

Modelling Software Development

 Processes and Standards

J. G. Doheny and I. M. Filby

AIAI-TR-205

August 1996

���Modelling Software Development Processes and Standards

J. G. Doheny and I. M. Filby,

Artificial Intelligence Applications Institute (AIAI),

The University of Edinburgh,

80 South Bridge,

Edinburgh EH1 1HN

Tel. +44 131 650 2732

Fax +44 131 650 6513

Abstract. In this paper we describe a conceptual framework and associated support tool, which we have developed for modelling and assessing software development processes and standards. We believe that this technology will play an important role in assisting project managers to plan projects such that the software development processes meet quality assurance requirements. Software process modelling can also assist project auditors and others in assessing a development process. In addition to using our process modelling framework to represent specific software development projects, we are also using the framework to model in an explicit form the contents of software development standards and quality procedures. Software development standards and procedures contain provisions for activities, methods or artifacts; they are effectively fragments of development processes or constraints on the development process. A support tool, ASPEN (A Software Process ENgineering tool), is being developed which provides support for project auditors in evaluating existing projects and for project managers in planning new projects. Development processes are assessed using knowledge bases of development methods, technical standards and engineering “best practice”. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows.

Introduction

The software development process is usually represented informally in the form of standards, guidelines and quality manuals. These informal representations can be ambiguous, inconsistent, and difficult to communicate and analyse. Process modelling involves explicitly modelling the various activities, artifacts, methods and personnel on a project and can provide support to project managers, quality managers, software developers and project auditors. We have developed a conceptual framework and associated support tool for modelling and assessing software development processes. Our process modelling framework is based on a process ontology (vocabulary) that incorporates software project artifacts (e.g. design specifications and code), methods, activities and the agents (people or computer programs) that carry out these activities. It includes a rich information modelling taxonomy that supports the classification of project artifacts, by relating the project artifacts to the things in the “real world” which they represent. Software development standards and procedures contain requirements for activities, methods or artifacts; they are effectively fragments of development processes or constraints on the development process. ASPEN represents the contents of standards using similar ontological constructs as those for representing development processes and by linking these directly to a complementary hypertextual representation.

A support tool, called ASPEN (A Software Process ENgineering tool), is being developed which provides support for project auditors in evaluating existing projects and for managers in planning new projects. Development processes are assessed using knowledge bases of methods, technical standards and engineering “best practice”. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows.

This paper is structured as follows: section 2 discusses background issues in the representation of standards and in process modelling. The ASPEN process modelling ontology and its application to modelling of the software process and of standards is described in section 3. Section 4 describes the ASPEN tool and example output. Finally section 5 presents some concluding remarks.

Background

Software development processes are usually defined informally in standards, guidelines and quality manuals. These are documented in the form of paper based manuals, books, etc., and occasionally in an on-line form. These documents are very often difficult to interpret and difficult to read and it is often difficult to find information relevant to a project. Hypertext systems (Conklin, 1987; Nielsen, 1990) support the representation of documents as a network of interlinked text sections, or nodes; the user can move around the network freely by activating the links in any order. Hypertext provides the reader with a natural and powerful interface to on-line documents. However, hypertext systems do not represent explicitly the semantics of the textual/graphical content of documents. The contents of standards and company procedures contain requirements on the final product and on the processes for developing the product. For example, DEF-STAN 00-56 (MOD, 1993), a standard for the development of safety critical software, specifies that a Safety Programme Plan must be created at project initiation; that a Project Safety Committee must be appointed; and that the roles and qualifications of these personnel are defined. These requirements can be thought of as partial processes or constraints on the development process. Software process modelling involves explicitly describing software development processes. Explicit representations facilitate improved understanding and communication of the process among project personnel, clients and auditors. During the development of standards explicit models of structure and content can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. These models can then be used to supplement the conventional textual descriptions, in order to assist the users in understanding the standards. For example, the US Software Engineering Institute has converted the IEEE Project Management and Configuration Management Process standards into structured models and diagrams using the Design/IDEF tool. The two technologies of hypertext and process modelling are combined in the ASPEN modelling framework to represent the software process and development standards.

Representing Software Processes & Standards

This section describes how the software process and standards are represented using the ASPEN process modelling framework.

