

The ASPEN Toolkit For Modelling And Assessing

The Software Development Process

J. G. Doheny and I. M. Filby

AIAI-PR-65

August 1996

�

�

�Executive Summary

The development of software is a complex process consisting of many interdependent activities, including technical development, project management, quality assurance, and customer support activities. It is one of the most complex processes that occurs in modern organisations. Most development projects do not explicitly design a process for the production of software; it is usually implicit in the development lifecycle, development methodology, or project procedures. However, these informal representations can be difficult to communicate and analyse. Software process modelling involves explicitly describing software development processes, which may be used to facilitate understanding and communication of the development process amongst clients, auditors, safety assessors, etc.

We have developed a conceptual framework and support tool for modelling software development processes. Our process modelling framework includes a representation independent vocabulary for describing the semantic content of our process models. Our framework is based on an explicit and declarative process representation using AI modelling techniques. Such representations are amenable to a wide range of uses, rather than being optimised for a specific purpose, such as process enactment. Development processes are assessed using knowledge of development methods, technical standards and engineering “best practice”. The ASPEN support tool provides support for project auditors/assessors in evaluating existing processes and for project managers in constructing process models.

Our future plans are to combine expertext and process modelling technologies to support a more powerful representations of development standards than is currently possible. Expertext focuses on ensuring the effective and efficient use of a document, while the ASPEN modelling framework represents it’s informational content. Information that is not suitable for representation using the ASPEN modelling framework can be represented in hypertext and presented to the user for interpretation.

Potential users of ASPEN include project managers, technical managers, project auditors and authors of standards. ASPEN can be used on both non-safety and safety critical/related projects and provides support for project auditors/assessors in evaluating existing projects and for project managers in planning new development projects. Authors and users of standards and procedures would benefit by explicit document structuring and information representation. During development these explicit representations can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. Users of standards would also benefit: with explicit knowledge of document structure it is possible to tailor the presentation of information to readers and to reduce information overload. Specific categories of information can be presented and the relationships between information items can be used to tailor the level of detail presented to the reader.�Contents

� TOC * MERGEFORMAT �1. Introduction	� GOTOBUTTON _Toc359992708 � PAGEREF _Toc359992708 �1��

2. Background	� GOTOBUTTON _Toc359992709 � PAGEREF _Toc359992709 �1��

2.1 Software Process Modelling	� GOTOBUTTON _Toc359992710 � PAGEREF _Toc359992710 �1��

2.2 Process Modelling Ontologies	� GOTOBUTTON _Toc359992711 � PAGEREF _Toc359992711 �2��

2.3 Representation of Standards	� GOTOBUTTON _Toc359992712 � PAGEREF _Toc359992712 �3��

3. ASPEN Software Process Ontology	� GOTOBUTTON _Toc359992713 � PAGEREF _Toc359992713 �3��

3.1 Project Artifact	� GOTOBUTTON _Toc359992714 � PAGEREF _Toc359992714 �3��

3.1.1 Information Models	� GOTOBUTTON _Toc359992715 � PAGEREF _Toc359992715 �4��

3.1.2 Information Concepts	� GOTOBUTTON _Toc359992716 � PAGEREF _Toc359992716 �5��

3.1.3 Information Representation	� GOTOBUTTON _Toc359992717 � PAGEREF _Toc359992717 �6��

3.2 Activity Model	� GOTOBUTTON _Toc359992718 � PAGEREF _Toc359992718 �6��

3.3 Agent Model	� GOTOBUTTON _Toc359992719 � PAGEREF _Toc359992719 �7��

4. ASPEN Framework and Support Tool	� GOTOBUTTON _Toc359992720 � PAGEREF _Toc359992720 �7��

4.1 Software Process Modelling Ontology	� GOTOBUTTON _Toc359992721 � PAGEREF _Toc359992721 �8��

4.2 Current Process Model	� GOTOBUTTON _Toc359992722 � PAGEREF _Toc359992722 �8��

4.3 Software Engineering Knowledge	� GOTOBUTTON _Toc359992723 � PAGEREF _Toc359992723 �9��

4.3.1 Standards	� GOTOBUTTON _Toc359992724 � PAGEREF _Toc359992724 �9��

4.3.2 Methods	� GOTOBUTTON _Toc359992725 � PAGEREF _Toc359992725 �12��

4.3.3 Application Knowledge	� GOTOBUTTON _Toc359992726 � PAGEREF _Toc359992726 �13��

4.3.4 Best Practice Knowledge	� GOTOBUTTON _Toc359992727 � PAGEREF _Toc359992727 �13��

4.4 Task Knowledge	� GOTOBUTTON _Toc359992728 � PAGEREF _Toc359992728 �14��

4.5 Visualisation	� GOTOBUTTON _Toc359992729 � PAGEREF _Toc359992729 �14��

4.6 Reporting Output	� GOTOBUTTON _Toc359992730 � PAGEREF _Toc359992730 �15��

5. Potential Applications For Process Modelling Technology	� GOTOBUTTON _Toc359992731 � PAGEREF _Toc359992731 �16��

5.1 Introduction	� GOTOBUTTON _Toc359992732 � PAGEREF _Toc359992732 �16��

5.2 Guidelines & Standards	� GOTOBUTTON _Toc359992733 � PAGEREF _Toc359992733 �16��

5.3 Project Planning	� GOTOBUTTON _Toc359992734 � PAGEREF _Toc359992734 �16��

5.4 Software Procurement	� GOTOBUTTON _Toc359992735 � PAGEREF _Toc359992735 �16��

5.5 Software Development	� GOTOBUTTON _Toc359992736 � PAGEREF _Toc359992736 �17��

5.6 Quality and Process Management	� GOTOBUTTON _Toc359992737 � PAGEREF _Toc359992737 �17��

6. Concluding Remarks	� GOTOBUTTON _Toc359992738 � PAGEREF _Toc359992738 �17��

��Introduction

Most development projects do not explicitly design a process for the production of software; it is usually implicit in the development lifecycle, development methodology, or project procedures. However, whether explicitly designed or not an actual process does exist. Implicit processes or informal descriptions are difficult to communicate and discuss and practically impossible to analyse. Software process modelling involves explicitly describing software development processes, which may be used to facilitate understanding and communication of the development process amongst developers’ clients, auditors, safety assessors, etc. It supports the improvement of the development processes by providing support for assessment of a project before actually embarking on the plan and allowing the re-use of tested processes. Though the technology is relatively new, initiatives such as TickIT and SPICE are actively promoting a process-aware software development paradigm.

We have developed a conceptual framework for modelling software development processes. Our process modelling framework includes a representation independent vocabulary (ontology) for describing the semantic content of our process models. It can model in an explicit form the contents of software development methods, software standards and other forms of best practice software engineering knowledge. Software standards and procedures contain provisions for activities, methods or artifacts; they are effectively fragments of development processes or constraints on the development process. Our conceptual framework provides support for project auditors in evaluating existing projects and for project managers in planning new projects. Development processes are assessed using knowledge bases of development methods, technical standards and engineering “best practice”. We are evaluating our process framework within the ASPEN support tool. ASPEN is implemented using CLIPS (a hybrid Artificial Intelligence language developed at NASA) and HARDY (a programmable diagramming tool developed at AIAI). The ASPEN tool runs on UNIX platforms under MOTIF and PCs under MS Windows.

This report is structured as follows: section 2 discusses background issues in software process modelling and explains the context of our modelling framework; the ASPEN modelling framework and support tool are described in detail in section 3; potential applications of the process modelling technology are discussed in section 4; finally section 5 presents some concluding remarks.

Background

Software Process Modelling

The development of software is a complex process consisting of many interdependent activities, including technical development activities, project management activities, quality assurance activities, and customer support activities. It is one of the most complex processes that occurs in modern organisations. A software process model is an abstract representation of software development activities. Software life-cycle models such as the waterfall and V-models are examples of simple software process models that focus on the high-level activities and products involved in software development. In practice, they are too abstract to be of much practical help other than for illustrating some of the dependencies between development activities and products. Organisations will often have much more detailed software development processes documented in a quality manual or specified by a methodology. However, these representations are mainly implicit and informal and can be difficult to communicate and analyse. Software process modelling and the technology that supports it are relatively recent developments, but ones with important potential benefits (Curtis, et al., 1992). They support:

understanding and communication of development processes by helping to resolve ambiguities and allowing an organisation to communicate and share best practice for re-use on future projects;

assessment of processes by allowing comparative analysis of different projects and by assessing the maturity and capabilities of an organisation’s development processes;

process improvement by helping to identify problem areas and estimating the impacts of potential changes;

project planning by facilitating the development of project specific process plans to meet project specific characteristics while satisfying development standards and methodologies;

process enactment by automating portions of the development process, supporting co-operative work of the development team, and helping to collect metrics about the development process.

