

A Framework for Modelling

Software Development Processes

J. G. Doheny and I. M. Filby

AIAI-TR-203

August 1996

���

A Framework for Modelling Software Development Processes

J. G. Doheny and I. M. Filby,

Artificial Intelligence Applications Institute (AIAI),

The University of Edinburgh,

80 South Bridge,

Edinburgh EH1 1HN

Tel. +44 131 650 2732

Fax +44 131 650 6513

ABSTRACT

In this paper we describe the ASPEN software process modelling framework and support tool. Our modelling framework is based on a process ontology (vocabulary) that incorporates software project artifacts (e.g. design specifications and code), methods, activities and the agents that carry out these activities. It includes a rich information modelling taxonomy that supports the classification of project artifacts, by relating the project artifacts to the things in the ‘real-world’ which they represent. Software development standards may be explicitly represented as constraints on the development process. The ASPEN support tool provides support for project auditors/assessors in evaluating existing processes and for project managers in constructing process models.

Introduction

In this paper we describe a conceptual framework and associated support tool, which we have developed for modelling and assessing software development processes. Most development projects do not explicitly design a process for the production of software; it is usually implicit in the development lifecycle, development methodology, or project procedures. However, whether explicitly designed or not an actual process does exist. Implicit processes or informal descriptions are difficult to communicate and discuss and practically impossible to analyse. Software process modelling involves explicitly describing software development processes, which may be used to facilitate understanding and communication of the development process amongst clients, auditors, safety assessors, etc. It supports the improvement of the development processes by providing support for assessment of a project before actually embarking on the plan and allowing the re-use of tested processes.

We have developed a conceptual framework for modelling software development processes. Our process modelling framework is based on a process ontology (vocabulary) that incorporates software project artifacts (e.g. design specifications and code), methods, activities and the agents (people or computer programs) that carry out these activities. It includes a rich information modelling taxonomy that supports the classification of project artifacts, by relating the project artifacts to the things in the ‘real-world’ which they represent. In addition to explicitly modelling software development processes, our framework can model in an explicit form the contents of software development standards and other forms of best practice software engineering knowledge. Software development standards and procedures contain provisions for activities, methods or artifacts; they are effectively fragments of development processes or constraints on the development process.

Our process modelling framework is being applied in a support tool, called ASPEN (A Software Process ENgineering tool). ASPEN provides support for project auditors in evaluating existing projects and for project managers in planning new projects. Development processes are assessed using knowledge bases of development methods, technical standards and engineering ‘best practice’. Assessment issues include conformance to standards, completeness and consistency of project artifacts, effectiveness of activities and methods used to produce artifacts, and qualifications of the agents that carry out activities. ASPEN is implemented using CLIPS (a hybrid Artificial Intelligence language developed at NASA) and HARDY (a programmable diagramming tool developed at AIAI). The ASPEN tool runs on UNIX platforms under MOTIF and PCs under MS Windows.

This paper is structured as follows: section 2 describes current trends in software process modelling and explains the context of our modelling framework; the ASPEN modelling framework is described in detail in section 3; the ASPEN support tool is described in section 4 and finally section 5 presents some concluding remarks about our work.

Software Process Modelling

What is Software Process Modelling

The development of software is a complex process consisting of many interdependent activities, including technical development activities, project management activities, quality assurance activities, and customer support activities. It is one of the most complex processes that occurs in modern organisations. Software processes have traditionally been defined rather informally through text-based standards, quality manuals, and methodologies. These informal descriptions make it difficult to discuss, teach, analyse or modify the processes. A model is an abstract representation of reality that excludes much of the detail of the real world; software process models are therefore an abstract representation of software development activities. These models may be represented in a variety of formalisms, such as graphical notations, structured text-based languages, or logical languages. The intended purpose of the model will affect what needs to be modelled, the level of detail at which those things will be modelled and the type of representation used.

Software process modelling and the technology which supports it are relatively recent developments, but ones with important potential benefits (1). It can be used to support understanding of the development processes, comparison of alternative processes and communication of shared best practice for re-use on future projects. The maturity and capabilities of an organisation's development processes can be assessed and areas requiring improvement can be identified. The technology supports the development of project specific process plans to meet project specific characteristics while satisfying development standards and methodologies. Portions of the development processes can be automated using process enactment technology and the co-operative work of the development team supported.