Software Process

The software development process consists of many interdependent activities, including technical development, project management, quality assurance and customer support. Personnel carry out these activities, according to an appropriate method, and produce artifacts, e.g., design specifications. Software process modelling involves explicitly modelling these activities, artifacts, methods and personnel. The ASPEN modelling framework (Doheny and Filby, 1996) is based on an ontology, i.e., the objects, concepts, and other entities in a domain and the relationships that hold among them. The objective of defining an ontology is to produce a representation independent description of the important concepts within a domain; this description can be used to support a shared understanding between a community of tools and/or people. Such representations are amenable to a wide range of uses, rather than being optimised for a specific purpose, such as process enactment (Curtis, Kellner and Over, 1992). Our process modelling ontology has been influenced by other work at AIAI, including the Enterprise ontology (Uschold and King, 1995), and the O-Plan ontology (Tate, 1994). The most influential piece of external work has been Zachman’s Information Framework (Sowa and Zachman, 1992), which provides a comprehensive set of perspectives and characteristics for analysing the contents of information models. Other process modelling work which we share some similarities with includes, the Process Interchange Format (PIF) (Lee and Yost, 1994), the software process modelling work at the Informatics Process Group of Manchester University (Warboys and Snowdon, 1994), method modelling work (Beringer, 1995; Harris-Jones, et al., 1992), and projects within the US ARPA sponsored STARS programme (Munck, et al., 1995) which are developing methods and software technologies to support process-driven software projects. The three major categories of concepts in our ontology are artifact, activity and agent, see Doheny & Filby (1996) for a more detailed description.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�: Project artifact model

Artifact. Artifacts (see Figure 1) include project documents, such as software requirements and design specifications, and also the actual software. The contents of artifacts are explicitly described using a detailed information framework, which relates things in the real world to representations of these things in an information system. This explicit representation is also used to model methods and standards; this allows artifacts to be defined in terms of development methods and to be directly compared with the contents of standards. Artifacts can be classified as: technical, quality, safety or management. Artifacts are produced for a reason and hence have a rationale, which influences what information is represented and how it is represented.

Activity. Activities transform input artifacts into output artifacts; an activity is effectively defined by its inputs and outputs. Activities require and consume resources, which may include time, capital and materials. Activities can be classified into different types e.g. requirements elicitation, design, etc.; each is carried out using some methodology and may be constrained to conform to standards and guidelines. Quality and safety processes are carried out to ensure that the transformation of information is complete and correct.

Agents. Agents carry out activities. Agents have roles that define their responsibilities and must have some capability or expertise in order to carry out their required activity. There are two principal types, people and computer programs; each have different characteristics and are suitable for different types of activities. People usually work in teams, which have a structure and communications links. An organisation’s and team’s culture and morale can influence the quality of the software product. However, these are difficult attributes to quantify and it is also very difficult to measure their impact on the quality of the resultant artifact.

Representation of Standards

Standards and company procedures contain requirements on the process or product, which can be translated to constraints on the composition of the software development model, for example: constraints on products and their contents, e.g., the existence of a hazard log and the data to be recorded for each hazard; specification of product quality attributes; existence of project activities, e.g. Safety Analysis; use of specific methods, e.g. Preliminary Hazard Analysis; existence of specific agents, e.g. Project Safety Engineer; constraints on agent attributes, e.g. experience and training.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �2�: Representation of standards in ASPEN

ASPEN represents the contents of standards using an extension of the notation used to represent development processes; this extension includes Rationale and Explanation. Rationale represents the objective of the specific constraint or clause. An explicit representation of rationale is especially important where the clause is optional or recommended. It allows project engineers and auditors to assess whether a project has conformed to the “spirit” of the standard, if not exactly to the “letter”. Explanation for the concepts included in the clause includes background information and is provided for the benefit of users to help increase their understanding of standards. Figure 2 illustrates parts of DEF-STAN-00-56 represented using ASPEN.

However, the process modelling framework is limited in expressiveness compared with text and diagrams. This is also true of other techniques used to represent the contents of standards (Chung and Stone, 1994). A number of representation formalisms are used and have been proposed to represent standards and guidelines (18). Requirements like “adequate means” and “sufficient provision” are difficult to represent formally and are better expressed in clear, concise language, which is quite easy to understand and which can be interpreted by the reader or user of the standard. This is also true of concepts such as rationale and explanation. In ASPEN this knowledge is represented using hypertextual descriptions, which are linked to the elements of the process representation. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints.

ASPEN Support Tool

This section describes the ASPEN tool for assessing the software process. ASPEN is being implemented using CLIPS (Giarratano, 1993), a software environment combining rule-based and object-oriented programming, and HARDY (Smart, 1994) a hypertext diagramming tool. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows. A diagram of the conceptual architecture is shown in Figure 3. The following sections describe the components of the architecture in more detail.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �3�: The ASPEN tool conceptual architecture

Software Process Modelling Ontology

The software process modelling ontology (see section 3) is the underlying vocabulary for the development process and all of the software engineering knowledge bases.

