

A Framework and Tool

for Modelling and Assessing

Software Development Processes

J. G. Doheny and I. M. Filby

AIAI-TR-204

August 1996

���
A Framework and Tool for Modelling

and Assessing Software Development Processes

J. G. Doheny and I. M. Filby,

Artificial Intelligence Applications Institute (AIAI),

The University of Edinburgh,

80 South Bridge,

Edinburgh EH1 1HN

Tel. +44 131 650 2732

Fax +44 131 650 6513

Abstract

In this paper we describe a conceptual framework and associated support tool, which we have developed for modelling and assessing software development processes. We believe that Process modelling technology provides a good basis for helping to improve understanding and communication of the way that software is developed. It can assist project managers to plan projects that meet quality assurance requirements and can also assist project auditors and others in assessing a development process. Our process modelling framework is based on a process ontology (vocabulary) that incorporates software project artifacts (e.g. design specifications and code), methods, activities and the agents (people or computer programs) that carry out these activities. Development processes are assessed using knowledge of development methods, technical standards and engineering “best practice”. In addition to representing specific software development projects, we are using the framework to model in an explicit form the contents of software development standards and quality procedures.

Introduction

The development of software is one of the most complex processes that occurs in modern organisations and consists of many interdependent activities, including technical development activities, project management, quality assurance, and customer support. It is necessary to understand and assess these processes before embarking on any process improvement programme or before adopting new methods and support tools, such as CASE tools. Development processes also need to be understood and documented in order to gain certification to International or British Quality Standards, such as the DTI backed TickIT scheme (1). Process modelling technology makes development processes explicit and facilitates improved understanding and communication. The technology can be used to support software standards development, software procurement, software quality management, software project management and software development.

We have developed a conceptual process modelling framework for modelling and assessing software development processes (2). Our framework is based on a process ontology (vocabulary) that incorporates software project artifacts (e.g. design specifications and code), methods, activities and the agents (people or computer programs) that carry out these activities. In addition to explicitly modelling software development processes, our framework can model in an explicit form the contents of software development standards and other forms of best practice software engineering knowledge. The process modelling framework is being applied in a support tool, called ASPEN (A Software Process ENgineering tool). ASPEN provides support for project auditors in evaluating existing projects and for project managers in planning new projects.

This paper is structured as follows: section 2 discusses some background issues relating to software process modelling; the ASPEN modelling framework and support tool is described in section 3; section 4 discusses potential applications of software process modelling technology and finally section 5 presents some concluding remarks about our work.

Background

Software Process Modelling

A software process model is an abstract representation of software development activities. Software life-cycle models such as the waterfall and V-models are examples of simple software process models that focus on the high-level activities and products involved in software development. In practice, they are too abstract to be of much practical help other than for illustrating some of the dependencies between development activities and products. Organisations will often have much more detailed software development processes documented in a quality manual or specified by a methodology. However, these representations are mainly implicit and informal and can be difficult to communicate and analyse. Software process modelling and the technology that supports it are relatively recent developments, but ones with important potential benefits (3). It supports:

understanding and communication of development processes by helping resolve ambiguities and allowing an organisation to communicate and share best practice for re-use on future projects;

assessment of processes by allowing comparative analysis of different projects and by assessing the maturity and capabilities of an organisation’s development processes;

process improvement by helping to identify problem areas and estimating the impacts of potential changes;

project planning by facilitating the development of project specific process plans to meet project specific characteristics while satisfying development standards and methodologies;

process enactment by automating portions of the development process, supporting co-operative work of the development team, and helping to collect metrics about the development process.

There are several schemes and programmes that are either explicitly addressing the need for software process modelling or at least generating interest in the topic. The UK TickIT scheme (1), a software sector specific version of ISO9001, requires people to document their software development processes. SPICE (Software Process Improvement and Capability dEtermination) (4) is an ISO backed project which aims to develop an international standard for software process capability determination. The project is drawing upon ideas from the US Software Engineering Institute’s Capability Maturity Model (CMM) (5) and the UK TickIT scheme. In the US, ARPA (Advanced Research Projects Agency) is sponsoring the STARS (Software Technology for Adaptable, Reliable Systems) (6) programme. STARS is focused on improving the way software is developed within the US DoD. One of its aims is to accelerate the transition to a process-driven, technology supported software development paradigm.