Tools have been or are currently being developed to support many of the activities mentioned above. In the AUSDA project we are currently focusing on support for the assessment of software development processes against standards, methods and best practice software engineering. However, we are interested in broadening the functionality of the ASPEN system, which where feasible we will achieve through integrating the tool with other systems, for example project planning, project management and process enactment tools. Part of the rationale behind this is that defining process models often requires a significant amount of effort and the full benefits can only be realised by exploiting the process model during as many stages of a project as possible, for example, when planning, enacting and assessing a project.

 Background to the Aspen Framework

Our framework is based on an explicit and declarative process representation using AI modelling techniques. Such representations are amenable to a wide range of uses, rather than being optimised for a specific purpose, such as process enactment (1). Moreover, our main focus has been to establish an ontology (vocabulary) rather than concerning ourselves unduly with the details of the specific representation formalism. The objective of defining ontologies, a trend that has recently emerged within the knowledge based technologies community, is to produce a representation independent description of the important concepts within a domain that can be used to support a shared understanding between a community of tools and/or people (ontologies play a similar role to data-schemas in the database community). We do not regard the actual representation formalism used for our process models as especially important; we believe it is far more useful to establish the semantic content of that representation.

The content of our process modelling ontology has been influenced by other process modelling work at AIAI, including the Enterprise ontology (2), the Enterprise Process Modelling Language and the O-Plan ontology (3). The most influential piece of external work has been Zachman's Information Framework (4), which provides a comprehensive set of perspectives and characteristics for analysing the contents and roles of software analysis and design artifacts. Examples of other process modelling work which we share some similarities with include, the Process Interchange Format (PIF) (5), the software process modelling work at the Informatics Process Group of Manchester University (6), method modelling work (7) and (8), and projects within the US ARPA sponsored STARS programme which are developing methods and software technologies to support process-driven software projects.

We believe our work is important for the following reasons: (i) the use of a representation independent vocabulary (ontology) for describing the semantic content of our process models; (ii) the use of a process modelling approach to model the contents of standards and methods, and (iii) the richness with which we model software development artifacts, in particular the way in which we model the content of artifacts based upon Zachman's information modelling framework. We are evaluating our process ontology within the ASPEN tool. The tool uses the ontology as the basis for representing process models, standards, methods and best practice software engineering knowledge. The tool then applies this information to perform assessments of a software process model.

ASPEN Modelling Framework

Figure 1 shows an overview of the ASPEN framework for modelling software development. Central to the framework is an explicit model of the software development process, which is based on a process ontology. Surrounding the model are various software engineering knowledge bases (KBs), which provide the basis for the task knowledge, i.e., process assessment and construction. The following sections describe the components of the framework in more detail.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�: The ASPEN Modelling Framework

ASPEN Software Process Model & Ontology

An ontology can be thought of as a vocabulary for modelling a domain, i.e., the objects, concepts, and other entities and the relationships that hold among them. The three major categories of concepts in our ontology are artifacts, activities and agents; agents are required to enact the activities that produce the artifacts. The following sections describe these concepts in more detail.

Project Artifact

A project artifact could, for example, be a list of requirements, a case-tool graphic or some software code. Figure 2 shows a representation, using OMT notation (9), of the attributes associated with an artifact. The four major artifact types are technical, quality, safety and management and these can be further subcategorised, for example, quality artifacts have verification and validation subtypes. Artifacts are produced for a reason and hence have a rationale, which influences what information is represented and how it is represented. Artifacts have dependencies, e.g., a software source code module will usually be dependent on the relevant design specifications and coding standards and the source code should not be produced without these documents already in existence. An artifact may undergo many modifications before it is completed. Each significant (significance is usually defined within the context of a specific project) modification will result in a new version number being assigned and must be subject to some form of configuration management. An artifact has associated quality criteria against which it is reviewed/checked. The informational content of artifacts is described in the following section.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �2�: Project Artifact Model

Information Models

There are four fundamental parts to the development of a software product, or indeed solution to any problem: identification and understanding of the domain of interest; specification of what is required; specification of how it should be implemented; and implementation. These result in the development of a number of information models, see Figure 3.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �3�: Information Models

 Real World Model This is a model of the beliefs held about the real world. This model is derived from the software engineer's existing knowledge about a domain and from knowledge acquired during requirements analysis.

