card-set-scale

long (diagram-card-set-scale long card id,
oat scale)

Sets the scaling factor for the card. 1.0 is 100 per cent. Note that factors above 1 can cause
scrolling problems under MS Windows (vertical and horizontal lines get left behind).

aiai/hardy/um/1.3 Page 101

12.7 Diagram object functions

The following functions apply to diagram objects (diagram nodes or arcs).

diagram-object-add-attribute

void (diagram-object-add-attribute long card id, long object id, string attribute)

Adds a new attribute name to the user-de�ned attributes section of an object (node or arc),
and initialises it with the empty string(\").

This should not be called whilst the user is still editing attributes.

diagram-object-delete-attribute

void (diagram-object-delete-attribute long card id, long object id, string attribute)

Deletes the named user-de�ned attribute from an object (node or arc). This does not just
delete an attribute value value, it deletes the attribute itself.

This should not be called whilst the user is still editing attributes.

diagram-object-format-text

long (diagram-object-format-text long card id, long object id)

Formats the visible text of the node or arc object, for all images associated with this object.
The format string speci�ed in the diagramde�nition is used, and all images redrawn. Returns
1 if successful, 0 otherwise.

diagram-object-get-�rst-attribute

string (diagram-object-get-�rst-attribute long card id, long object id)

Get the �rst attribute name from the object on the given card. Further attribute names are
obtained by calling diagram-object-get-next-attribute. Returns the empty string if no
attribute.

diagram-object-get-�rst-image

long (diagram-object-get-�rst-image long card id, long object id)

Given a diagram card id and a node or arc object id, retrieves the id of the �rst image
belonging to the object. (Node and arc objects may have more than one image associated
with them.) The card id may be any card in the hierarchy since all nodes and arcs are
associated with the top card in the hierarchy. Further image ids are obtained by calling
diagram-object-get-next-image. Returns -1 on failure.

diagram-object-get-next-attribute

string (diagram-object-get-next-attribute)

aiai/hardy/um/1.3 Page 102

Following a call of diagram-object-get-first-attribute for a speci�ed object, get the
next attribute name from the object. Returns the empty string if no further attributes.

diagram-object-get-next-image

long (diagram-object-get-next-image)

Following a call of diagram-object-get-first-image for a speci�ed object, retrieves the
id of the next image belonging to the object. (Node and arc objects may have more than
one image associated with them.) Returns -1 on failure or to signify no more images.

diagram-object-get-string-attribute

string (diagram-object-get-string-attribute long card id, long object id,
string attribute)

Given a diagram card id, node or arc object id and string attribute name, returns the value
of the attribute if found, the empty string if not found. The only attribute you may rely on
is type; any others depend on the attributes de�ned in the particular diagram de�nition.

diagram-object-set-format-string

long (diagram-object-set-format-string long card id, long object id,
string format string)

Sets the format string for the object. Normally, the format string for a node or arc type is set
in the diagram type manager; this function allows the programmer to dynamically change
the format string on a per-object basis. You may wish to show more or less information on
an image depending on the context.

If the local format string is the same as the object type format string, it will not be written
to �le for that object, to save space and time.

diagram-object-set-string-attribute

long (diagram-object-set-string-attribute long card id, long object id,
string attribute, string value)

Sets the object (node or arc) attribute to the given value. attribute may be one of the
attributes named in the node or arc type de�nition. Do not try to set an image attribute
directly; you may obtain the object for an image using diagram-image-get-object.

Returns 1 for success, 0 for failure.

aiai/hardy/um/1.3 Page 103

12.8 Diagram palette functions

The following functions apply to a diagram palette.

diagram-palette-get-arc-selection

string (diagram-palette-get-arc-selection long card id)

Returns the type of the arc symbol selected on the diagram card palette, or the empty string
if no arc symbol was selected or the palette was not displayed.

diagram-palette-get-arc-selection-arc-image

string (diagram-palette-get-arc-selection-arc-image long card id)

Returns the image de�nition type of the arc symbol selected on the diagram card palette,
or the empty string if no arc symbol was selected or the palette was not displayed.

For each arc type, there are one or more arc image de�nitions: usually there is only one,
with the name `Default". If there are several arc image de�nitions for an arc type, each will
be displayed on the palette, and this function will distinguish between them.

diagram-palette-get-�rst-annotation-�rst-selection

string (diagram-palette-get-�rst-annotation-�rst-selection long card id,
string type)

Gets the �rst selected annotation symbol on the diagram palette. type may be one of \Both",
\Node" or \Arc", to get di�erent kinds of annotation selection. The function returns the
�rst annotation name or the empty string.

diagram-palette-get-next-annotation-next-selection generates any further ones, as
several annotation images may be selected at once.

diagram-palette-get-next-annotation-next-selection

string (diagram-palette-get-next-annotation-next-selection long card id)

Returns the name of the next selected annotation symbol for the diagram type from the
palette, following a call of diagram-palette-get-next-annotation-next-selection, or
the empty string.

diagram-palette-get-node-selection

string (diagram-palette-get-node-selection long card id)

Returns the type of the node symbol selected on the diagram card palette, or the empty
string if no node symbol was selected or the palette was not displayed.

aiai/hardy/um/1.3 Page 104

diagram-palette-show

long (diagram-palette-show long card id long show=1)

If the card is currently visible, shows or hides the palette.

diagram-palette-set-annotation-selection

long (diagram-palette-set-annotation-selection long card id,
string annotation name, long select)

Toggles the named annotation symbol on the diagram palette on or o�, depending on the
value of select: 1 for on, 0 for o�. Returns 1 if the function succeeds, 0 otherwise.

diagram-palette-set-arc-selection

long (diagram-palette-set-arc-selection long card id,
string type name, string image def, long
ag)

Toggles the given arc symbol on the diagram palette on or o�, depending on the value of
select: 1 for on, 0 for o�. Returns 1 if the function succeeds, 0 otherwise.

type name is the arc type name, and image def is the image de�nition for the arc. Normally
image def would be \Default" since most arc de�nitions only have one image de�nition.

diagram-palette-set-node-selection

long (diagram-palette-set-node-selection long card id,
string type name, long select)

Toggles the given node symbol on the diagram palette on or o�, depending on the value of
select: 1 for on, 0 for o�. Returns 1 if the function succeeds, 0 otherwise.

aiai/hardy/um/1.3 Page 105

12.9 Diagram image functions

The following functions apply to a diagram image (a node or arc image).

diagram-image-add-annotation

long (diagram-image-add-annotation long card id, long image id,
string annotation name, string dropsite name)

Adds an annotation to the given node or arc image, returning an id if successful or -1 if
unsuccessful.

For node images, annotations are additional node-like children of a composite node image.
Legal annotation symbols are de�ned in the Drop Site Editor, and their names and drop
sites can be used in this function.

For arc images, annotations are usually arrow-heads that can be added at three drop sites,
\Start", \Middle" and \End", in the order de�ned in the Arc Type Editor. The annotation
name in this case is the logical or displayed name for the annotation, which is the same as
the physical name (such as \Normal arrowhead") unless overridden in the Arc Type Editor.

See also diagram-image-delete-annotation.

diagram-image-annotation-get-drop-get-site

string (diagram-image-annotation-get-drop-get-site long card id, long image id,
long annotation id)

Gets the drop site name for the given annotation, or the empty string if the call fails.

diagram-image-annotation-get-logical-get-name

string (diagram-image-annotation-get-logical-get-name long card id, long image id,
long annotation id)

Gets the logical name of the given annotation, or the empty string if the call fails.

The logical name is the same as the name for a node annotation. For an arc annotation, the
logical name is the same as the name unless the logical name for the annotation has been
changed in the Annotation Properties dialog in the Arc Type Editor. All logical names for
a physical arc annotation are listed in the status line when the cursor is moved over the
annotation in the diagram card symbol palette.

The logical name is used to re
ect a notational convention for a particular arc, even though
the underlying arc annotation symbol may be used several times in di�erent contexts.

See also diagram-image-annotation-get-name.

diagram-image-annotation-get-name

string (diagram-image-annotation-get-name long card id, long image id,
long annotation id)

Gets the name of the given annotation, or the empty string if the call fails.

aiai/hardy/um/1.3 Page 106

See also diagram-image-annotation-get-logical-get-name.

diagram-image-delete

long (diagram-image-delete long card id, long image id)

Erases and deletes the given image. Note that if quick edit mode is on, damaged areas will
not be redrawn automatically. Returns 1 if successful, 0 otherwise.

diagram-image-delete-annotation

long (diagram-image-delete-annotation long card id, long image id,
long annotation id)

Deletes an annotation from a node or arc image.

diagram-image-draw

long (diagram-image-draw long card id, long image id)

Draws the image, returning 1 if successful, 0 otherwise.

diagram-image-draw-text

long (diagram-image-draw-text long card id, long image id, string text, optional
string region name)

Draws text in the image. This is a lower-level operation than diagram-object-format-text
since it is on a per-image basis and does not use the format string as de�ned in the Diagram
Type Manager. This may be useful for displaying text that the format string will not allow,
such as user-de�ned attribute values.

region name (default value \0") names the text region of the image for images that have
multiple text regions, such as composites, divided rectangle images, and arcs.

Simple images, such as ellipses and rectangles, have one region called \0".

Divided rectangles have as many regions as the number of divisions and, for a divided
rectangle that is not part of a composite, the naming is \0", \1", \2" and so on.

Arc images always have three regions called \Start", \Middle" and \End".

Composite node images have a region \0", but diagram-image-draw-text can be used for
the components: the text regions of the components are named automatically. For a given
node type, see the node type editor for a list of text regions and a visual indication of where
these regions are on the composite.

diagram-image-erase

long (diagram-image-erase long card id, long image id)

Erases the given image. Note that if quick edit mode is on, damaged areas will not be
redrawn automatically. Returns 1 if successful, 0 otherwise.

aiai/hardy/um/1.3 Page 107

diagram-image-get-brush-colour

string (diagram-image-get-brush-colour long diagram id, long image id)

Gets the brush (�ll) colour for the given image. The colour is a wxWindows colour string
such as \BLACK" (see wxWindows documentation). Returns a colour string if successful,
the empty string otherwise.

diagram-image-get-card

long (diagram-image-get-card long card id, long image id)

Given the id of a card somewhere in the hierarchy, and the id of a node or arc image on one
of the cards in the hierarchy, get the id of the card on which the image appears. Returns -1
if unsuccessful.