 Current Process Model

The current process model is an explicit representation of the development project. An example of a representation of part of a project is show in Figure 4. This model contains specifications for the artifacts that are to be produced, the activities that produce them and the agents who carry out the activities.

Software Engineering Knowledge Bases

The software engineering knowledge bases facilitate the construction and assessment of a process model. These knowledge bases include the requirements of particular application domains, best practice engineering knowledge, characteristics of available methods and the contents of standards.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �4�: Representation of the current process

Best Practice Knowledge. Software engineering has, over the decades, evolved a set of best practices for developing software. Sometimes best practices are compiled into the requirements of in-house and external standards, e.g., the use of formal methods for safety-critical applications or inspections by personnel independent of the development team. Other practices form “folk-knowledge”, which can be industry- wide or local to a company or project.

Application Knowledge. Different application domains place different requirements and constraints on the development process. For example, real-time applications place specific requirements on the type of development methods used and on the type of and coverage of quality assurance. The type of safety critical domain influences the criticality level of the risk associated with system failure, e.g., economic loss, loss of human life, etc., which in turn determines the safety criteria for the system. The derivation of safety and quality criteria varies from application to application and is also influenced by national and international laws, licensing authorities, etc.

Methods Knowledge. A method can be characterised by the type of concepts that can be represented, the representation syntax and the “transformation” procedure (Mayer, et al., 1992). Concepts and syntax largely determine a method’s suitability, e.g., a method’s ability to represent timing concepts is important in assessing its suitability for real-time applications. Most methods do not cover the entire software lifecycle and projects may use more than one and/or extend existing methods. It is therefore important to be able to model multi-method projects. ASPEN represents methods using the same vocabulary as the information models developed during a software project and can therefore model the integration of a number of methods. In addition, a method's capability to represent specific types of information, e.g., entities in a design specification, can be quantified, using a similar approach to feature analysis (Law, 1992) and a method’s suitability for a specific project can therefore be evaluated.

Guidelines & Standards. As described in Section 4, ASPEN represents guidelines and standards using a combination of hypertext and process modelling elements. ASPEN supports “marking up” of standards, i.e., creating explicit links between hypertext blocks and the basic elements of the software process model. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints. ASPEN supports navigation of these links between the hypermedia and process-oriented representations, see Figure 5.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �5�: “Marking-up” the hypertextual representation of standards

Task Knowledge

Process Assessment. Task knowledge refers to the tasks required to meet the objectives of the users of the process model. There are two broad categories of tasks: process assessment and process configuration. Assessment is concerned with the efficiency and effectiveness of a process; configuration is concerned with the creation of a process model that is both efficient and effective. Efficiency measures the value of the outputs against the value of the resources consumed. This information is useful for measuring and predicting productivity and progress. Effectiveness measures how well the actual process satisfies its objectives. Currently, we are focusing on assessment of conformance to standards and the effectiveness of the development processes. An example of an analysis of a project for conformance to a standard is shown in Figure 6.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6�: Example analysis of conformance to standards

Process Configuration. Process configuration currently lies outside the scope of the current ASPEN system. Configuring a process model for software development that satisfies project requirements requires the same technology used by intelligent planning systems (Tate, et al., 1994). It also requires knowledge about assessment in order to critique the evolving “plan” or model.

Concluding Remarks

The combination of the ASPEN framework and hypertext has proved to be very useful for representing standards and quality manuals. However, there are some limitations with hypertext based interfaces: they are not always effective or easy to use and even in moderately large documents readers can experience problems of disorientation and digression. Most documents have sections and sub-sections that can be classified as introduction, rationale, etc. These roles can be made explicit, so that, for example, the rationale for a particular clause can be identified even if it is included as part of the introduction or in a sub-section titled “Foreword”. Links between sections can also be made explicit, for example, a section describing personnels’ required characteristics can be linked to the activities for which they are responsible. Hypertext does not model explicitly the semantics of these sections and links.

Expertext combines expert systems and hypertext and can represent explicitly the semantic structure of documents, the role of nodes and the relations between them. The expert system can then make inferences based on the semantics of the hypertext, i.e., the hypertext data, and not some auxiliary repository, is the actual knowledge base. An example of an expertext system is PLINTH (Casson, 1993) developed at AIAI. PLINTH integrates hypertext, expert systems and semantic nets to provide tools and intelligent support for the authors and readers of technical documents. Authors can assign types and slots to nodes and links to mark their function and relations in the network. PLINTH then supports this augmented hypertext with rule-based navigation, which interactively computes a customised path through the document for the reader.

Our future plans are to combine expertext and process modelling and provide a more powerful representation of standards than is currently provided. Expertext focuses on ensuring the effective and efficient use of a document, while the ASPEN modelling framework represents the contents of nodes. Information that is not suitable for representation using the ASPEN modelling framework can be represented in hypertext and presented to the user for interpretation.