Process Ontologies

We have based our process modelling framework on an ontology or vocabulary for modelling a domain, i.e., the objects, concepts, and other entities and the relationships that hold among them. The objective of defining ontologies, a trend that has recently emerged within the knowledge based technologies community, is to produce a representation independent description of the important concepts within a domain that can be used to support a shared understanding between a community of tools and/or people (ontologies play a similar role to conceptual data-schemas in the database community). Such representations are amenable to a wide range of uses, rather than being optimised for a specific purpose, such as process enactment (3). The content of our process modelling ontology has been influenced by other process modelling work at AIAI, including the Enterprise ontology (7), the Enterprise Process Modelling Language and the O-Plan ontology (8). The most influential piece of external work has been Zachman’s Information Framework (9), which provides a comprehensive set of perspectives and characteristics for analysing the contents and roles of software analysis and design artifacts. Examples of other process modelling work which we share some similarities with include, the Process Interchange Format (PIF) (10), the software process modelling work at the Informatics Process Group of Manchester University (11), method modelling work (12) and (13), and projects within the US ARPA sponsored STARS programme which are developing methods and software technologies to support process-driven software projects.

ASPEN Modelling Framework And Support Tool

This section describes the ASPEN modelling framework and software tool for assessing software development processes. ASPEN is currently being implemented using CLIPS (14), a software environment that combines rule-based and object-oriented programming, and HARDY (15) a hypertext diagramming tool. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows. A diagram of the conceptual architecture is shown in Figure 1. The following sections describe the components of the architecture in more detail.

� EMBED Word.Picture.6 ���

Figure 1: The ASPEN Tool Conceptual Architecture

Software Process Modelling Ontology

The software process modelling ontology is the underlying vocabulary for the development process and all software engineering knowledge bases. The three major categories of concepts in our ontology are artifacts, activities and agents; agents are required to enact the activities that produce the artifacts. The following sections describe these concepts in more detail.

Artifacts

A project artifact, see Figure 2, could, for example, be a list of requirements, a case-tool graphic or some software code. There are four major artifact types: technical, quality, safety and management. These can be further subcategorised, for example, quality artifacts have verification and validation subtypes. Artifacts are produced for a reason and hence have a rationale, which influences what information is represented and how it is represented. Artifacts have dependencies, e.g., a software source code module will usually be dependent on the relevant design specifications and coding standards and the source code should not be produced without these documents already in existence. An artifact may undergo many modifications before it is completed. Each significant (significance is usually defined within the context of a specific project) modification will result in a new version number being assigned and must be subject to some form of configuration management. An artifact has associated quality criteria against which it is reviewed. The ontology has explicit representations for the information contained in artifacts. Information can be represented using textual, graphical, audio or video notations and can be stored in a number of different media and with different degrees of formality. This explicit representation is also used in methods and standards and allows artifacts to be defined in terms of development methods and to be directly compared with the contents of standards.

� EMBED Word.Picture.6 ���

Figure 2: Project Artifact Model

Activities

Project artifacts are produced by complex processes consisting of many interdependent activities. Inputs to these activities are also artifacts, although they need not necessarily have been produced during the project. Quality and safety processes are carried out to ensure that the transformation of information is complete and correct. Activities can be of different types, e.g. requirements elicitation, design, etc., and are carried out using some implicit or explicit methodology and may be constrained to conform to standards and guidelines. All activities require and consume resources, which may include time, capital, materials, infrastructure. Various conditions (pre-conditions and post-conditions) must be satisfied before an activity commences or is complete and activities have quality criteria against which they are measured.

Agents

Agents are responsible for carrying out activities. There are two principal types of agents, human and computer programs, with different characteristics and suitable for carrying out different types of activities, for example, computer agents are suitable for carrying out formal transformations on information, while human agents are more suitable for carrying out informal reviews or inspections. Of course, it is not always as simple as this; human agents, apart from the rather fuzzy nature of some of the activities that they carry out, are prone to errors and are influenced by the environment within which they operate. Agents have roles that define their responsibilities and must have some capability or expertise in order to carry out their required activity. In a software agent this is pre-programmed expertise and it is relatively easy to measure this against the skills required to carry out an activity. However, with human agents this is much more complicated; motivation, quality of training and experience can influence their performance and quality of their work. Human agents usually work as part of a team, which in turn form part of an organisation. Teams and organisations have a structure and communications links. An organisation’s and team’s culture and morale can influence the quality of the software product. These are difficult attributes to quantify and it is also very difficult to measure their impact on the quality of the resultant artifact.