This may be needed, for example, when retrieving arc images from arc objects, in order to
�nd the level at which the connection is taking place.

diagram-image-get-�rst-annotation

long (diagram-image-get-�rst-annotation long card id, long image id)

Returns the id of the �rst annotation for a node image (another node image) or an
arc image (an annotation image) or -1 if no annotation is present. Together with
diagram-image-get-next-annotation, this allows iteration through all annotations of an
image.

diagram-image-get-�rst-expansion

long (diagram-image-get-�rst-expansion long card id, long image id)

Get the �rst expansion card (always a diagram card) from the given image on the given card.
Further expansion cards are obtained by calling diagram-image-get-next-expansion. Re-
turns -1 if no expansion cards.

diagram-image-get-height

double (diagram-image-get-height long card id, long image id)

Returns the
oating-point value of the image height, or rather the height of the bounding
box enclosing the image.

diagram-image-get-item

long (diagram-image-get-item long card id, long image id)

Returns the hypertext item corresponding to the given image on the given card, or -1 if
unsuccessful.

aiai/hardy/um/1.3 Page 108

diagram-image-get-next-annotation

long (diagram-image-get-next-annotation)

Returns the id of the next annotation for a node (another node image) or an arc
(an annotation image) image, or -1 if no further annotations exist. Together with
diagram-image-get-first-annotation, this allows iteration through all annotations of
an image.

diagram-image-get-next-expansion

long (diagram-image-get-next-expansion)

Following a call of diagram-image-get-first-expansion for an image on a speci�ed card,
get the next expansion card. Returns -1 on failure or if no more expansion cards.

diagram-image-get-object

long (diagram-image-get-object long card id, long image id)

Gets the id of the node or arc object corresponding to the given node or arc image id.
Returns -1 on failure.

diagram-image-get-pen-colour

string (diagram-image-get-pen-colour long diagram id, long image id)

Gets the pen (outline) colour for the given image. The colour is a wxWindows colour string
such as \BLACK" (see wxWindows documentation). Returns a colour string if successful,
the empty string otherwise.

diagram-image-get-text-colour

string (diagram-image-get-text-colour long diagram id, long image id,
optional string region name = \0")

Gets the text colour for the given image. The colour is a wxWindows colour string such as
\BLACK" (see wxWindows documentation).

The optional parameter region name identi�es the text region, for composite images or
images (such as divided rectangles) that have multiple text regions.

Returns a colour string if successful, an empty string otherwise.

diagram-image-get-width

double (diagram-image-get-width long card id, long image id)

Returns the
oating-point value of the image width, or rather the width of the bounding
box enclosing the image.

aiai/hardy/um/1.3 Page 109

diagram-image-get-x

double (diagram-image-get-x long card id, long image id)

Returns the
oating-point value of the image x coordinate (at the centre of the image).

diagram-image-get-y

double (diagram-image-get-y long card id, long image id)

Returns the
oating-point value of the image y coordinate (at the centre of the image).

diagram-image-is-shown

long (diagram-image-is-shown long card id, long image id)

Returns 1 if the image is visible, 0 otherwise.

diagram-image-move

long (diagram-image-move long card id, long image id, double x, double y)

Moves the centre of the image to the given position and redraws it. Note that if quick edit
mode is on, damaged areas will not be redrawn automatically. Returns 1 if successful, 0
otherwise.

diagram-image-pending-delete

long (diagram-image-pending-delete long card id, long image id)

Returns 1 if the diagram image is about to be deleted by Hardy.

This function is occasionally necessary when you need to determine, from within an arc
deletion event, whether a node attached to that arc can be safely deleted by the custom
code. If the current arc image is being deleted automatically because a node is being
deleted, then calling this function will determine that it is not safe to delete the node image,
because the node image would be deleted twice.

Important note: if the node image to be tested is potentially part of a composite, you should
check if there is a parent node image, and if so, whether there is a deletion pending on that,
and so on.

diagram-image-put-to-front

long (diagram-image-put-to-front long card id, long image id, optional long front =
1)

Puts the image to the front (if front = 1) or back (if front = 0) of the canvas.

aiai/hardy/um/1.3 Page 110

diagram-image-resize

long (diagram-image-resize long card id, long image id,
double width, double height)

Resizes the image to the given width and height, and redraws it. Note that if quick edit
mode is on, damaged areas will not be redrawn automatically. Returns 1 if successful, 0
otherwise.

diagram-image-select

long (diagram-image-select long card id, long image id, long
ag)

Selects and redraws the image if
ag is 1, deselects if
ag is 0. Note that other parts of the
diagram may be damaged if an image is deselected, since control points are erased. If quick
edit mode is on, the application must call diagram-card-redraw to refresh the diagram.

diagram-image-selected

long (diagram-image-selected long card id, long image id)

Returns 1 if the node or arc image is selected, 0 otherwise.

diagram-image-set-brush-colour

long (diagram-image-set-brush-colour long diagram id, long image id,
string colour)

Sets the brush (�ll) colour for the given image, and redraws the image. The colour is a
wxWindows colour string such as \BLACK" (see wxWindows documentation). Returns 1
if successful, 0 otherwise.

diagram-image-set-pen-colour

long (diagram-image-set-pen-colour long diagram id, long image id,
string colour)

Sets the pen (outline) colour for the given image, and redraws the image. The colour is a
wxWindows colour string such as \BLACK" (see wxWindows documentation). Returns 1
if successful, 0 otherwise.

diagram-image-set-shadow-mode

long (diagram-image-set-shadow-mode long card id, long image id, long shadow =
1, optional long o�set x = 0, optional long o�set y = 0)

Sets the shadow mode (1 for shadow, 0 for no shadow) for the given image. Optional shadow
o�sets can be given; 0 for an o�set means assume the default.

aiai/hardy/um/1.3 Page 111

diagram-image-set-text-colour

long (diagram-image-set-text-colour long diagram id, long image id,
string colour, optional string region name = \0")

Sets the text colour for the given image, and redraws the image. The colour is a wxWindows
colour string such as \BLACK" (see wxWindows documentation).

The optional parameter region name identi�es the text region, for composite images or
images (such as divided rectangles) that have multiple text regions.

Returns 1 if successful, 0 otherwise.

diagram-image-show

long (diagram-image-show long card id, long image id, long show)

If show is TRUE, the image will be in the visible state (the default). If show is FALSE,
the image will be in the invisible state, and not drawn or sensitive to mouse events. The
function works recursively for composite images.

diagram-item-get-image

long (diagram-item-get-image long card id, long image id)

Returns the diagram node or arc image corresponding to the given hypertext item on the
given card, or -1 if unsuccessful (for example if the item is not on a diagram card).

aiai/hardy/um/1.3 Page 112

12.10 Node image functions

The following functions apply to a diagram node image.

node-image-create

long (node-image-create long card id, string node type)

Creates a new node and node image. The new node is stored at the root of the diagram
hierarchy; the node image is associated with the displaying card and its id is returned if the
operation is successful. The node type parameter must be a valid node type for this diagram
type, as de�ned interactively using the Diagram Type Manager. Returns -1 if unsuccessful.
Note that the image is not drawn automatically immediately after creation, to give your
application a chance to move it somewhere appropriate using diagram-image-move.

Use node-image-duplicate if you wish to create a new image for an existing node object.

node-image-duplicate

long (node-image-duplicate long card id, long node id)

Creates a new node image for the existing node object. Give the destination card and node
object id. Returns -1 if unsuccessful.

Note that the image is not drawn automatically immediately after creation, to give your
application a chance to move it somewhere appropriate using diagram-image-move.

node-image-get-container

long (node-image-get-container long card id, long image id)

Returns the id of the container this node is in, otherwise -1.

node-image-get-�rst-arc-�rst-image

long (node-image-get-�rst-arc-�rst-image long card id, long image id)

Given a diagram card id and node image id, retrieves the id of the �rst arc image associated
with the node. Calling node-image-get-next-arcImage will generate any further arc images.
Returns -1 on failure.

node-image-get-�rst-child

long (node-image-get-�rst-child long card id, long image id)

Given a diagram card id and composite node image id, retrieves the id of the �rst child of
the image. Returns -1 on failure or to signify no more images. Further child images are
generated by calls of node-image-get-next-child.

aiai/hardy/um/1.3 Page 113

node-image-get-�rst-container-�rst-region

long (node-image-get-�rst-container-�rst-region long card id, long image id)

Returns the id of the �rst container region belonging to the given container node im-
age, or -1 if the image is not a container. Further container regions are generated by
node-image-get-next-container-next-region.

A container image has one or more container regions, each of which can contain other node
images (subject to constraints de�ned in the Node Type Editor). The user may split existing
container regions into further regions (using control-right click to bring up the container
region menu).

A container region is a node image in its own right, with a single corresponding node object
of type Container region. This means that a container region may be linked by arcs to other
nodes.

node-image-get-parent

long (node-image-get-parent long card id, long image id)

Returns the id of the parent node image of this node image, or zero if there is none, or if
the parent is a container region of a di�erent node.

node-image-get-container-parent

long (node-image-get-container-parent long card id, long image id)

Returns the id of the container region which is a parent of this node image, or zero if there
is none. By implication, the node image and the parent belong to separate node objects.

node-image-get-next-arc-next-image

long (node-image-get-next-arc-next-image)

Following a call of node-image-get-first-arc-first-image for a speci�ed node image on
a card, retrieves the id of the next arc image associated with that node image. Returns -1
on failure or to signify no more images.

node-image-get-next-child

long (node-image-get-next-child)

Returns the ID of the next child of the composite, or -1 if no further child images are present.
Together with node-image-get-first-child, this allows iteration through all child images
of a composite.

node-image-get-next-container-next-region

long (node-image-get-next-container-next-region)

aiai/hardy/um/1.3 Page 114

Returns the id of the next container region belonging to the given container node im-
age or -1 if there are no further regions. The node image is speci�ed by the last call of
node-image-get-first-container-first-region.

node-image-is-composite

long (node-image-is-composite long card id, long image id)

Returns 1 if node is a composite, otherwise 0.

A composite image is an image that has, or is capable of having, one or more child images.
This includes container nodes.

node-image-is-container

long (node-image-is-container long card id, long image id)

Returns 1 if node is a container, otherwise 0.

A container is a node image that has been de�ned in the Node Type Editor or Node Symbol
Editor to accept certain types of contained node images, which form a composite relationship
with the container.

node-image-is-junction

long (node-image-is-junction long card id, long image id)

Returns 1 if the image is a junction image, otherwise 0. This test must be used when
traversing node images since junction images have fewer properties than normal.

A junction is an image used in multiway arcs, with some properties similar to ordinary node
images, but with no corresponding node object, and it is never a composite. It is usually
represented by a `meta�le' symbol that can be rotated according to the direction of the
multiway arc.

node-image-order-arcs

long (node-image-order-arcs long card id, long image id, long attachment, multi-
�eld arc images)

Reorders the arc images linked to this node image at this speci�c attachment point, according
to the ordering of the list of arc images. Any arc images not explicitly mentioned in the list
will be appended.

aiai/hardy/um/1.3 Page 115

12.11 Node object functions

The following functions apply to a diagram node object.

node-object-get-�rst-arc-�rst-object

long (node-object-get-�rst-arc-�rst-object long card id, long image id)

Given a diagram card id and node object id, retrieves the id of the �rst arc object associated
with the node. Calling node-object-get-next-arc-next-object generates any further
arc objects. Returns -1 on failure.

Note that there are no functions to retrieve the `to' node and `from' node from an arc
object, because there may be several connections between nodes for the same arc object (for
instance, an arc may be represented at several levels of a diagram, between di�erent nodes).
To retrieve the nodes at either end of an arc, get the arc image(s), then the `to' and `from'
node images, and then the node objects from these.

node-object-get-next-arc-next-object

long (node-object-get-next-arc-next-object)

Following a call of node-object-get-first-arc-first-object for a speci�ed diagram card
and node, retrieves the id of the next arc object associated with the node. Returns -1 on
failure or to signify no more objects.

Note that there are no functions to retrieve the `to' node and `from' node from an arc
object, because there may be several connections between nodes for the same arc object (for
instance, an arc may be represented at several levels of a diagram, between di�erent nodes).
To retrieve the nodes at either end of an arc, get the arc image(s), then the `to' and `from'
node images, and then the node objects from these.

aiai/hardy/um/1.3 Page 116

12.12 Arc annotation functions

The following functions apply to a diagram arc image annotation.

arc-annotation-get-name

string (arc-annotation-get-name long card id, long annotation id)

Returns the symbol name as used in the Arc Symbol Editor.

aiai/hardy/um/1.3 Page 117

12.13 Container region functions

The following functions apply to a diagram container image.

container-region-add-node-image

long (container-region-add-node-image long card id,
long container id,long contained image id, double x, double y)

Moves contained image id into container id if legal, moving the contained node to the given
coordinates.