Requirements Model This is a description of what the software system should do, i.e., what functions it must support and any other constraints it must satisfy. There is no objective way of characterising information as a requirement or a design; it depends on the perspectives of the software engineer and the domain representative. It is important therefore that the Requirements Model does not contain any information that unnecessarily constrains possible designs and implementations.

Computational Model This model describes how the software system functions. In theory a spectrum of models lie between the Requirements Model and the Implementation Model, each one specifying how the software should operate using constructs that get progressively closer to machine instructions. Information in the Computational Model is often classified as design or code. Designs are generally written using a structured language, though they can also be represented using formal languages and are closer to the Requirements Model end of the spectrum than code, which is ‘executable’.

Implementation Model This model can be directly executed by a digital computer. It is rarely developed manually, but automatically using a compiler or translator.

These models may not always be formal or explicit, e.g., a persons understanding of a domain may be represented in their minds and not explicitly using a structured notation. Figure 3 does not necessarily indicate the order in which these models are created, for example, in many cases a products requirements cannot be fully specified until the implementation details are understood. The development of these models is a complex process consisting of many interdependent activities. Quality and safety processes are carried out to ensure that the transformation of information is complete and correct. Processes are carried out using some implicit or explicit methodology and should conform to standards and guidelines.

Models have scope, which determines whether the information forms part of the proposed software system, the environment within which the software operates or the interface between the two. A model is always in a certain state that reflects its degree of completion. These states can be either qualitative or quantitative. Quantitative states indicate whether constituent elements have been identified, the level of description, and degree of validation. Quantitative states reflect the percentage completion of a model. Information about a domain is relevant to a specific time; the two most general time periods in a project reflect the existing domain and the future or restructured domain, i.e., with the proposed information systems solution installed. Perception of the existing and future structure of the domain changes over time and this will be reflected in different model states and versions.

Information Concepts

The content of a model is an abstracted description of that part of the application domain of interest; the level of abstraction is determined by the model type. Information about the world can be decomposed into objectives/goals, entities, activities, people & other agents, locations and times (4). It is important to separate out these components to reduce the complexity of the real world. These various components are interrelated and their interactions and influences should be explicitly modelled.

 Rationale/Goal (Why) This is concerned with the objective of the various elements in a model, e.g., the goal of the enterprise, the objective of a piece of equipment. Rationale can be further broken down into goals and strategies.

Entities (What) In the Real World Model entities include such artifacts as actuators, telemetry equipment; in the Computational Model entities refer to data structures and data. Entities have properties such as relationships, attributes and attribute values.

Processing (How) Processes transform input to some output and are defined by functions and function arguments. In the Real World Model and Requirements Model this refers to actual real-world processes, e.g., a chemical process; in the Computational Model this refers to the inferences or computational functions that carry out these processes.

Agents (Who) These can be human or some computational entity, and interact with the system to carry out tasks. In the Requirements Model this includes all agents that carry out some task relevant to the application.. In the Computational Model agents are typically programs that interact with and carry out some task for an external agent. Modelling agents is important, e.g., when understanding or re-designing the organisational structure and when considering the system interface.

Location (Where) This refers to the network of entities, agents and processes and their physical location with respect to each other. In the Real World Model and Requirements Model this would refer to actual locations in the real world; in the Computational Model and Implementation Model this would refer to logical or physical nodes in a computer network.

Dynamics (When) In the Real World Model and Requirements Model timing issues could include business or chemical process cycles, while in the Computational Model timing issues include the sequencing of input data and required response times. Properties are points in time, such as the occurrence of a specific event, and duration.