There are several schemes and programmes that are either explicitly addressing the need for software process modelling or generating interest in the topic. The UK TickIT scheme (TickIT, 1992), a software sector specific version of ISO9001, requires people to document their software development processes. SPICE (Software Process Improvement and Capability dEtermination) (SPICE, 1996), an ISO backed project, aims to develop an international standard for software process capability determination. The project is drawing upon ideas from the US Software Engineering Institute’s Capability Maturity Model (CMM) (Paulk, et al., 1993) and the UK TickIT scheme. In the US, ARPA (Advanced Research Projects Agency) is sponsoring the STARS (Software Technology for Adaptable, Reliable Systems) (Munck, et al., 1995) programme. STARS is focused on improving the way software is developed within the US DoD. One of its aims is to accelerate the transition to a process-driven, technology supported software development paradigm.

Process Modelling Ontologies

Our process modelling framework (Doheny and Filby, 1996) is based on an explicit and declarative process representation using AI modelling techniques. Such representations are amenable to a wide range of uses, rather than being optimised for a specific purpose, such as process enactment (Curtis, et al., 1992). Moreover, our main focus has been to establish an ontology (vocabulary) rather than concerning ourselves unduly with the details of the specific representation formalism. The objective of defining ontologies, a trend that has recently emerged within the knowledge based technologies community, is to produce a representation independent description of the important concepts within a domain that can be used to support a shared understanding between a community of tools and/or people (ontologies play a similar role to data-schemas in the database community).

The content of our process modelling ontology has been influenced by other process modelling work at AIAI, including the Enterprise ontology (Uschold and King, 1995), the Enterprise Process Modelling Language and the O-Plan ontology (Tate, 1994). The most influential piece of external work has been Zachman's Information Framework (Sowa and Zachman, 1992), which provides a comprehensive set of perspectives and characteristics for analysing the contents and roles of software analysis and design artifacts. Examples of other process modelling work which we share some similarities with include, the Process Interchange Format (PIF) (Lee and Yost, 1994), the software process modelling work at the Informatics Process Group of Manchester University (Warboys and Snowdon, 1994), method modelling work (Beringer, 1995) and (Harris-Jones, et al., 1992), and projects within the US ARPA sponsored STARS programme which are developing methods and software technologies to support process-driven software projects.

Representation of Standards

Standards, guidelines and quality manuals are usually documented in the form of paper based manuals, books, etc., and occasionally in an on-line form. These documents are very often difficult to interpret and difficult to read and it is often difficult to find information relevant to a project. Hypertext systems (Conklin, 1987; Nielsen, 1990) support the representation of documents as a network of interlinked text sections, or nodes; the user can move around the network freely by activating the links in any order. Hypertext provides the reader with a natural and powerful interface to on-line documents. However, hypertext systems do not represent explicitly the semantics of the textual/graphical content of documents. The contents of standards and company procedures contain requirements on the final product and on the processes for developing the product. For example, DEF-STAN 00-56 (MOD, 1993), a standard for the development of safety critical software, specifies that a Safety Programme Plan must be created at project initiation; that a Project Safety Committee must be appointed; and that the roles and qualifications of these personnel are defined. These requirements can be thought of as partial processes or constraints on the development process and can be represented using our process modelling framework. Explicit representations facilitate improved understanding and communication of the process among project personnel, clients and auditors. During the development of standards explicit models of structure and content can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. These models can then be used to supplement the conventional textual descriptions, in order to assist the users in understanding the standards. For example, the US Software Engineering Institute has converted the IEEE Project Management and Configuration Management Process standards into structured models and diagrams using the Design/IDEF tool. The two technologies of hypertext and process modelling are combined in the ASPEN modelling framework to represent software development standards.

ASPEN Software Process Ontology

The three major categories of concepts in our ontology are artifacts, activities and agents; agents are required to enact the activities that produce the artifacts. The following sections describe these concepts in more detail.