See node-image-get-first-container-first-region for an explanation of container re-
gions.

container-region-remove-node-image

long (container-region-remove-node-image long card id,
long container id, long contained image id, double x, double y)

Moves contained image id out of container id, without deleting contained image id. The
contained node is moved to the given coordinates.

See node-image-get-first-container-first-region for an explanation of container re-
gions.

aiai/hardy/um/1.3 Page 118

12.14 Hypertext card functions

The following functions are relevant to hypertext cards.

hypertext-card-create

long (hypertext-card-create long parent id, string hypertext type, optional
long iconic = 0)

Creates a new hypertext card and returns the id, or -1 if the call failed. parent id may be
zero (no parent) or a valid parent card id. hypertext type should be a valid hypertext type,
as de�ned using the interactive Hypertext Type Manager.

If iconic is 1, the card will be shown in the iconic state.

hypertext-card-get-current-char

int (hypertext-card-get-current-char long card id)

Gets the current character position for a successful search operation, or the character position
calculated by hypertext-card-get-offset-position.

hypertext-card-get-current-line

int (hypertext-card-get-current-line long card id)

Gets the current line number for a successful search operation, or the line number calculated
by hypertext-card-get-offset-position.

hypertext-card-get-�rst-selection

long (hypertext-card-get-�rst-selection long card id)

Get the �rst selected block for a given a hypertext card id. Returns -1 if no more selected
blocks.

hypertext-card-get-next-selection can be used to get the next selection.

hypertext-card-get-line-length

int (hypertext-card-get-line-length long card id, long line no)

Gets the number of characters in the given line, or -1 if the line was not found.

hypertext-card-get-next-selection

long (hypertext-card-get-next-selection)

Given a hypertext card id, get the next selected block. Returns -1 if no more selected blocks.

Use hypertext-card-get-first-selection to get the �rst selection.

aiai/hardy/um/1.3 Page 119

hypertext-card-get-no-lines

int (hypertext-card-get-no-lines long card id)

Gets the number of lines currently displayed in the hypertext card.

hypertext-card-get-o�set-position

long (hypertext-card-get-o�set-position long card id,
long line pos, long char pos, long o�set)

Given a position in the text and an o�set from it, calculates the position in terms of line
number and character position and returns 1 if successful.

hypertext-card-get-current-line and hypertext-card-get-current-char can be used
to �nd the position.

hypertext-card-get-span-text

string (hypertext-card-get-span-text long card id,
long line1, long char1, long line2, long char2, optional long convert new lines)

Gets the text between the two positions, optionally converting newlines to spaces (the default
if the �nal parameter is omitted).

hypertext-card-insert-text

int (hypertext-card-insert-text long card id, long line, long char, string text)

Inserts the given text at the given line and character position.

Warning: This function has not been tested extensively and probably contain bugs.

hypertext-card-load-�le

long (hypertext-card-load-�le long card id, string �lename)

Loads the given hypertext (or plain) �le onto the given hypertext card. Returns 1 for success,
0 for failure.

hypertext-card-save-�le

long (hypertext-card-save-�le long card id, string �le)

Saves the hypertext �le on the given hypertext card in the speci�ed �le, returning 1 if
successful, 0 otherwise.

hypertext-card-string-search

long (hypertext-card-string-search long card id,
string search string, optional long line pos, optional long char pos)

Search for the given string from the given position, returning 1 if successful.

aiai/hardy/um/1.3 Page 120

hypertext-card-get-current-line and hypertext-card-get-current-char can be used
to retrieve the position of the matching text.

The search start position may be omitted, in which case the start position is taken to be
the position of the previous match plus one.

The search is case-independent.

hypertext-card-translate

long (hypertext-card-translate long card id, word func)

Starts the translation process for a hypertext card. func must be a function that takes four
integer arguments: the card id, the event type, the current block type (if appropriate) and
the current block id (if appropriate).

The event type is one of:

1. Start of block

2. End of block

3. Start of �le

4. End of �le

5. Double newline (which often means a paragraph break)

The callback function is responsible for opening and closing the �le at the start and end of
�le, and outputting appropriate codes (such as HTML codes) at the start and end of blocks.
Note that the block type passed is always -1 at the end of a block, so the programmer must
maintain a stack of block types if he or she wishes to make use of the block type at the end
of the block.

Use the function Section 12.14 to output text, Section 12.14 to open a �le, and Sec-
tion 12.14 to close a �le. Up to two output streams may be opened.

hypertext-card-translator-close-�le

long (hypertext-card-translator-close-�le long card id, long which �le)

Closes the translation output stream, identi�ed by the number which �le.

hypertext-card-translator-open-�le

long (hypertext-card-translator-open-�le long card id, long which �le, string �le-
name)

Opens the translation output stream (identi�ed by the number which �le).

aiai/hardy/um/1.3 Page 121

hypertext-card-translator-output

long (hypertext-card-translator-output long card id, long which �le, string text)

Outputs text on the translation output stream identi�ed by the number which �le.

If which �le is -1, all open streams will be used.

12.14.1 Items

12.15 Hypertext card block functions

The following functions are relevant to hypertext blocks.

hypertext-block-add

long (hypertext-block-add long card id,
long line1, long char1, long line2, long char2, long block type)

Marks the given span of text as a block of the given type.

Note that if block type has the value of 9999, the block will be a selection with no hypertext
block or item. If the user deselects this selection (for example with shift-left click), the block
will disappear without a trace. Subsequently setting a selection block type to a valid type
identi�er will turn the selection into a proper hypertext block.

The following values of block type are recognised as standard:

1. hyBLOCK NORMAL

2. hyBLOCK RED

3. hyBLOCK BLUE

4. hyBLOCK GREEN

5. hyBLOCK LARGE HEADING

6. hyBLOCK SMALL HEADING

7. hyBLOCK ITALIC

8. hyBLOCK BOLD

9. hyBLOCK INVISIBLE SECTION

10. hyBLOCK LARGE VISIBLE SECTION

11. hyBLOCK SMALL VISIBLE SECTION

12. hyBLOCK SMALL TEXT

13. hyBLOCK RED ITALIC

14. hyBLOCK TELETYPE

hypertext-block-clear

long (hypertext-block-clear long card id, long block id)

Clears the current block, returning 1 if successful. This deletes the hypertext item and links.

aiai/hardy/um/1.3 Page 122

hypertext-block-get-item

long (hypertext-block-get-item long card id, long block id)

Given a hypertext card id and block id (not hyperitem id), get the Hardy hyperitem asso-
ciated with the block. There may not be a hyperitem associated with the block if the user
has made an initial, temporary selection. A Hardy hyperitem is not created until the block
type has been set.

hypertext-block-get-text

string (hypertext-block-get-text long card id, long block id)

Given a hypertext card id and block id (not hyperitem id), get the plain text within the
block (up to a limit of 1000 characters).

hypertext-block-get-type

long (hypertext-block-get-type long card id, long block id)

Given a hypertext card id and block id (not hyperitem id), get the block's type (the number
used to identify the mapping to text colours and styles).

hypertext-block-selected

long (hypertext-block-selected long card id, long block id)

Given a hypertext card id and block id, return 1 if the block is selected or 0 if it is not.

hypertext-block-set-type

long (hypertext-block-set-type long card id, long block id, long type id)

Given a hypertext card id and block id (not hyperitem id), sets the block's type (the number
used to identify the mapping to text colours and styles), deselects the block if selected, and
`recompiles' and displays the �le. Recompilation involves scanning the entire �le in order to
resolve block scope and compute actual font and colour information, and is necessary if the
text attributes change in any way (including selection/deselection). The display position
may change as a side e�ect of this call, and any other call involving recompilation.

12.16 Hypertext card item functions

The following functions are relevant to hypertext card items.

hypertext-item-get-block

long (hypertext-item-get-block long card id, long item id)

aiai/hardy/um/1.3 Page 123

Given a hypertext card id and hyperitem id, get the block associated with the item. There
may not be a block associated with the item if the item is the special item (used for card
linking without using an explicit item).

aiai/hardy/um/1.3 Page 124

12.17 Media card functions

The following functions are relevant to media cards. The media card is an experimental
card which will eventually replace the hypertext card: it is editable and has more features
than the hypertext card. It is based on a set of media classes written by Matthew Flatt of
Rice University.

Note that this facility will not be included in distributions of Hardy outside AIAI until early
1996.

Media cards allow mark up using either standard attributes such as weight, family, style
and underlining, or attributes that are combined into font mappings in the same way as the
hypertext card. Blocks are associated with the latter but not the former.

Some media card functions accept a position, a single integer representing a character index
in the bu�er. A position can be converted into a line number and character position within
that line.

12.17.1 Events

These are the media card events you can intercept.

Event Description

BlockLeftClick Called when a block is left-clicked. Takes card, block
id, position, shift (1 or 0), control (1 or 0). Return 0 to
veto default event processing, 1 otherwise.

BlockRightClick Called when a block is right-clicked. Takes card, block
id, position, shift (1 or 0), control (1 or 0). Return 0 to
veto default event processing, 1 otherwise.

CustomMenu Called when a custom menu item is invoked. Takes card
and menu item name.

media-block-create

long (media-block-create long card id, long block type, optional long start position=-
1, optional long end position=-1)

Creates a block of the given type, returning the new block id. start position and end position
specify the span of the block; if they are both -1 or absent, the current selection will be used.

media-block-get-item

long (media-block-get-item long card id, long block id)

Returns the hypertext item for the given block id.

aiai/hardy/um/1.3 Page 125

media-block-get-position

long (media-block-get-position long card id, long block id)

Returns the start position of the block.

media-block-get-type

long (media-block-get-type long card id, long block id)

Returns the type id of the block.

media-block-set-type

long (media-block-set-type long card id, long block id, long block type)

Sets the type of the block. Currently does not redraw the block in the new style.

media-item-get-block

long (media-item-get-block long card id, long item id)

Gets the block corresponding to the hypertext item.

media-card-append-text

long (media-card-append-text long card id, string text)

Appends the given text at the end of the card's contents.

media-card-apply-family

long (media-card-apply-family long card id, string family, long from=-1, long to=-1)

Applies the given family to the current selection (if the from and to parameters are omitted
or are -1) or to the given span of text.

family may be one of wxSWISS, wxROMAN, wxDECORATIVE and wxMODERN.

media-card-apply-foreground-colour

long (media-card-apply-foreground-colour long card id, string colour, long from=-1,
long to=-1)

Applies the given colour to the current selection (if the from and to parameters are omitted
or are -1) or to the given span of text.

media-card-apply-point-size

long (media-card-apply-point-size long card id, long size, long from=-1, long to=-1)

Applies the given point size to the current selection (if the from and to parameters are
omitted or are -1) or to the given span of text.

aiai/hardy/um/1.3 Page 126

media-card-apply-style

long (media-card-apply-style long card id, string style, long from=-1, long to=-1)

Applies the given font style to the current selection (if the from and to parameters are
omitted or are -1) or to the given span of text.

style may be one of wxNORMAL, wxITALIC.

media-card-apply-underline

long (media-card-apply-underline long card id, long underline, long from=-1,
long to=-1)

Applies underlining to the current selection (if the from and to parameters are omitted or
are -1) or to the given span of text.

underline may be 1 for underlining, 0 for no underlining.

media-card-apply-weight

long (media-card-apply-weight long card id, stringweight, long from=-1, long to=-1)

Applies normal or bold weight to the current selection (if the from and to parameters are
omitted or are -1) or to the given span of text.

weight may be wxNORMAL or wxBOLD.

media-card-clear

long (media-card-clear long card id)

Clears the contents of the card.

media-card-clear-all-blocks

long (media-card-clear-all-blocks long card id)

Clears the blocks from the card, leaving a plain text �le with no styles or graphic images.

media-card-create

long (media-card-create long parent id, string media type, optional long iconic = 0)

Creates a new media card and returns the id, or -1 if the call failed. parent id may be zero
(no parent) or a valid parent card id. hypertext type should be a valid media type, as de�ned
using the interactive Media Type Manager.