Information Representation

Information can be represented using textual, graphical, audio or video notations and can be stored in a number of different media. The three most important media types are mental (i.e. in the human mind), paper and digital. Information that is represented in a persons mind has the obvious disadvantage that it cannot be directly observed by other people or objectively analysed. Information can be represented both textually and graphically on paper. However, audio and video information cannot be stored directly, though it can be represented indirectly using text and/or graphics. Information represented digitally can be ‘presented’ both textually and graphically and manipulated directly by computer applications. The degree of formality of representations can be informal, structured and formal. The term ‘formal’ can have different interpretations and methods differ in the amount of formality that they employ. The components of a model may use more than one representation type and degrees of formality.

Activity Model

Project activities, see Figure 4, produce project artifacts. The inputs to activities are also artifacts, although they need not necessarily have been produced during the project. Activities can be of different types, e.g. requirements elicitation, design, etc., and are typically carried out according to some method. Methods can be prescriptive and specify the procedures for transforming the input information into the output, and/or descriptive and specify how information is represented. All activities require and consume resources, which may include time, capital, materials, infrastructure. Agents may require authorisation from controllers before carrying out activities. Before an activity commences or is complete various conditions (pre-conditions and post-conditions) must be satisfied. An example of a pre-condition is that the entities have been identified and their structure defined in the Requirements Model before development of the Computational Model can commence. An example of a post-condition is that the artifact must be signed-off before the activity is deemed complete. Similar to artifacts activities have quality criteria against which they are measured.

Agent Model

Agents are responsible for carrying out activities, see Figure 5. There are two principal types of agents, human and computer programs, with different characteristics and suitable for carrying out different types of activities, for example, computer agents are suitable for carrying out formal transformations on information, while human agents are more suitable for carrying out informal reviews or inspections. Of course, it is not always as simple as this; human agents, apart from the rather fuzzy nature of some of the activities that they carry out, are prone to errors and are influenced by the environment within which they operate.

Agents have roles which define their responsibilities and must have some capability or expertise in order to carry out their required activity. In a software agent this is pre programmed expertise and it is relatively easy to measure this against the skills required to carry out an activity. However, with human agents this is much more complicated; motivation, quality of training and experience can influence their performance and quality of their work. Human agents usually work as part of a team, which in turn form part of an organisation. Teams and organisations have a structure and communications links. An organisation's and team's culture and morale can influence quality of the software product. These are difficult attributes to quantify and it is also very difficult to measure their impact on the quality of the resultant artifact.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �4�: Project Activity Model

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �5�: Agent Model

Software Engineering Knowledge

The software engineering knowledge bases facilitate the construction and assessment of a process model. These KBs include knowledge about information frameworks; the characteristics of available methods; the requirements of particular application domains; and the contents of standards. The following sections describe these KBs in more detail.

Application Domains

The application domain affects factors such as type of processing, e.g., real-time or otherwise, which in turn influences development issues including method suitability and type of testing. The domain also determines the type of and criticality level of the risk associated with system failure, e.g., economic loss, loss of human life, etc. The characteristics of the risk determine the safety criteria for the system. The derivation of these criteria will also vary from application to application and is influenced by national/international laws, licensing authorities, etc. A criticality analysis translates these criteria into safety criteria for the software component, which in turn influence the suitability of verification & validation and safety analysis methods.

Methods

A method can be thought of as a procedure for doing something (10), and can be characterised by the type of information or concepts that can be represented, the representation syntax and the ‘transformation’ procedure. Concepts and syntax largely determine the suitability of a method for a particular task. For example, a method's ability to represent timing concepts would be important in assessing its' suitability for real-time applications. Most development methods do not cover the entire software lifecycle and projects may use more than one method and/or extend existing methods. It is therefore important that a process modelling framework can model multi-method projects. The approach adopted in ASPEN is to represent methods using the same vocabulary as the information models developed during a software project. In this way the integration of a number of methods can be modelled. In addition a methods capability to represent specific types of information, e.g., entities in a design specification, can be quantified, using a similar approach to feature analysis (11) and a methods's suitability for a specific project can therefore be a evaluated.

Guidelines & Standards

Laws, regulations, standards and company procedures contain requirements on the process or product. A number of representation formalisms are used and have been proposed to represent standards and guidelines (12). In ASPEN these standards are represented as constraints on the development processes and can be used to analyse the actual development process for compliance. DEF-STAN 00-56 (13), for example, specifies that a Safety Programme Plan must be created at project initiation; that a Project Safety Engineer and a Project Safety Committee must be appointed; and that the roles and qualifications of these personnel are defined. These constraints relate directly to the basic elements of the ASPEN modelling framework, i.e., products, activities, and agents. Information that cannot be easily represented using the modelling vocabulary, e.g., rationale, suggestions and recommendations are represented as hypertext.