This paper has focused on how ASPEN can provide support for modelling software development processes and standards. Authors of standards and procedures would benefit by explicit document structuring and information representation. During development these explicit representations can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. Users of standards would also benefit: with knowledge of node and link meanings it is possible to tailor the presentation of information to readers and to reduce information overload. Specific categories of information can be presented and the relationships between information items can be used to tailor the level of detail presented to the reader.

REFERENCES

Beringer, B. 1995. The model architecture frame: quality management in a multi method environment. In Software Quality Management III, Proceedings of the Third International Conference on Software Quality, Seville, Spain, April 1995. Computation Mechanics.

Casson, A. 1993. PLINTH: Integrating Hypertext, Semantic Nets and Rule-Based Systems in an Expertext Shell for Authors and Readers of Regulatory Documents. In Proceedings of Workshop on Intelligent Hypertext, Arlington, VA, November 1993. edited by J. Mayfield and C. Nicholas.

Chung, P.W.H. and Stone, D. 1994. Approaches to representing and reasoning with technical regulatory information. The Knowledge Engineering Review, 9(2):147-162.

Conklin, J. 1987. A survey of Hypertext. MCC Technical Report STP-356-86, Austin, Texas, December 1987.

Curtis, B. and Kellner, M.I. and Over, J. 1992. Process modelling. Communications of the ACM, 35(9): September 1992.

Doheny, J.G. and Filby, I.M. 1996. A Framework for Modelling Software Development Processes. In Proceedings of Software Quality Management IV, Cambridge, April 1996, edited by M. Bray, M. Ross and G. Staples, pages 533-545.

Giarratano, Joseph C. 1993. CLIPS User Guide. NASA, Lyndon B. Johnson Space Center, May 1993.

Harris-Jones, C. and Barrett, T. and Walker, T. and Moores, T. and Edwards, J. 1992. A Methods Model for the Integration of KBS and Conventional Information Technology. In Proceedings of Expert Systems 92, December 1992. edited by M.A. Bramer and R.W. Milne. Cambridge University Press, pages 25-42.

Law, D. 1992. DESMET Methodology: Specification of Requirements and Architecture. Technical report, National Computing Centre.

Lee, J. and Yost, G. 1994. The process interchange format and framework. Technical Report Working Paper 180, (http://www-sloan.mit.edu/CCS/pifmain.html), The Center for Coordination Science (CCS), Massachusetts Institute of Technology, Massachusetts, December 1994.

Mayer, R.J. and Painter, Capt. M. K. and deWitte, P.S. 1992. IDEF Family of Methods for Concurrent Engineering and Business Re-engineering Applications. IED/4/2160 SMARTIE technical reports.

MOD. 1993. Defence Standard 00-56. Technical report. Directorate of Standardisation, Ministry of Defence, Kentigern House, 65 Brown Street, Glasgow.

Munck, B. and Orgren, P. and Perry, B. 1995. ARPA STARS PROGRAM. WEB Page URL: http://www.stars.ballston.paramax.com/index.html, Unisys, Reston, VA, USA, February 1995.

Nielsen, J. 1990. The art of navigating through hypertext. In Communication of the ACM, (33,3).

Smart, Julian. 1994. HARDY 1.20 User Manual. AIAI, April 1994.

Sowa, J.F. and Zachman, J.A. 1992. Extending And Formalising The Framework For Information Systems Architecture. IBM Systems, 31(3): pages 590-616.

Tate, A. 1994. O-Plan Ontology - A Working Document. In Proceedings of the Workshop on Ontology Development and Use. Cambridge University Press, November 1994.

Tate, A. and Drabble, B. and Kirby, R. 1994. O-Plan2: An Architecture for Command, Planning and Control. In Intelligent Scheduling, edited by M. Fox and M. Zweben. Morgan Kaufmann.

Uschold, M. and King, M. 1995. Towards a Methodology for Building Ontologies. Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, September 1995.

Warboys, B.C. and Snowdon, R.A. 1994. An introduction to process-centered environments. In Software Process Modelling and Technology, edited by A. Finklestein, J. Kramer, and B. Nuseibeh, Advanced Software Development Series. Research Studies Press.

AIAI-TR-205		Modelling Software Development Processes and Standards

						

�PAGE �10�

�PAGE �10�

Artificial Intelligence Applications Institute

The University of Edinburgh

80 South Bridge

EDINBURGH EH1 1HN

United Kingdom

(The University of Edinburgh, 1996

This paper was presented at The Software Quality Conference in Dundee, July 1996.