If iconic is 1, the card will be shown in the iconic state.

media-card-copy

long (media-card-copy long card id)

Copies the selected text to the clipboard.

aiai/hardy/um/1.3 Page 127

media-card-cut

long (media-card-cut long card id)

Copies the selected text to the clipboard, and then clears the selection.

media-card-delete

long (media-card-delete long card id, long from=-1, long to=-1)

Deletes the current selection (if the from and to parameters are omitted or are -1), or given
span of text if the parameters are speci�ed.

media-card-�nd-string

long (media-card-�nd-string long card id, string text, long from=-1, long to=-1,
long case sensitive=1, long direction=1)

Finds the given text, starting the search from the beginning if from is absent or -1, and
continuing until the end if to if is absent or -1.

case sensitive should be 1 to be case sensitive, 0 to be case insensitive. direction should be
1 to search forward, -1 to search backward.

The return value is the text start position if the text was found, or -1 if the text was not
found.

media-card-get-character

long (media-card-get-character long card id, long position)

Returns the ASCII code of the character at the given position.

media-card-get-selection-start

long (media-card-get-selection-start long card id)

Returns the position of the start of the selection, or the cursor position if there is no selection.

media-card-get-selection-end

long (media-card-get-selection-end long card id)

Returns the position of the end of the selection, or -1 if there is no selection.

media-card-get-�rst-block

long (media-card-get-�rst-block long card id)

Returns the �rst block id (not necessarily the �rst in the card, but �rst from the point of
view of getting all blocks).

aiai/hardy/um/1.3 Page 128

media-card-get-last-position

long (media-card-get-last-position long card id)

Returns the position of the last element in the card. This will never be less than zero.

media-card-get-line-length

long (media-card-get-line-length long card id, long line)

Returns the length of the given line (starting from zero).

media-card-get-line-for-line-position

long (media-card-get-line-for-line-position long card id, long position)

Returns the number of the line on which position appears.

media-card-get-next-block

long (media-card-get-next-block long card id)

Returns the next block id (not necessarily the next in the card, but next from the point of
view of getting all blocks).

media-card-get-position-for-position-line

long (media-card-get-position-for-position-line long card id, long line)

Returns the start position for the given line.

media-card-get-number-of-number-lines

long (media-card-get-number-of-number-lines long card id)

Returns the total number of lines in the text card.

media-card-get-text

string (media-card-get-text long card id, longstart, longend)

Returns the text between the given positions.

media-card-insert-text

long (media-card-insert-text long card id, stringtext, longpos=-1)

Inserts text at the given position, or at the cursor if pos is -1.

aiai/hardy/um/1.3 Page 129

media-card-insert-image

long (media-card-insert-image long card id, string�lename, longpos=-1)

Inserts a Windows bitmap at the given position, or at the cursor if pos is -1.

media-card-load-�le

long (media-card-load-�le long card id, string�lename)

Loads a �le into the media card. Can be a plain text �le or a media �le (usual extension
.med).

media-card-paste

long (media-card-paste long card id)

Pastes the contents of the clipboard (if there is any and it is textual) into the media card.

media-card-redo

long (media-card-redo long card id)

Redoes the last media card command (except for block operations).

media-card-save-�le

long (media-card-save-�le long card id, string�lename)

Saves the media �le.

media-card-scroll-to-position

long (media-card-scroll-to-position long card id, longposition)

Scrolls to the given position.

media-card-select-block

long (media-card-select-block long card id, longblock, longselect=1)

Selects the given block if select is 1, deslects if select is 0.

media-card-set-selection

long (media-card-set-selection long card id, longfrom, longto)

Sets the text between the given positions.

aiai/hardy/um/1.3 Page 130

media-card-undo

long (media-card-undo long card id)

Undoes the last media card command (except for block operations).

aiai/hardy/um/1.3 Page 131

12.18 Text card functions

These functions may be used with text cards.

text-card-load-�le

long (text-card-load-�le long card id, string �le)

Loads the speci�ed text �le onto the given text card. Returns 1 if successful, 0 otherwise.

aiai/hardy/um/1.3 Page 132

12.19 Diagram De�nition functions

The following functions access diagram de�nition information.

hardy-diagram-de�nition-get-�rst-get-arc-type

string (hardy-diagram-de�nition-get-�rst-get-arc-type string name)

For the given diagram type, gets the �rst arc name in the diagram de�nition's list of arc
types.

Returns the empty string if none are found.

hardy-diagram-de�nition-get-next-get-arc-type

string (hardy-diagram-de�nition-get-next-get-arc-type)

Gets the next arc name in the diagram de�nition's list of arc types.

Returns the empty string if no more are found.

hardy-diagram-de�nition-get-�rst-get-node-type

string (hardy-diagram-de�nition-get-�rst-get-node-type string name)

For the given diagram type, gets the �rst node name in the diagram de�nition's list of node
types.

Returns the empty string if none are found.

hardy-diagram-de�nition-get-next-get-node-type

string (hardy-diagram-de�nition-get-next-get-node-type)

Gets the next node name in the diagram de�nition's list of node types.

Returns the empty string if no more are found.

hardy-get-�rst-diagram-de�nition

string (hardy-get-�rst-diagram-de�nition)

Gets the �rst name in the list of diagram de�nitions currently loaded.

Returns the empty string if there are none loaded.

hardy-get-next-diagram-de�nition

string (hardy-get-next-diagram-de�nition)

Gets the next name in the list of diagram de�nitions currently loaded.

Returns the empty string when there are no more.

aiai/hardy/um/1.3 Page 133

object-type-get-�rst-attribute-�rst-name

string (object-type-get-�rst-attribute-�rst-name string diagram def name
string object type name optional string node or arc)

Gets the �rst attribute name of an object (node or arc) type de�nition. If node or arc is
\any", this function will search for either a node or arc of the given name. Otherwise, you
can specify \node" or \arc" to be more speci�c.

object-type-get-next-attribute-next-name

string (object-type-get-next-attribute-next-name)

Gets the next attribute name of an object (node or arc) type de�nition.

aiai/hardy/um/1.3 Page 134

12.20 Windows printing functions

The following functions and event handlers enable Windows printing to be manipulated.

12.20.1 Windows printing event handlers

� OnPreparePrinting: called before any pages are printed. The function takes no argu-
ments. The function should return 1 (processed) or 0 (default processing should be
done).

� OnPrintPage: called when each page should be printed. Takes page number (integer),
device context (integer), page width in pixels (integer), page height in pixels (integer),
page width in mm (integer), page height in mm (integer). The function should return
1 (processed) or 0 (default processing should be done).

� OnGetPageInfo: called to get information from the application. Takes a name and
an integer value. Return -1 to allow default processing; otherwise: if the name is
HASPAGE, return 1 if the document has this page (given by the second argument), or
0 to �nish printing. If the name is MINPAGE, MAXPAGE, PAGEFROM, PAGETO,
return an appropriate value. See the printing demo in the HARDY SDK for more
details.

hardy-preview-all

long (hardy-preview-all long Page From, long Page To)

Invokes Windows previewing for the given page range, for all diagram cards if no custom
printing functionality is de�ned, or for whatever pages the application de�nes by intercepting
the OnPrintPage event handler.

If the page range values are both -1, the entire document will be previewed. Unlike with
printing,
ow of program control continues immediately after the preview window appears,
so be careful not to call the function again.

hardy-preview-diagram-card

long (hardy-preview-diagram-card long card)

Invokes Windows previewing for the given diagram card. Unlike with printing,
ow of
program control continues immediately after the preview window appears, so be careful not
to call the function again.

hardy-print-all

long (hardy-print-all long prompt, long page from, long page to)

Invokes Windows printing for the given page range, for all diagram cards if no custom
printing functionality is de�ned, or for whatever pages the application de�nes by intercepting
the OnPrintPage event handler.

aiai/hardy/um/1.3 Page 135

If prompt is 1, the standard print dialog box is shown; otherwise, the document will be
printed immediately. If the page range values are both -1, the entire document will be
printed.

Unlike with previewing,
ow of program control stops until printing has �nished (or the user
cancels the dialog box).

hardy-print-diagram-card

long (hardy-print-diagram-card long card, long prompt)

Invokes Windows printing for the given diagram card.

If prompt is 1, the standard print dialog box is shown; otherwise, the diagram will be printed
immediately.

hardy-print-diagram-in-box

long (hardy-print-diagram-in-box long card, double x, double y, double width, dou-
ble height)

This function should be used fromwithin an OnPrintPage event handler to scale and position
the given diagram on the page. The x, y coordinate represents the top left of the bounding
box to contain the diagram. The units are in device units (pixels). It should not be called
from outside OnPrintPage since it implicitly references the current print or preview device
context.

hardy-print-diagram-page

long (hardy-print-diagram-page long card, long page num)

This function should be used from within an OnPrintPage event handler to call the default
diagram printing code for this page. It should not be called from outside OnPrintPage since
it implicitly references the current print or preview device context.

hardy-print-get-header-footer

string (hardy-print-get-header-footer long �eld)

This function should be used to get the value of a header or footer �eld, used when printing
a standard diagram page or printing the headers and footers with Section 12.20.1 .

�eld should be an integer between 1 and 6, referencing the left, middle and right �elds of
the header and footer respectively.

hardy-print-get-info

double (hardy-print-get-info string name)

Returns information according to the name argument passed. The value of name can be:

� TEXTSCALE: returns an appropriate scaling factor for printing text. It sets the
scaling for the printer or preview device context, and returns the scaling factor. Note

aiai/hardy/um/1.3 Page 136

that the factor returned does not include the adjustment made for scaling for a preview
device context.

� LEFTMARGIN: returns the value of the left margin setting, in millimetres.

� RIGHTMARGIN: returns the value of the right margin setting, in millimetres.

� TOPMARGIN: returns the value of the top margin setting, in millimetres.

� BOTTOMMARGIN: returns the value of the bottom margin setting, in millimetres.

� HEADERRULE: returns 1 or 0 for header rule on or o�.

� FOOTERRULE: returns 1 or 0 for footer rule on or o�.

hardy-print-header-footer

long (hardy-print-header-footer long page num)

This function should be used from within an OnPrintPage event handler to call the de-
fault header and footer printing code for this page. It should not be called from outside
OnPrintPage since it implicitly references the current print or preview device context.

You can use Section 12.20.1 and Section 12.20.1 to change the look of headers and footers
for this page.

hardy-print-set-header-footer

long (hardy-print-set-header-footer string text, long �eld)

This function should be used to set a header or footer �eld, used when printing a standard
diagram page or printing the headers and footers with Section 12.20.1 .