Task Knowledge

Task knowledge refers to the tasks required to meet the objectives of the users of the process model. There are two broad categories of tasks that need to be considered: process assessment and process construction. Assessment is concerned with the efficiency and effectiveness of a process; construction concerns the creation of a process model that is both efficient and effective. Efficiency measures the value of the outputs against the value of the resources consumed. This information is useful for measuring and predicting productivity and progress. Effectiveness measures how well the actual process satisfies its objectives. Currently, we are focusing on assessment of conformance to standards and the effectiveness of the development processes. The overall approach to assessing the effectiveness of the processes of development, verification & validation and risk/safety analysis is similar and involves four basic steps, which are described briefly below.

Strategy This considers the overall approach to technical development, verification & validation or safety analysis. A development strategy includes such high level issues as the lifecycle and maturity of approach; the number of analysis (design (coding (testing iterations; the involvement of the user in the process; re-use of existing strategies, etc. Verification & validation and safety analysis strategies are dependent on the development approach and include such issues as the degree of testing and analysis during development, before release and when the system is deployed.

Completeness The completeness of the contents of the project artifacts are analysed using the information framework, relevant standards and guidelines. This is a first level check and can not assess whether a document, e.g., the requirements specification, is actually complete; simply that all ‘classes’ of concepts have been considered. Completeness of verification & validation and safety analysis relates to the level of testing and analysis of the various technical artifacts produced by the project. This includes such issues as the existence of design reviews, test specifications, test reports, etc.

Consistency Software development involves the transformation of information from one abstraction into another, e.g., the requirements specification are transformed into design specifications, which in turn are transformed into code. It is important that these dependency links are acknowledged during the transformation processes, e.g., that code is not produced before being designed. In addition verification & validation and safety assessment artifacts are dependent on each other and on technical artifacts.

Activities The two main aspects of an activity that must be considered in an assessment are the agents involved and the methods used. Agents (tools and personnel) are responsible for carrying out the activities that produce artifacts. Their skills and experience are critical in ensuring the efficacy of any activity. For methods it is important to consider how information is represented (descriptive aspect) and the technique used to transform the information into the representation (prescriptive aspect). For example, formal transformations are more likely to be complete and consistent than informal ones though the expertise of the respective agents are also very important.

The ASPEN Tool

This section describes the software tool that supports the ASPEN modelling framework. The tool is currently being implemented using both CLIPS (14) (a software environment that combines rule-based and object-oriented programming) and HARDY (15) a hypertext diagramming tool. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows. The architecture is shown in Figure 5 which shows the main functional blocks and how they integrate with the modelling framework, as shown in Figure 6.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6�: The ASPEN Tool Architecture

There are a number of ways of visualising processes, for example, Gantt charts, IDEF0, and Role Activity Diagrams. Different users will require different ‘views’ or ‘perspectives’ on the process model. Presenting a number of different views or perspectives on the model can help increase understanding and can be used to check the consistency of the process and its correctness. These perspectives are also useful when constructing or refining the model. Currently ASPEN has form-based editors for each of the major process elements and a graphical tree-diagram visualiser. These editors are also the mechanism by which the process model is defined. Additional visualisers, including Role Activity Diagrams and IDEF3, are currently being developed.

The ASPEN tool provides editors for marking up standards, using a hypertext editor, and creating explicit links with the basic elements of the software process modelling ontology. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints. A methods editor supports the construction of the various components of methods. Links to a hypertextual representation can also be created so that users of the system can browse the contents and rationale of the method. Assessment reports can be generated in a number of formats including Microsoft Word and Postscript. Currently output reports are limited to conformance to standards and an evaluation of the development methods used.