 Current Process Model

The current process model is an explicit representation of the development project. This model contains specifications for the artifacts that are to be produced, the activities that produce them and the agents who carry out the activities.

Software Engineering Knowledge

The software engineering knowledge bases facilitate the construction and assessment of a process model. These knowledge bases include knowledge of the requirements of particular application domains, best practice engineering knowledge, characteristics of available methods and the contents of standards. The following sections describe these knowledge bases in more detail.

Application Knowledge

The application domain affects factors such as type of processing, e.g., real-time or otherwise, which in turn influences development issues including method suitability and type of testing. The domain also determines the type of and criticality level of the risk associated with system failure, e.g., economic loss, loss of human life, etc. The characteristics of the risk determine the safety criteria for the system. The derivation of these criteria also varies from application to application and is influenced by national and international laws, licensing authorities, etc. A criticality analysis translates these criteria into safety criteria for the software component, which in turn influence the suitability of verification & validation and safety analysis methods.

Best Practice Knowledge

Software engineering has evolved a set of best practices for developing software over the decades. Sometimes best practices are compiled into the requirements of in-house and external standards, e.g., the use of formal methods for safety-critical applications or inspections by personnel independent of the development team. Other practices form “folk-knowledge”, which can be industry wide or local to a company or project.

Methods Knowledge

A method can be thought of as a procedure for doing something (16), and can be characterised by the type of information or concepts that can be represented, the representation syntax and the ‘transformation’ procedure. Concepts and syntax largely determine the suitability of a method for a particular task. For example, a method’s ability to represent timing concepts would be important in assessing its’ suitability for real-time applications. Most development methods do not cover the entire software lifecycle and projects may use more than one method and/or extend existing methods. It is therefore important that a process modelling framework can model multi-method projects. The approach adopted in ASPEN is to represent methods using the same vocabulary as the information models developed during a software project. In this way the integration of a number of methods can be modelled. In addition, a method's capability to represent specific types of information, e.g., entities in a design specification, can be quantified, using a similar approach to feature analysis (17) and a methods’ suitability for a specific project can therefore be evaluated.

Guidelines & Standards

Laws, regulations, standards and company procedures contain requirements on the process or product. A number of representation formalisms are used and have been proposed to represent standards and guidelines (18). In ASPEN these standards are represented as constraints on the development processes and can be used to analyse the actual development process for compliance. DEF-STAN 00-56 (19), for example, specifies that a Safety Programme Plan must be created at project initiation; that a Project Safety Engineer and a Project Safety Committee must be appointed; and that the roles and qualifications of these personnel are defined. These constraints relate directly to the basic elements of the ASPEN modelling framework, i.e., products, activities, and agents. Information that cannot be easily represented using the modelling vocabulary, e.g., rationale and recommendations is represented as hypertext.

Task Knowledge

Task knowledge refers to the tasks required to meet the objectives of the users of the process model. There are two broad categories of tasks that need to be considered: process assessment and process configuration. Assessment is concerned with the efficiency and effectiveness of a process; configuration concerns the creation of a process model that is both efficient and effective. Efficiency measures the value of the outputs against the value of the resources consumed. This information is useful for measuring and predicting productivity and progress. Effectiveness measures how well the actual process satisfies its objectives. Currently, we are focusing on assessment of conformance to standards and the effectiveness of the development processes.

Visualisation

Editors/viewers are provided for describing and visualising the current development process and the software engineering knowledge bases. Different users will require different “views” on the process model. Presenting a number of different views can help increase understanding and can be used to check the consistency and correctness of the process. These views are also useful when constructing or refining the model. ASPEN has form-based editors for each of the major process elements and a graphical tree-diagram visualiser. These editors are also the means by which the process model is defined. Figure 3 shows examples of graphical and form-based editor/viewers for the development process. Editors are also provided for marking up standards, in a hypertext format and creating explicit links with the elements of the software process modelling ontology. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints. A methods editor supports the construction of the various components of methods.

� EMBED Word.Picture.6 ���

Figure 3: Graphical and form-based editors

Reporting Output

ASPEN can generate assessment reports in a number of formats including Windows Help, Microsoft Word and Postscript. Currently output reports are limited to conformance to standards and an evaluation of the development methods used. Figure 4 shows an example of an assessment report in Windows Help.