�eld should be an integer between 1 and 6, referencing the left, middle and right �elds of
the header and footer respectively.

hardy-print-set-info

long (hardy-print-set-info string name,
oat value)

Sets printing information according to the name argument passed. The value of name can
be:

� LEFTMARGIN: sets the value of the left margin setting, in millimetres.

� RIGHTMARGIN: sets the value of the right margin setting, in millimetres.

� TOPMARGIN: sets the value of the top margin setting, in millimetres.

� BOTTOMMARGIN: sets the value of the bottom margin setting, in millimetres.

� HEADERRULE: 1 or 0 for header rule on or o�.

� FOOTERRULE: 1 or 0 for footer rule on or o�.

Note that margin settings are only used automatically when printing a diagram page or
headers and footers. For custom pages, these margins must be taken into account by the
custom code.

aiai/hardy/um/1.3 Page 137

hardy-print-set-title

long (hardy-print-set-title string title)

This function should be used to set the current page title (used when printing a standard
diagram page).

hardy-print-text-in-box

long (hardy-print-text-in-box string text, double x, double y, double width, dou-
ble height, string how)

This function should be used from within an OnPrintPage event handler to format text
within the given bounding box using the current device context scaling and font. The x, y
coordinate represents the centre of the bounding box to contain the text.

The how parameter should be one of CENTREHORIZ, CENTREVERT, CENTREBOTH
and NONE to determine how the text should be formatted.

The units are in device units (pixels). This function should not be called from outside
OnPrintPage since it implicitly references the current print or preview device context.

aiai/hardy/um/1.3 Page 138

12.21 Miscellaneous functions

The following are miscellaneous Hardy functions.

convert-bitmap-to-rtf

long (convert-bitmap-to-rtf string bitmap-�le, string output-�le)

Converts an existing RGB-encoded Windows bitmap �le to RTF format for inclusion in an
RTF document.

convert-meta�le-to-rtf

long (convert-meta�le-to-rtf string meta�le-�le, string output-�le)

Converts an existing placeable Windows meta�le �le to RTF format for inclusion in an RTF
document.

dde-advise-global

long (dde-advise-global char * item, char * data)

Sends a DDE ADVISE message to all connections currently using Hardy as a server. The
client can process these messages (or ignore them). If Hardy were to be used as a user
interface to some other client package, the client could call Hardy functions through the
DDE interface (or via a program called DDEPIPE which allows non-DDE aware UNIX
applications to access DDE programs using simple commands). The client could wait for
ADVISE messages back (for example when a custom menu item was selected), and then do
further processing or call additional Hardy functions.

hardy-command-int-to-string

long (hardy-command-int-to-string long command id)

Converts an integer command identi�er into a command name, such as HardyExit or Dia-
gramCut.

hardy-command-string-to-int

long (hardy-command-string-to-int string command name)

Converts a command name, such as HardyExit or DiagramCut, into the integer identi�er
form.

hardy-get-browser-frame

long (hardy-get-browser-frame)

Returns the integer id of the Hardy card browser frame, which can then be passed to GUI
functions such as window-show.

aiai/hardy/um/1.3 Page 139

This is only di�erent from the top level frame if Hardy is running under Windows MDI
mode, where the top level frame encloses other frames and the browser window is a separate
child frame.

hardy-get-top-level-frame

long (hardy-get-top-level-frame)

Returns the integer id of the top level Hardy frame, which can then be passed to GUI
functions such as window-show.

hardy-get-version

double (hardy-get-version)

Returns a
oating-point number representing the version of Hardy that the application code
is currently running under.

hardy-path-search

string (hardy-path-search string �lename)

Searchs the current Hardy path list for the given �le, and if it exists, returns the full path-
name. Hardy builds up a list of paths as �les become known to it; so sometimes Hardy will
load �les that do not have absolute paths, which CLIPS programs would not �nd without
this function.

Returns the empty string if the �le is not found.

hardy-help-display-block

long (hardy-help-display-block long block id)

The given block is displayed. It is best to call hardy-help-load-file before this call. It
is probably better to use section numbers than block numbers, unless a block other than a
section must be displayed.

The value 1 is returned if successful, otherwise 0.

hardy-help-display-contents

long (hardy-help-display-contents)

The contents (�rst section) is displayed. It is best to call hardy-help-load-file before
this call.

The value 1 is returned if successful, otherwise 0.

hardy-help-display-section

long (hardy-help-display-section long section)

aiai/hardy/um/1.3 Page 140

The given section (numbered 1 upwards) is displayed. It is best to call
hardy-help-load-file before this call.

The value 1 is returned if successful, otherwise 0.

hardy-help-keyword-search

long (hardy-help-keyword-search string keyword)

Performs a keyword search on section titles. If more than one matching title is found, the
search dialog is displayed; otherwise, that section is displayed.

hardy-help-load-�le

long (hardy-help-load-�le string �le)

If wxHelp is not currently running, it is executed. The named �le is then loaded if it is an
absolute path, or found in the current directory, or found in a directory mentioned in the
WXHELPFILES or PATH directories.

If the �le is already loaded into wxHelp, it is not reloaded, and therefore this function can
(and should) always be called before attempting to display a section or block, since the user
may have loaded another �le.

Note that there is no function to quit the help system programmatically; wxHelp will be
closed when Hardy closes, except under Windows where there is only one copy of wxHelp
active at a time.

The value 1 is returned if successful, otherwise 0.

hardy-send-command

long (hardy-send-command long command id)

Sends a menu command identi�er to the Hardy main window. command id is an internal
identi�er that can be obtained from an equivalent string form using Section 12.21 .

This function can be used in custom code to provide features that the default user interface
normally provides.

See Section 12.22 for a list of identi�ers you can use in conjunction with this function.

hardy-set-about-string

long (hardy-set-about-string string about string)

Sets the text for the `About box' invoked from the main window's Help menu.

hardy-set-author

long (hardy-set-author string author)

Sets the custom author name.

aiai/hardy/um/1.3 Page 141

hardy-set-custom-help-�le

long (hardy-set-custom-help-�le string �le)

Sets the �lename for the custom help �le. The name should have no extension (so an
appropriate format will be used for the platform). This is the �le used in the main window's
Help menu.

hardy-set-help-�le

long (hardy-set-help-�le string �le)

Sets the �lename for the normal Hardy help �le. The name should have no extension (so an
appropriate format will be used for the platform). This is the �le used in the Hardy-speci�c
menus and dialog boxes; it might be overidden for a heavily customised version of the tool.

hardy-set-name

long (hardy-set-name string name)

Sets the custom tool name (default is \Hardy").

hardy-set-title

long (hardy-set-title string title)

Sets the custom tool title (default is \Hardy"). Used in the main window title bar.

object-is-valid

long (object-is-valid long card id, long object id)

Given a card id and an object id (a diagram node, arc or image id), returns 1 if the object
exists and 0 otherwise.

quit

long (quit int quit level)

Quits from Hardy, return 1 if successful, 0 otherwise.

Action depends on value of quit level:

0: full user prompting,

1: save everything and quit without prompting,

2: don't save anything and quit without prompting.

register-event-handler

long (register-event-handler string event type, string context,
word function name)

aiai/hardy/um/1.3 Page 142

Registers interest in a given Hardy event for the given card type. context may be one of:

1. \Toplevel",

2. \Text card",

3. any valid diagram type,

4. any valid hypertext type.

The function name speci�es a valid function whose arguments, when called by Hardy, will
vary according to the event type, but which will usually start with the card id.

Top level events recognised:

Exit Called when Hardy is about to exit, after all cards and the index have been saved
(assuming the user did not veto these saves). The function has no arguments but
returns an integer, which is 0 to veto the exit command or 1 to con�rm the exit.

CustomMenu When the user selects a custom menu item on the top level control window,
the named function will be called with one argument: the menu item string that the
user selected. At present there is no user interface to edit the top-level custom menu;
edit diagrams.def with a text editor and insert (for example):

custom(custom_menu_name = "&Custom options",

custom_menu_strings = ["&First item", "&Second item"]).

OnCreateMenuBar Register this event to create a custom main menu. The function is called
with no arguments, and should create and return a wxCLIPS menu bar, or zero to
allow the default menu bar to be created.

OnCreateToolBar Register this event to create a custom main window toolbar (Windows
only). The function is called with the frame identi�er, and should create and return a
panel or canvas, or zero to allow the default toolbar to be created. The initial height
of the returned window will be used to determine sizing, and the width will be made
to �t the main window.

OnHardyInit Called after Hardy initialisation has taken place. It is called with no argu-
ments, and must return 1 for Hardy to continue running. Returning 0 terminates the
session. Depending on the underlying window system, it may or may not be possible
to minimize or hide the main window at this point. If your custom code needs to start
running on startup, use this event to start it, rather than at CLIPS loading time which
will not allow the initialisation to terminate.

OnMenuCommand Called when the user selects an option on the main window. It is called
with an integer identi�er representing the command, and the function should return 0
to veto normal processing, or 1 to perform the default action.

OnPreparePrinting See Section 12.20.1 .

OnPrintPage See Section 12.20.1 .

OnGetPageInfo See Section 12.20.1 .

For diagram cards, the event type may be:

aiai/hardy/um/1.3 Page 143

AddArcAnnotation Called when the user adds an annotation to an arc, with arguments
card id, node image id, annotation id, annotation name, drop site name. If the user
function returns 0, the annotation is vetoed. Returning 1 lets the annotation addition
take place.

AddNodeAnnotation Called when the user adds an annotation to a node, with arguments
card id, node image id, annotation id, annotation name, drop site name. If the user
function returns 0, the annotation is vetoed. Returning 1 lets the annotation addition
take place.

ArcLeftClick Called when the arc is left-clicked, with arguments card id, arc image id, x,
y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0, the
default left click action is not performed. Returning 1 lets the default behaviour take
place.

ArcMoveControlPoint Called when a control point is moved on this arc, or an attached
node is moved. The callback is invoked with the arguments card id, arc type, arc
image id, control point, x, y. The control point id is an integer greater than or equal
to zero.

ArcRightClick Called when the arc is right-clicked, with arguments card id, arc image id,
x, y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0,
the default right click action is not performed. Returning 1 lets the default behaviour
take place.

AttributesUpdated When the user has �nished editing attributes for a node or arc, this is
called with arguments card id, object id and object type. Note that this is only called,
once, when the user closes the standard attribute editor, and not at any time.

AttributeModifiedPre This is called as a `daemon' just before an attribute is changed,
either by the user or programmatically. If the value is the same as the old, the function
will not be called. The function is called with arguments card id, object id, attribute
name, old value, new value. If the function returns 0, the modi�cation will be vetoed:
the function must return 1 to allow the update.

AttributeModifiedPost This is called as a `daemon' just after an attribute is changed,
either by the user or programmatically. If the value is the same as the old, the function
will not be called. The function is called with arguments card id, object id, attribute
name, old value, new value. The function should return no value.

ContainerAddPost This is called after a node image has been added to a division. The
function is called with arguments card id, parent image id, child image id, division
image id.

ContainerAddPre This is called when a node image is about to be added to a division.
The function should return 0 to veto, or 1 to allow the containment operation. The
function is called with arguments card id, parent image id, child image id, division
image id.

ContainerRemovePost This is called after a node image has been removed from a division.
The function is called with arguments card id, parent image id, child image id, division
image id.