Project Artifact

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�: Project Artifact Model

A project artifact could, for example, be a list of requirements, a case-tool graphic or some software code. Figure 1 shows a representation, using OMT notation (Rumbaugh, et al., 1991), of the attributes associated with an artifact. The four major artifact types are technical, quality, safety and management and these can be further subcategorised, for example, quality artifacts have verification and validation subtypes. Artifacts are produced for a reason and hence have a rationale, which influences what information is represented and how it is represented. Artifacts have dependencies, e.g., a software source code module will usually be dependent on the relevant design specifications and coding standards and the source code should not be produced without these documents already in existence. An artifact may undergo many modifications before it is completed. Each significant (significance is usually defined within the context of a specific project) modification will result in a new version number being assigned and must be subject to some form of configuration management. An artifact has associated quality criteria against which it is reviewed/checked. The informational content of artifacts is described in the following section.

Information Models

There are four fundamental parts to the development of a software product, or indeed solution to any problem: identification and understanding of the domain of interest; specification of what is required; specification of how it should be implemented; and implementation. These result in the development of a number of information models, see Figure 2.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �2�: Information Models

 Real World Model This is a model of the beliefs held about the real world. This model is derived from the software engineer's existing knowledge about a domain and from knowledge acquired during requirements analysis.

Requirements Model This is a description of what the software system should do, i.e., what functions it must support and any other constraints it must satisfy. There is no objective way of characterising information as a requirement or a design; it depends on the perspectives of the software engineer and the domain representative. It is important therefore that the Requirements Model does not contain any information that unnecessarily constrains possible designs and implementations.

Computational Model This model describes how the software system functions. In theory a spectrum of models lie between the Requirements Model and the Implementation Model, each one specifying how the software should operate using constructs that get progressively closer to machine instructions. Information in the Computational Model is often classified as design or code. Designs are generally written using a structured language, though they can also be represented using formal languages and are closer to the Requirements Model end of the spectrum than code, which is ‘executable’.

Implementation Model This model can be directly executed by a digital computer. It is rarely developed manually, but automatically using a compiler or translator.

These models may not always be formal or explicit, e.g., a persons understanding of a domain may be represented in their mind and not explicitly using a structured notation. Figure 2 does not necessarily indicate the order in which these models are created, for example, in many cases a products requirements cannot be fully specified until the implementation details are understood. The development of these models is a complex process consisting of many interdependent activities. Quality and safety processes are carried out to ensure that the transformation of information is complete and correct. Processes are carried out using some implicit or explicit methodology and should conform to standards and guidelines.

Models have scope, which determines whether the information forms part of the proposed software system, the environment within which the software operates or the interface between the two. A model is always in a certain state that reflects its degree of completion. These states can be either qualitative or quantitative. Quantitative states indicate whether constituent elements have been identified, the level of description, and degree of validation. Quantitative states reflect the percentage completion of a model. Information about a domain is relevant to a specific time; the two most general time periods in a project reflect the existing domain and the future or restructured domain, i.e., with the proposed information systems solution installed. Perception of the existing and future structure of the domain changes over time and this will be reflected in different model states and versions.

Information Concepts

The content of a model is an abstracted description of that part of the application domain of interest; the level of abstraction is determined by the model type. Information about the world can be decomposed into objectives/goals, entities, activities, people & other agents, locations and times (Sowa and Zachman, 1992). Often these components are separated out in order to reduce the complexity of the real world. These various components are interrelated and their interactions and influences should be explicitly modelled.

 Rationale/Goal (Why) This is concerned with the objective of the various elements in a model, e.g., the goal of the enterprise, the objective of a piece of equipment. Rationale can be further broken down into goals and strategies.

Entities (What) In the Real World Model entities include such artifacts as actuators, telemetry equipment; in the Computational Model entities refer to data structures and data. Entities have properties such as relationships, attributes and attribute values.

Processing (How) Processes transform input to some output and are defined by functions and function arguments. In the Real World Model and Requirements Model this refers to actual real-world processes, e.g., a chemical process; in the Computational Model this refers to the inferences or computational functions that carry out these processes.

Agents (Who) These can be human or some computational entity, and interact with the system to carry out tasks. In the Requirements Model this includes all agents that carry out some task relevant to the application.. In the Computational Model agents are typically programs that interact with and carry out some task for an external agent. Modelling agents is important, e.g., when understanding or re-designing the organisational structure and when considering the system interface.

Location (Where) This refers to the network of entities, agents and processes and their physical location with respect to each other. In the Real World Model and Requirements Model this would refer to actual locations in the real world; in the Computational Model and Implementation Model this would refer to logical or physical nodes in a computer network.