� EMBED Word.Picture.6 ���

Figure 4: Example assessment report in Windows Help

Potential Applications For Process Modelling Technology

Introduction

Software process modelling technology has many potential applications that range from support for planning to actual enactment of processes. This is a relatively new technology and much of its potential has yet to be exploited. The following sections briefly describe a number of application areas where software process modelling can provide many important benefits.

Guidelines & Standards

Many parts of software development standards can be expressed as a combination of abstract process models, process model fragments and constraints on acceptable process models. During the development of standards these models can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. These models can then be used to supplement the conventional textual descriptions, in order to assist the users in understanding the standards. For example, the US Software Engineering Institute have converted the IEEE Project Management and Configuration Management Process standards into structured models and diagrams using the Design/IDEF tool. Combining process modelling technology with Expertext technology (20), could provide further support for the developers and users of standards. Expertext combines expert systems and hypertext technologies and can be used to explicitly represent the semantic structure of documents and relate the textual descriptions to the process models.

Project Planning

The development and maintenance of a project plan for a software development project is a complex activity. Current project planning tools provide little more than task scheduling functionality. Project planning tools that contain explicit representations of knowledge of relevant standards, methods and best practice would provide significantly greater support for creating and refining a software development plan. The tools could contain libraries of process models and process model fragments, which could be used to configure appropriate process plans while knowledge-based support within the tool ensures compliance with relevant standards. The tools could also support incremental planning of the project as it is impractical to define an entire project in detail prior to its commencement. It would be also be useful to integrate these planning tools with enactment systems which support the software development. This would allow the project planning tools to monitor progress on the project automatically and assist with plan refinement and re-planning when required.

Software Procurement

When procuring a new system it is important to assess the software process capabilities (the level of maturity of their software planning, analysis, design, testing etc. practices and processes) of the software supplier. Tools could be developed to help the procurer derive the required or desirable capabilities from the characteristics of the system, for example, its size, complexity, level of safety-criticality, novelty, whether it is real-time or not, delivery language, etc. There is also the possibility of suppliers using tools to assess their own software process capabilities in order to determine what types of system they can currently supply and which areas to focus on improving. Knowledge-based process analysis tools could be developed to help auditors and assessors who are comparing an organisation’s generic development processes, or a specific project, against standards. In due course it would be hoped that standard interchange representations for software process models could be established, such that external auditors could take a copy of an organisation’s software process models and analyse them using their own tools.

Software Development

Software process modelling technology can provide support to software engineers through the use of process driven integrated project support environments (IPSEs). IPSEs can use an explicit model of the development process to help co-ordinate activities amongst developers and can use the model to identify steps that can be automated. This is the same type of technology as used on the workflow systems that automate other business processes. If the process models are sufficiently rich to include details of the rationale and purpose behind the process plan then the enactment tools could use this knowledge to provide explanations of the process when queried by the software developers and to support intelligent re-planning of the process when problems occur.

Quality and Process Management

There is a growing interest in tools that support the capture, representation and gradual refinement of models of an organisation’s software processes, especially in the light of schemes like TickIT and SPICE. These explicit models can be used to help discover and resolve ambiguities, inconsistencies and gaps in the development processes. Visualisation tools can present the models in a number of different graphical and textual notations suitable for training and are also helpful in identifying areas for improvement. Knowledge-based tools can analyse the software process models, for example, comparing them against standards or best practice, or assessing their maturity according to standards such as the Capability Maturity Model or SPICE. On the basis of the analyses, areas requiring improvement can be identified and prioritised. Potential changes to the processes can be modelled in order to understand the impact of improvements, or the impacts of adoption of new methods and tools.

Concluding Remarks

Software development is one of the most complex processes found in today’s organisations. Process modelling makes development processes explicit and facilities the understanding and communication of the development process to developers, auditors and project managers. This technology also facilitates assessment of existing processes and improvement in the way that software is developed. Advanced software process modelling technology can be used in applications to support software standards development, software procurement, software quality management, software project management and software development. We are likely to see a paradigm shift in software engineering over the next few years as organisations learn to engineer their own development processes. However, tool support is essential for process modelling given the size and complexity of software development processes.

We have developed a software process modelling framework and support tool. The modelling framework is based on an ontology that includes, artifacts, agents, activities and methods. Our main focus has been to establish an ontology (vocabulary) rather than concerning ourselves unduly with the details of the specific representation formalism. Standards can also be represented, using the framework, as constraints on the development process. The ASPEN support tool provides facilities for the assessment of the effectiveness of the development process by considering a wide range of criteria, including suitability of the methods used, suitability of personnel and conformance to standards. ASPEN will provide support for auditors/assessors in evaluating processes. It also enables a proposed process to be assessed, and re-designed if necessary, before actually embarking on the project and hence will be useful to project managers in planning projects.