ContainerRemovePre This is called when a node image is about to be removed from a
division. The function should return 0 to veto, or 1 to allow the containment operation.

aiai/hardy/um/1.3 Page 144

The function is called with arguments card id, parent image id, child image id, division
image id.

CreateCard After diagram card creation, the named function is called with one argument:
the card id. Note that this does not get called when a card is loaded, only when the
card is created interactively.

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use
the diagram type manager to specify a custom menu for a particular diagram type.

DeleteArcAnnotation Called when the user deletes an arc annotation, with arguments card
id, arc image id, annotation id. If the user function returns 0, the annotation deletion
is vetoed. Returning 1 lets the annotation deletion take place.

DeleteCard Just before diagram card deletion, the named function is called with one argu-
ment: the card id. The function should return an integer, 0 to veto the delete (may
be overriden by Hardy) and 1 to continue.

DeleteNodeAnnotation Called when the user deletes a node annotation, with arguments
card id, arc image id, annotation id. If the user function returns 0, the annotation
deletion is vetoed. Returning 1 lets the annotation deletion take place.

CanvasLeftClick Called when the mouse is left-clicked on the card canvas. The function's
arguments are card id, x, y, shift pressed (1 or 0), control pressed (1 or 0). Return 0
to veto normal processing, 1 otherwise.

CanvasRightClick Called when the mouse is mouse-clicked on the card canvas. The func-
tion's arguments are card id, x, y, shift pressed (1 or 0), control pressed (1 or 0).
Return 0 to veto normal processing, 1 otherwise.

CreateNodeImage After node image creation, the named function is called with three argu-
ments: card id, image id, node type. Note that this does not get called when a diagram
is loaded, only when images are created interactively.

CreateNodeImagePre After node image creation, the named function is called with three
arguments: card id, image id, node type. The di�erence between this function and
CreateNodeImage is that the function must return 0 or 1. If 0 is returned, Hardy
deletes the image, otherwise normal processing continues. Note that this does not get
called when a diagram is loaded, only when images are created interactively.

CreateArcImage After arc image creation, the named function is called with three argu-
ments: card id, image id, arc type. Note that this does not get called when a diagram
is loaded, only when images are created interactively.

CreateArcImagePre After arc image creation, the named function is called with three ar-
guments: card id, image id, arc type. The di�erence between this function and Cre-
ateArcImage is that the function must return 0 or 1. If 0 is returned, Hardy deletes
the image, otherwise normal processing continues. Note that this does not get called
when a diagram is loaded, only when images are created interactively.

DeleteNodeImage Just before node image deletion, the function is called with arguments
card id, image id, node type. Arcs are still accessible at this point, although
DeleteArcImage events may be generated as a result.

aiai/hardy/um/1.3 Page 145

DeleteNodeImagePost Just after node image deletion, the function is called with arguments
card id, image id, node type. image id is invalid at this point.

DeleteArcImage Just before arc image deletion, the function is called with arguments card
id, image id, arc type.

DeleteArcImagePost Just after arc image deletion, the function is called with arguments
card id, image id, arc type. image id is invalid at this point.

LoadDiagram When a diagram has just been loaded, the function is called with the card id
as argument.

NodeMovePre Called when the node is moved but before it is redrawn, with arguments card
id, node image id, x, y, old x, old y. Returning 1 lets the default behaviour take place;
returning 0 vetoes the move.

NodeMovePost Called when the node is moved, after it is redrawn, with arguments card id,
node image id, x, y, old x, old y. Return 1 from this function.

NodeLeftClick Called when the node is left-clicked, with arguments card id, node image
id, x, y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0,
the default left click action is not performed. Returning 1 lets the default behaviour
take place.

NodeRightClick Called when the node is right-clicked, with arguments card id, node image
id, x, y, shift pressed (1 or 0), control pressed (1 or 0). If the user function returns 0,
the default right click action is not performed. Returning 1 lets the default behaviour
take place.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identi�er, and should create and return a wxCLIPS menu bar, or zero
to allow the default menu bar to be created.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identi�er, and
should create and return a panel or canvas, or zero to allow the default toolbar to be
created. The initial height of the returned window will be used to determine sizing,
and the width will be made to �t the card window.

OnMenuCommand Called when the user selects an option on the card. It is called with a card
id, and an integer identi�er representing the command. The function should return 0
to veto normal processing, or 1 to perform the default action.

RightDragCanvasToCanvas Called when the mouse is right-dragged from somewhere on the
canvas, and released on another part of the canvas. The function's arguments are card
id, initial x, initial y, �nal x, �nal y, shift pressed (1 or 0), control pressed (1 or 0).

RightDragCanvasToNode Called when the mouse is right-dragged from somewhere on the
canvas, and released on a node image. The function's arguments are card id, node
image id, node attachment, x, y, shift pressed (1 or 0), control pressed (1 or 0).

RightDragNodeToCanvas Called when the mouse is right-dragged from a node image, and
released on the canvas. The function's arguments are card id, node image id, node
attachment, x, y, shift pressed (1 or 0), control pressed (1 or 0). x and y represent the
position of the mouse when released.

aiai/hardy/um/1.3 Page 146

RightDragNodeToNode Called when the mouse is right-dragged from a node image and
released on another node image. The function's arguments are card id, �rst node
image id, �rst node attachment, second node image id, second node image attachment,
x, y, shift pressed (1 or 0), control pressed (1 or 0). x and y represent the position of
the mouse when released. This function must return 1 to let processing continue, or 0
to override normal Hardy behaviour.

SaveDiagram When a diagram is about to be saved, the function is called with the card
id as argument. If the function returns 1, saving continues; if 0 is returned, saving is
aborted.

SelectNodeImage Called after a node image has been selected or deselected, either by the
user or programmatically. The function is called with three arguments: card id, image
id, selection
ag (0 or 1). No value need be returned.

SelectArcImage Called after an arc image has been selected or deselected, either by the
user or programmatically. The function is called with three arguments: card id, image
id, selection
ag (0 or 1). No value need be returned.

For hypertext cards, the event types may be:

CreateCard After hypertext card creation, the named function is called with one argument:
the card id. Note that this does not get called when a card is loaded, only when the
card is created interactively.

DeleteCard Just before hypertext card deletion, the named function is called with one
argument: the card id. The function should return an integer, 0 to veto the delete
(may be overriden by Hardy) and 1 to continue.

BlockLeftClick Called when a block is left-clicked, with arguments card id, block id, char-
acter position, line number, shift pressed (1 or 0) and control pressed (1 or 0). If the
user function returns 0, the default left click action is not performed. Returning 1 lets
the default behaviour take place. A block id of -1 indicates a click on unmarked text.

BlockRightClick Called when a block is right-clicked, with arguments card id, block id,
character position, line number, shift pressed (1 or 0), control pressed (1 or 0). If the
user function returns 0, the default left click action is not performed. Returning 1 lets
the default behaviour take place. A block id of -1 indicates a click on unmarked text.

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use
the hypertext type manager to specify a custom menu for a particular hypertext type.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identi�er, and should create and return a wxCLIPS menu bar, or zero
to allow the default menu bar to be created.

OnMenuCommand Called when the user selects an option on the card. It is called with the card
id, and an integer identi�er representing the command. The function should return 0
to veto normal processing, or 1 to perform the default action.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identi�er, and
should create and return a panel or canvas, or zero to allow the default toolbar to be

aiai/hardy/um/1.3 Page 147

created. The initial height of the returned window will be used to determine sizing,
and the width will be made to �t the card window.

For media cards, the event type may be:

CustomMenu When the user selects a custom menu item, the named function will be called
with two arguments: the card id and the menu item string that the user selected. Use
the diagram type manager to specify a custom menu for a particular diagram type.

OnCreateMenuBar Register this event to create a custom card menu. The function is called
with the card identi�er, and should create and return a wxCLIPS menu bar, or zero
to allow the default menu bar to be created.

OnCreateToolBar Register this event to create a custom card toolbar (Windows only). The
function is called with the Hardy card identifer and wxCLIPS frame identi�er, and
should create and return a panel or canvas, or zero to allow the default toolbar to be
created. The initial height of the returned window will be used to determine sizing,
and the width will be made to �t the card window.

OnMenuCommand Called when the user selects an option on the card. It is called with a card
id, and an integer identi�er representing the command. The function should return 0
to veto normal processing, or 1 to perform the default action.

BlockLeftClick Called when a block is left-clicked. Takes card, block id, position, shift (1
or 0), control (1 or 0). Return 0 to veto default event processing, 1 otherwise.

BlockRightClick Called when a block is right-clicked. Takes card, block id, position, shift
(1 or 0), control (1 or 0). Return 0 to veto default event processing, 1 otherwise.

CustomMenu Called when a custom menu item is invoked. Takes card and menu item name.

aiai/hardy/um/1.3 Page 148

12.22 Menu command identi�ers

Most of the menu commands that the user can issue have names which can be used by custom
code which replaces the default menu bars. When responding to the OnMenuCommand
event for the main window or cards, custom code can call Section 12.21 or Section 12.2 to
invoke standard functionality. These functions, and the OnMenuCommand event handler,
take integer command arguments, so you will need to use Section 12.21 and Section 12.21
to send or test commands.

In order to avoid confusion with Hardy integer identi�ers, please note that replacement main
window or card menu bar integer identi�ers should start from at least 800.

The following sections list the menu command names.

12.22.1 Hardy main window commands

� HardyBrowseFiles

� HardyClearIndex

� HardyCon�gure

� HardyDeselectAllItems

� HardyDrawTree

� HardyExit

� HardyFindOrphans

� HardyHelpAbout

� HardyHelpContents

� HardyHelpSearch

� HardyLoadApplication

� HardyLoadFile

� HardyPrint

� HardyPrintPreview

� HardyPrintSetup

� HardySaveFile

� HardySaveFileAs

� HardySearchCards

� HardyShowArcSymbolEditor

� HardyShowDevelopmentWindow

� HardyShowDiagramManager

� HardyShowHypertextManager

� HardyShowNodeSymbolEditor

� HardyShowPackageTool

� HardyShowSymbolLibrarian

� HardyViewTopCard

aiai/hardy/um/1.3 Page 149

12.22.2 Generic card commands

� CardDeleteAllLinks

� CardGotoControlWindow

� CardDelete

� CardDeleteLink

� CardEditTitle

� CardEditFilename

� CardLinkNewCard

� CardLinkToSelection

� CardOpenFile

� CardOrderLinks

� CardSaveFile

� CardSaveFileAs

� CardSelectItem

� CardToggleLinkPanel

� CardQuit

12.22.3 Diagram card commands

� DiagramAddAnnotation

� DiagramAddControl

� DiagramApplyDe�nition

� DiagramBrowse

� DiagramChangeFont

� DiagramClearAll

� DiagramCopy

� DiagramCopyDiagram

� DiagramCopySelection

� DiagramCopyToClipboard

� DiagramCut

� DiagramDeleteAnnotation

� DiagramDeleteControl

� DiagramDeselectAll

� DiagramDuplicateSelection

� DiagramEditOptions

� DiagramFormatGraph

aiai/hardy/um/1.3 Page 150

� DiagramFormatText

� DiagramFormatTree

� DiagramGotoRoot

� DiagramHelp

� DiagramHorizontalAlign

� DiagramHorizontalAlignTop

� DiagramHorizontalAlignBottom

� DiagramNewExpansion

� DiagramPaste

� DiagramPrint

� DiagramPrintAll

� DiagramPrintEPS

� DiagramPrintPreview

� DiagramRefresh

� DiagramSaveBitmap

� DiagramSaveMeta�le

� DiagramSelectAll

� DiagramStraighten

� DiagramToBack

� DiagramToFront

� DiagramTogglePalette

� DiagramToggleToolbar

� DiagramVerticalAlign

� DiagramVerticalAlignLeft

� DiagramVerticalAlignRight

� DiagramZoom30

� DiagramZoom40

� DiagramZoom50

� DiagramZoom60

� DiagramZoom70

� DiagramZoom80

� DiagramZoom90

� DiagramZoom100

aiai/hardy/um/1.3 Page 151

12.22.4 Hypertext card commands

� HypertextClearAllBlocks

� HypertextClearBlock

� HypertextClearSelection

� HypertextDeleteLinks

� HypertextEditOptions

� HypertextHelp

� HypertextNextSection

� HypertextPreviousSection

� HypertextRunEditor

� HypertextTop

12.22.5 Text card commands

� TextCopy

� TextCut

� TextHelp

� TextPaste

� TextRunEditor

aiai/hardy/um/1.3 Page 152

Glossary

API Application Programmer's Interface - a set of calls and classes de�ning how a library
can be used.