Concluding Remarks

Software process modelling is a relatively new technology for formalising and representing software development processes. A software process model makes development processes explicit and facilities the understanding and communication of the development process to auditors, project assessors and project managers. This technology also facilitates assessment of existing processes and improvement in the way that software is developed. This potential is particularly significant in the domain of safety critical software, where a failure can have catastrophic consequences, and a process model could play an important role as supporting ‘evidence’ in a safety case.

We have developed a software process modelling framework based on an ontology that includes, artifacts, agents, activities and methods. Standards can also be represented, using the framework, as constraints on the development process. We have developed a support tool for our framework that provides facilities for the assessment of the effectiveness of the development process by considering a wide range of criteria, including suitability of the methods used, suitability of personnel and conformance to standards. Providing a number of different views or perspectives on the model increases the understanding of the process. ASPEN will provide support for auditors/assessors in evaluating processes. It also enables a proposed process to be assessed, and re-designed if necessary, before actually embarking on the project and hence will be useful to project managers in planning projects.

In the near future we plan to release ASPEN to industrial sites for evaluation. We hope to learn more about the practicalities of transferring this technology to “real-world” projects and to incorporate any feedback into future implementations of ASPEN.

Acknowledgements

This work has been carried out as part of the JFIT Safety Critical Systems Research Programme supported by EPSRC grant number GR/J18378 in collaboration with Loughborough University.

REFERENCES

1	Bill Curtis, Marc. I. Kellner, and Jim Over. Process modelling. Communication of the ACM, 35(9), September 1992.

2	Mike Uschold and Martin King. Towards a Methodology for Building Ontologies. Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, September 1995.

3	Austin Tate. A Plan Ontology - a Working Document. In Proceedings of the Workshop on Ontology Development and Use. Cambridge University Press, Nov 1994.

4	J. F. Sowa and J. A. Zachman. Extending And Formalising The Framework For Information Systems Architecture. IBM Systems, 31(3):590-616, 1992.

5	Jintae Lee and Gregg Yost. The process interchange format and framework. Technical Report Working Paper 180, (http://www-sloan.mit.edu/CCS/pifmain.html), The Center for Coordination Science (CCS), Massachusetts Institute of Technology, Massachusetts, December 1994.

6	B.C. Warboys and R.A. Snowdon. An introduction to process-centered environments. In A. Finklestein, J. Kramer, and B. Nuseibeh, editors, Software Process Modelling and Technology, Advanced Software Development Series. Research Studies Press, 1994.

7	B. Beringer. The model architecture frame: quality management in a multi method environment. In Software Quality Management III, Third International Conference on Software Quality, Seville, Spain, April 1995. Computation Mechanics.

8	C. Harris-Jones, T. Barrett, T. Walker, T. Moores, and J. Edwards. A Methods Model for the Integration of KBS and Conventional Information Technology. In M.A. Bramer and R.W. Milne, editors, Proceedings of Expert Systems 92, pages 25-42. Cambridge University Press, Dec 1992.

9	James Rumbaugh et al. Object-Oriented Modelling and Design. Prentice Hall, 1991.

10	Richard J. Mayer, Capt. M. K. Painter and Paula S. deWitte. IDEF Family of Methods for Concurrent Engineering and Business Re-engineering Applications. IED/4/2160 SMARTIE technical reports, 1992.

11	D. Law. DESMET Methodology: Specification of Requirements and Architecture. Technical report, National Computing Centre, 1992.

12Paul Wai Hing Chung and David Stone. Approaches to representing and reasoning with technical regulatory information. The Knowledge Engineering Review, 9(2):147-162, 1994.

13	Directorate of Standardisation. Defence standard 00-56. Technical report, Ministry of Defence, Kentigern House, 65 Brown Street, Glasgow, 1993.

14	Joseph C. Giarratano. CLIPS User Guide. NASA, Lyndon B. Johnson Space Center, May 1993.

15	Julian Smart. HARDY 1.20 User Manual. AIAI, April 1994.

AIAI-TR-203	A Framework for Modelling Software Development Processes

�PAGE �

�PAGE �13�

	

Artificial Intelligence Applications Institute

The University of Edinburgh

80 South Bridge

EDINBURGH EH1 1HN

United Kingdom

(The University of Edinburgh, 1996

This paper was presented at SQM IV, in Cambridge, April 1996.