Acknowledgements

This work has been carried out as part of the JFIT Safety Critical Systems Research Programme supported by EPSRC grant number GR/J18378 in collaboration with Loughborough University.

References

TickIT: A Guide to Software QMS Construction using ISO 9001/EN 29001/BS 5750 Part 1 (1987). 2.0 edition, February 1992.

Doheny and I. M. Filby. A Framework for Modelling Software Development Processes. In M. Bray, M. Ross and G. Staples, editors, Proceedings of Software Quality Management IV, pages 533-545. April 1996

Bill Curtis, Marc I. Kellner, and Jim Over. Process modelling. Communication of the ACM, 35(9), September 1992.

SPICE Project. SPICE The Reference Framework. WEB Page URL: http://www.esi.es/Projects/ spice.html. European Software Institute, Bilbao, 1996.

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis and Charles V. Weber. The Capability Maturity Model for Software, Version 1.1. Technical Report CMU/SEI-93-TR-24, Software Engineering Institute, CMU, 1993.

Bob Munck, Paul Orgren, and Beth Perry. ARPA STARS PROGRAM. WEB Page URL: http://www.stars.ballston.paramax.com/index.html, Unisys, Reston, VA, USA, February 1995.

Mike Uschold and Martin King. Towards a Methodology for Building Ontologies. Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, September 1995.

Austin Tate. A Plan Ontology - a Working Document. In Proceedings of the Workshop on Ontology Development and Use. Cambridge University Press, Nov 1994.

Sowa and J. A. Zachman. Extending And Formalising The Framework For Information Systems Architecture. IBM Systems, 31(3):590-616, 1992.

Jintae Lee and Gregg Yost. The process interchange format and framework. Technical Report Working Paper 180, (http://www-sloan.mit.edu/CCS/pifmain.html), The Center for Coordination Science (CCS), Massachusetts Institute of Technology, Massachusetts, December 1994.

Warboys and R. A. Snowdon. An introduction to process-centered environments. In A. Finklestein, J. Kramer, and B. Nuseibeh, editors, Software Process Modelling and Technology, Advanced Software Development Series. Research Studies Press, 1994.

Beringer. The model architecture frame: quality management in a multi method environment. In Software Quality Management III, Third International Conference on Software Quality, Seville, Spain, April 1995. Computation Mechanics.

Harris-Jones, T. Barrett, T. Walker, T. Moores, and J. Edwards. A Methods Model for the Integration of KBS and Conventional Information Technology. In M.A. Bramer and R.W. Milne, editors, Proceedings of Expert Systems 92, pages 25-42. Cambridge University Press, Dec 1992.

Joseph C. Giarratano. CLIPS User Guide. NASA, Lyndon B. Johnson Space Center, May 1993.

Julian Smart. HARDY 1.20 User Manual. AIAI, April 1994.

Richard J. Mayer, Capt. M. K. Painter and Paula S. deWitte. IDEF Family of Methods for Concurrent Engineering and Business Re-engineering Applications. IED/4/2160 SMARTIE technical reports, 1992.

Law. DESMET Methodology: Specification of Requirements and Architecture. Technical report, National Computing Centre, 1992.

Paul Wai Hing Chung and David Stone. Approaches to representing and reasoning with technical regulatory information. The Knowledge Engineering Review, 9(2):147-162, 1994.

Directorate of Standardisation. Defence standard 00-56. Technical report, Ministry of Defence, Kentigern House, 65 Brown Street, Glasgow, 1993.

Andrew Casson. PLINTH: Integrating Hypertext, Semantic Nets and Rule-Based Systems in an Expertext Shell for Authors and Readers of Regulatory Documents. In J. Mayfield and C. Nicholas, editors, Proceedings of Workshop on Intelligent Hypertext. Arlington, VA, Nov. 1993.

AIAI-TR-204		A Framework and Tool for Modelling and Assessing Software Development Processes

�PAGE �

�PAGE �8�

This paper was presented at the The European Software Control and Metrics Conference in Wilmslow, May 1996.

Artificial Intelligence Applications Institute

The University of Edinburgh

80 South Bridge

EDINBURGH EH1 1HN

United Kingdom

(The University of Edinburgh, 1996