Bit list A bit list in wxCLIPS is a way of specifying several window styles. It derives
from C and C++ syntax, where by de�ning identi�ers with carefully chosen binary
numbers, it is possible to combine several values in one integer. In wxCLIPS, you use
similar syntax to C, but enclose the list in quotes:

"wxCAPTION | wxMINIMIZE_BOX | wxMINIMIZE_BOX | wxTHICK_FRAME"

Callback Callbacks are application-de�ned functions which receive events from the GUI.
You normally add a callback for a particular window (such as a canvas) and event
(such as OnPaint) using window-add-callback, or pass the callback in a panel item
creation function, such as button-create.

Canvas A canvas is a subwindow on which graphics (but not panel items) can be drawn.
It may be scrollable. A canvas has a Section ?? associated with it.

DDE Dynamic Data Exchange - Microsoft's interprocess communication protocol. wx-
CLIPS provides a subset of DDE under both Windows and UNIX.

Device context A device context is an abstraction away from devices such as windows,
printers and �les. Code that draws to a device context is generic since that device
context could be associated with a number of di�erent real device. A canvas has a
device context, although duplicate graphics calls are provided for the canvas, so the
beginner doesn't have to think in terms of device contexts when starting out. See
Section ?? .

Dialog box In wxCLIPS a dialog box is a convenient way of popping up a window with
panel items, without having to explicitly create a frame and a panel. A dialog box
may be modal or modeless. A modal dialog does not return control back to the calling
program until the user has dismissed it, and all other windows in the application are
disabled until the dialog is dismissed. A modeless dialog is just like a normal window
in that the user can access other windows while the dialog is displayed.

Frame A visible window usually consists of a frame which contains zero or more subwin-
dows, such as text subwindow, canvas, and panel.

GUI Graphical User Interface, such as MS Windows or Motif.

Menu bar A menu bar is a series of labelled menus, usually placed near the top of a
window.

aiai/hardy/um/1.3 Page 153

Meta�le MSWindows-speci�c object which may contain a restricted set of GDI primitives.
It is device independent, since it may be scaled without losing precision, unlike a
bitmap. A meta�le may exist in a �le or in memory. wxCLIPS implements enough
meta�le functionality to use it to pass graphics to other applications via the clipboard
or �les.

Open Look A speci�cation for a GUI `look and feel', initiated by Sun Microsystems.
XView is one toolkit for writing Open Look applications under X, and wxCLIPS sits
on top of XView (among other toolkits).

Panel A panel is a subwindow on which a limited range of panel items (widgets or controls
for user input) can be placed. wxCLIPS allows panel items to be placed explicitly,
or laid out from left to right, top to bottom, which is a more platform independent
method since spacing is calculated automatically at run time. Panel items cannot be
placed on a canvas, which is speci�cally for drawing graphics. However, you can draw
on a panel.

Resource Resource takes several meanings in wxCLIPS. The functions get-resource, write-
resource deal with MSWindows .ini and X .Xdefaults resource entries. The wxWin-
dows/wxCLIPS `resource system', on the other hand, is a facility for loading dialog
speci�cations from .wxr �les (which may be created by hand or using the wxWindows
Dialog Editor).

Status line A status line is often found at the base of a window, to keep the user informed
(for instance, giving a line of description to menu items, as in the hello demo).

XView An X toolkit supplied by Sun Microsystems for implementing the Open Look `look
and feel'. Freely available, but virtually obsolete.

aiai/hardy/um/1.3 Page 154

Index

aiai/hardy/um/1.3 Page 155

Index

arc-annotation-get-name, 116
arc-image-change-attachment, 90
arc-image-control-point-add, 90
arc-image-control-point-count, 90
arc-image-control-point-move, 90
arc-image-control-point-remove, 91
arc-image-control-point-x, 91
arc-image-control-point-y, 91
arc-image-create, 91
arc-image-get-alignment-type, 92
arc-image-get-attachment-from, 92
arc-image-get-attachment-to, 92
arc-image-get-image-from, 92
arc-image-get-image-to, 92
arc-image-is-leg, 93
arc-image-is-spline, 93
arc-image-is-stem, 93
arc-image-set-alignment-type, 93
arc-image-set-spline, 93
card-create, 82
card-delete, 82
card-deselect-all, 82
card-�nd-by-title, 82
card-get-canvas, 82
card-get-�rst-item, 83
card-get-frame, 83
card-get-height, 83
card-get-next-item, 83
card-get-special-item, 83
card-get-string-attribute, 83
card-get-toolbar, 84
card-get-width, 84
card-get-x, 84
card-get-y, 84
card-iconize, 84
card-is-modi�ed, 84
card-is-shown, 84
card-is-valid, 84
card-move, 85
card-quit, 85
card-select-all, 85
card-send-command, 85
card-set-icon, 85
card-set-modi�ed, 85
card-set-status-text, 86

card-set-string-attribute, 86
card-show, 86
container-region-add-node-image, 117
container-region-remove-node-image, 117
convert-bitmap-to-rtf, 138
convert-meta�le-to-rtf, 138
dde-advise-global, 138
diagram-card-clear-canvas, 94
diagram-card-copy, 94
diagram-card-create, 94
diagram-card-create-expansion, 95
diagram-card-cut, 94
diagram-card-delete-all-images, 95
diagram-card-�nd-root, 95
diagram-card-get-�rst-arc-�rst-image, 95
diagram-card-get-�rst-arc-�rst-object, 96
diagram-card-get-�rst-descendant, 96
diagram-card-get-�rst-node-�rst-image,

96
diagram-card-get-�rst-node-�rst-object,

96
diagram-card-get-grid-spacing, 96
diagram-card-get-next-arc-next-image, 97
diagram-card-get-next-arc-next-object, 97
diagram-card-get-next-descendant, 97
diagram-card-get-next-node-next-image,

97
diagram-card-get-next-node-next-object,

97
diagram-card-get-parent-card, 96
diagram-card-get-parent-image, 97
diagram-card-get-print-height, 98
diagram-card-get-print-width, 98
diagram-card-get-scale, 98
diagram-card-layout-graph, 98
diagram-card-layout-tree, 98
diagram-card-load-�le, 98
diagram-card-paste, 98
diagram-card-popup-menu, 99
diagram-card-print-hierarchy, 99
diagram-card-redraw, 99
diagram-card-save-bitmap, 99
diagram-card-save-�le, 99
diagram-card-save-meta�le, 99
diagram-card-set-grid-spacing, 99

aiai/hardy/um/1.3 Page 156

diagram-card-set-layout-parameters, 100
diagram-card-set-scale, 100
diagram-image-add-annotation, 105
diagram-image-annotation-get-drop-get-

site, 105
diagram-image-annotation-get-logical-

get-name, 105
diagram-image-annotation-get-name, 105
diagram-image-delete, 106
diagram-image-delete-annotation, 106
diagram-image-draw, 106
diagram-image-draw-text, 106
diagram-image-erase, 106
diagram-image-get-brush-colour, 107
diagram-image-get-card, 107
diagram-image-get-�rst-annotation, 107
diagram-image-get-�rst-expansion, 107
diagram-image-get-height, 107
diagram-image-get-item, 107
diagram-image-get-next-annotation, 108
diagram-image-get-next-expansion, 108
diagram-image-get-object, 108
diagram-image-get-pen-colour, 108
diagram-image-get-text-colour, 108
diagram-image-get-width, 108
diagram-image-get-x, 109
diagram-image-get-y, 109
diagram-image-is-shown, 109
diagram-image-move, 109
diagram-image-pending-delete, 109
diagram-image-put-to-front, 109
diagram-image-resize, 110
diagram-image-selected, 110
diagram-image-select, 110
diagram-image-set-brush-colour, 110
diagram-image-set-pen-colour, 110
diagram-image-set-shadow-mode, 110
diagram-image-set-text-colour, 111
diagram-image-show, 111
diagram-item-get-image, 111
diagram-object-add-attribute, 101
diagram-object-delete-attribute, 101
diagram-object-format-text, 101
diagram-object-get-�rst-attribute, 101
diagram-object-get-�rst-image, 101
diagram-object-get-next-attribute, 101
diagram-object-get-next-image, 102

diagram-object-get-string-attribute, 102
diagram-object-set-format-string, 102
diagram-object-set-string-attribute, 102
diagram-palette-get-arc-selection, 103
diagram-palette-get-arc-selection-arc-

image, 103
diagram-palette-get-�rst-annotation-�rst-

selection, 103
diagram-palette-get-next-annotation-

next-selection, 103
diagram-palette-get-node-selection, 103
diagram-palette-set-annotation-selection,

104
diagram-palette-set-arc-selection, 104
diagram-palette-set-node-selection, 104
diagram-palette-show, 104
hardy-clear-index, 81
hardy-command-int-to-string, 138
hardy-command-string-to-int, 138
hardy-diagram-de�nition-get-�rst-get-

arc-type, 132
hardy-diagram-de�nition-get-�rst-get-

node-type, 132
hardy-diagram-de�nition-get-next-get-

arc-type, 132
hardy-diagram-de�nition-get-next-get-

node-type, 132
hardy-get-browser-frame, 138
hardy-get-�rst-card, 81
hardy-get-�rst-diagram-de�nition, 132
hardy-get-next-card, 81
hardy-get-next-diagram-de�nition, 132
hardy-get-top-card, 81
hardy-get-top-level-frame, 139
hardy-get-version, 139
hardy-help-display-block, 139
hardy-help-display-contents, 139
hardy-help-display-section, 139
hardy-help-keyword-search, 140
hardy-help-load-�le, 140
hardy-load-index, 81
hardy-path-search, 139
hardy-preview-all, 134
hardy-preview-diagram-card, 134
hardy-print-all, 134
hardy-print-diagram-card, 135
hardy-print-diagram-in-box, 135

aiai/hardy/um/1.3 Page 157

hardy-print-diagram-page, 135
hardy-print-get-header-footer, 135
hardy-print-get-info, 135
hardy-print-header-footer, 136
hardy-print-set-header-footer, 136
hardy-print-set-info, 136
hardy-print-set-title, 137
hardy-print-text-in-box, 137
hardy-save-index, 81
hardy-send-command, 140
hardy-set-about-string, 140
hardy-set-author, 140
hardy-set-custom-help-�le, 141
hardy-set-help-�le, 141
hardy-set-name, 141
hardy-set-title, 141
hypertext-block-add, 121
hypertext-block-clear, 121
hypertext-block-get-item, 122
hypertext-block-get-text, 122
hypertext-block-get-type, 122
hypertext-block-selected, 122
hypertext-block-set-type, 122
hypertext-card-create, 118
hypertext-card-get-current-char, 118
hypertext-card-get-current-line, 118
hypertext-card-get-�rst-selection, 118
hypertext-card-get-line-length, 118
hypertext-card-get-next-selection, 118
hypertext-card-get-no-lines, 119
hypertext-card-get-o�set-position, 119
hypertext-card-get-span-text, 119
hypertext-card-insert-text, 119
hypertext-card-load-�le, 119
hypertext-card-save-�le, 119
hypertext-card-string-search, 119
hypertext-card-translate, 120
hypertext-card-translator-close-�le, 120
hypertext-card-translator-open-�le, 120
hypertext-card-translator-output, 121
hypertext-item-get-block, 122
item-get-�rst-link, 87
item-get-kind, 87
item-get-next-link, 87
item-get-type, 87
item-goto, 87
item-set-kind, 87

link-cards, 88
link-get-card-from, 88
link-get-card-to, 88
link-get-item-from, 88
link-get-item-to, 88
link-get-kind, 88
link-get-type, 88
link-items, 89
link-set-kind, 89
media-block-create, 124
media-block-get-item, 124
media-block-get-position, 125
media-block-get-type, 125
media-block-set-type, 125
media-card-append-text, 125
media-card-apply-family, 125
media-card-apply-foreground-colour, 125
media-card-apply-point-size, 125
media-card-apply-style, 126
media-card-apply-underline, 126
media-card-apply-weight, 126
media-card-clear, 126
media-card-clear-all-blocks, 126
media-card-copy, 126
media-card-create, 126
media-card-cut, 127
media-card-delete, 127
media-card-�nd-string, 127
media-card-get-character, 127
media-card-get-�rst-block, 127
media-card-get-last-position, 128
media-card-get-line-for-line-position, 128
media-card-get-line-length, 128
media-card-get-next-block, 128
media-card-get-number-of-number-lines,

128
media-card-get-position-for-position-line,

128
media-card-get-selection-end, 127
media-card-get-selection-start, 127
media-card-get-text, 128
media-card-insert-image, 129
media-card-insert-text, 128
media-card-load-�le, 129
media-card-paste, 129
media-card-redo, 129
media-card-save-�le, 129

aiai/hardy/um/1.3 Page 158

media-card-scroll-to-position, 129
media-card-select-block, 129
media-card-set-selection, 129
media-card-undo, 130
media-item-get-block, 125
node-image-create, 112
node-image-duplicate, 112
node-image-get-container, 112
node-image-get-container-parent, 113
node-image-get-�rst-arc-�rst-image, 112
node-image-get-�rst-child, 112
node-image-get-�rst-container-�rst-

region, 113
node-image-get-next-arc-next-image, 113
node-image-get-next-child, 113
node-image-get-next-container-next-

region, 113
node-image-get-parent, 113
node-image-is-composite, 114
node-image-is-container, 114
node-image-is-junction, 114
node-image-order-arcs, 114
node-object-get-�rst-arc-�rst-object, 115
node-object-get-next-arc-next-object, 115
object-is-valid, 141
object-type-get-�rst-attribute-�rst-name,

133
object-type-get-next-attribute-next-

name, 133
quit, 141
register-event-handler, 141
text-card-load-�le, 131
-P option, 10
-block option, 9
-clips option, 9
-def option, 9
-dir option, 10
-f option, 9
-help option, 10
-h option, 10
-load option, 10
-mdi option, 10, 75
-nobanner option, 10
-path option, 9, 10
-port option, 10
-sdi option, 10, 75
-server option, 10

-version option, 10

abbreviation format string, 30, 62, 64
ackages, 13
align horizontally, 24
align vertically, 24
API, 152
Application Programmer's Interface, 6
apply de�nition, 24
Arc Annotation Properties, 68
arc annotations, 42, 43, 68
arc attachment points, 25
arc attributes, 23, 65, 66
arc constraints, 65, 67
Arc Image Properties, 67
arc images, 67
arc labels, 22, 23, 30, 43
arc properties, 43, 68
arc segments, 22
Arc Symbol Editor, 42
Arc Type Editor, 42, 65, 69
arcs, 6, 19
associating extensions with command

lines, 12
associations, 12
Attachment Point Editor, 45
attachment points, 25, 44, 63, 64, 69
attributes, 6, 23, 61
auto dog-leg, 69

bending arcs, 22, 31
Bit list, 152
block highlighting, 38, 40
Block Mappings, 70, 72
block selection, 38, 40
block style, 38, 40, 72
block type identi�er, 72
block type mappings, 70, 72
block types, 72
bounding box, 38
browsing, 26

Callback, 152
Canvas, 152
card �les, 19
card title, 17, 35
card type de�nition, 57

aiai/hardy/um/1.3 Page 159

card types, 37, 40, 57, 70
cards, 7
cards, hiding, 19
categories of card types, 57
clearing blocks, 38
clipboard, 29, 75
clipboard viewer, 29
colour displays, 30, 38, 40
colours, 23, 42, 43, 45
command line options, 9
composite symbols, 22, 42, 44, 53
constraints, 53
containers, 28, 61
control points, 22, 45, 69
control window, 7
copying images, 24, 31
creating arcs, 22, 31
creating cards, 16, 21
creating diagram card types, 57
creating diagram cards, 31
creating hypertext card types, 70
creating nodes, 21, 31
cursor patterns, 15, 21, 22, 25, 69
Custom Menu, 73
custom menus, 58, 70, 71, 73
cut-and-paste, 24, 29

data exchange, 29
DDE, 152
default attributes, 72
de�nition list �le, 9
de�nitions list �le, 73
deleting arcs, 24
deleting cards, 19, 36
deleting images, 24, 27, 31
deleting nodes, 24, 27
deselecting arcs, 22
deselecting blocks, 38
deselecting nodes, 22
designing card types, 57
Device context, 152
Diagram Card Options, 24
diagram card toolbar, 25
diagram card types, 57
diagram cards, 7
diagram de�nition �le, 9
diagram expansion card, 19, 27

diagram printing, 28
diagram type �les, 12, 57
Diagram Type Manager, 7, 57
Diagram type options, 58
diagram types, 6, 21
diagrams, 6
diagrams.def, 9, 57, 73
Dialog box, 152
di�erences between X and Windows, 75
divided nodes, 44
Divided Object Properties, 45
divided rectangles, 45
Drop Site Editor, 63, 64
drop sites, 53, 61, 63, 64

editing arc types, 74
editing attributes, 23, 31
editing block types, 70, 72
editing blocks, 38
editing card types, 73
editing diagram card types, 60, 65, 73
editing hypertext card types, 73
editing hypertext cards, 38
editing media cards, 40
editing node attributes, 23
editing node types, 60, 74
editing text cards, 35
editing text �les, 37, 40
EDITOR variable, 23, 35
exiting from Hardy, 9, 20
expansion cards, 7, 19, 27, 31

File browsing, 18
�le name conventions, 12
�le diagrams.def, 12
�les, 12, 19
�ll colour, 42, 43
�nding cards, 16
�xed height, 44
�xed width, 44
fonts, 23
format string, 62, 64
format tree, 24
Frame, 152

goto, 72
grids, 69

aiai/hardy/um/1.3 Page 160

GUI, 152

handles, 22
HPK �les, 13
hyperlinks, 26, 36, 63
hyperlinks panel, 26, 36
hyperlinks panel, displaying, 21, 36
hyperlinks panel, ordering, 26, 36
hypertext, 7, 19
hypertext block type mappings, 70, 72
hypertext blocks, 38
hypertext card, 7, 37
hypertext index, 19
hypertext index �le, 9
hypertext section, 72
hypertext sections, 38
hypertext style, 38
Hypertext Type Manager, 70
hypertext types, 37, 71

image deleting, 24
image properties, 61
index �les, 19
index tree, 7, 16, 27
items, 19, 37, 40

Junction Editor, 65, 69
junction symbols, 23, 65, 69

labelling arcs, 23
labelling images, 31
labelling nodes, 23
labels, 22, 43, 64
LaTeX, 29, 38
leaving Hardy, 9, 20
libraries, 42
line colour, 42, 43
line properties, 42
line style, 42, 43
line width, 42, 43
lines, straightening, 24, 69
link panel, displaying, 32
linking arcs, 26
linking cards, 19, 26, 31, 36
linking nodes, 22, 26
linking orphan cards, 19
loading diagrams, 31

marking blocks, 38, 40
maximising space, 32
MDI mode, 75
media blocks, 40
media card, 40
media style, 40
media types, 40
Menu bar, 152
Meta�le, 153
meta�les, 42
monochrome displays, 30, 38, 40
mouse functionality, 32, 36, 38, 41
moving nodes, 22, 32
multi-way arcs, 23, 69
multi-way junction symbols, 23, 65
multilines, 24

new card types, 70
node annotation symbol, 63
Node Annotation Symbol Properties, 63,

64
node annotation symbols, 63
node annotations, 53, 64
node attributes, 23, 61
node highlighting, 63
node image properties, 61
node image size, 62, 63
node labels, 22, 23
node properties, 62
node symbol constraints, 53
Node Symbol Editor, 42, 44, 45
node symbol properties, 43, 62
Node Type Editor, 42, 60
nodes, 6, 19

Object Attributes Editor, 23
Open Look, 153
opening a text card �le, 35
options, 9
orphan cards, 19
outline colour, 43
outline style, 43
outline width, 43

Panel, 153
partially satis�ed constraints, 53, 61, 63
polyline symbols, 25, 44, 45

aiai/hardy/um/1.3 Page 161

previewing, 32
primitive symbols, 42
Printer Settings, 28
printing, 28, 32, 75

quick edit mode, 30

reconstructing indices, 19
refresh display, 24
Region Properties, 64
regions, 61, 64
removing blocks, 38
resizing nodes, 22, 32
Resource, 153
resources, 9
running Hardy, 9

saving cards, 19, 20, 27
saving diagram type de�nitions, 73
saving diagrams, 19, 32
saving hypertext type de�nitions, 73
saving index �les, 20
saving sessions, 19
saving text card �les, 35
saving type de�nitions, 73
scaling diagrams, 32
search path, 9, 10
searching, 17
searching for cards, 16
sections, 72
selecting arcs, 22
selecting blocks, 38, 40
selecting images, 32
selecting nodes, 22
selection handles, 22
shadow, 44
space attachments, 44
splines, 22
Standard Symbol Library, 42
starting Hardy, 9
Status line, 153
straighten lines, 24, 69
style, 38, 40, 72
Symbol Librarian, 42, 66
symbol libraries, 42
symbol palette, 21, 63
symbols, 42

text block attributes, 37, 40
text blocks, 19, 37, 38, 40
text cards, 35
text editing, 76
text regions, 22, 43, 45, 61, 64{66
to back, 24
to front, 24
toolbar, 25
toolbar, displaying, 21
top card, 16
two-way arcs, 69
type de�nition, 24, 70, 74

use attachments, 44

warning messages, 9, 55
Web, 13
Windows, 6, 9{12, 20, 24, 29, 35, 75
Windows clipboard, 29
Word Wide Web, 13
WWW, 13

X, 9{12, 20, 28, 35, 75
XView, 153

zoom, 24