Dynamics (When) In the Real World Model and Requirements Model timing issues could include business or chemical process cycles, while in the Computational Model timing issues include the sequencing of input data and required response times. Properties are points in time, such as the occurrence of a specific event, and duration.

Information Representation

Information can be represented using textual, graphical, audio or video notations and can be stored in a number of different media. The three most important media types are mental (i.e. in the human mind), paper and digital. Information that is represented in a persons mind has the obvious disadvantage that it cannot be directly observed by other people or objectively analysed. Information can be represented both textually and graphically on paper. However, audio and video information cannot be stored directly, though it can be represented indirectly using text and/or graphics. Information represented digitally can be ‘presented’ both textually and graphically and manipulated directly by computer applications. The degree of formality of representations can be informal, structured and formal. The term ‘formal’ can have different interpretations and methods differ in the amount of formality that they employ. The components of a model may use more than one representation type and degrees of formality.

Activity Model

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �3�: Project Activity Model

Project activities, see Figure 3, produce project artifacts. The inputs to activities are also artifacts, although they need not necessarily have been produced during the project. Activities can be of different types, e.g. requirements elicitation, design, etc., and are typically carried out according to some method. Methods can be prescriptive and specify the procedures for transforming the input information into the output, and/or descriptive and specify how information is represented. All activities require and consume resources, which may include time, capital, materials and infrastructure. Agents may require authorisation from controllers before carrying out activities. Before an activity commences or is complete various conditions (pre-conditions and post-conditions) must be satisfied. An example of a pre-condition is that the entities have been identified and their structure defined in the Requirements Model before development of the Computational Model can commence. An example of a post-condition is that the artifact must be signed-off before the activity is deemed complete. Similar to artifacts activities have quality criteria against which they are measured.

Agent Model

Agents are responsible for carrying out activities, see Figure 4. There are two principal types of agents, human and computer programs, with different characteristics and suitable for carrying out different types of activities, for example, computer agents are suitable for carrying out formal transformations on information, while human agents are more suitable for carrying out informal reviews or inspections. Of course, it is not always as simple as this; human agents, apart from the rather fuzzy nature of some of the activities that they carry out, are prone to errors and are influenced by the environment within which they operate.

Agents have roles which define their responsibilities and must have some capability or expertise in order to carry out their required activity. In a software agent this is pre programmed expertise and it is relatively easy to measure this against the skills required to carry out an activity. However, with human agents this is much more complicated; motivation, quality of training and experience can influence their performance and quality of their work. Human agents usually work as part of a team, which in turn form part of an organisation. Teams and organisations have a structure and communications links. An organisation's and team's culture and morale can influence quality of the software product. These are difficult attributes to quantify and it is also very difficult to measure their impact on the quality of the resultant artifact.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �4�: Agent Model

ASPEN Framework and Support Tool

This section describes the ASPEN software tool for assessing software development processes. ASPEN is currently being implemented using CLIPS (Giarratano, 1993), a software environment that combines rule-based and object-oriented programming, and HARDY (Smart, 1994) a hypertext diagramming tool. ASPEN runs on UNIX platforms under MOTIF and PCs under MS Windows. A diagram of the conceptual architecture is shown in Figure 5. The following sections describe the components of the architecture in more detail.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �5�: Information Model Attributes For "Data Flow Diagram"

Software Process Modelling Ontology

The software process modelling ontology, described in detail in section 3, is the underlying vocabulary for the development process and all software engineering knowledge bases. The three major categories of concepts in our ontology are artifacts, activities and agents; agents are required to enact the activities that produce the artifacts.

Current Process Model

Information Model Attributes For “Data Flow Diagram”

Type�Requirements��Objective�Forms the basis for the specification

of the software��Content�Entities, Processing, Agents��Scope�System��State�-��Time�Future��Representation�Textual & Graphical��Medium�Digital��Formality�Formal��The current process model is an explicit representation of the development project. This model contains specifications for the artifacts that are to be produced, the activities that produce them and the agents who carry out the activities. Figure 6 shows a partial representation of a development process, using the ASPEN graphical and form-based editors. The model is represented using the ontological constructs described in section 3. The adjoining table illustrates how the artifact “Formal Design”, part of “Design Description”, is described using the information framework. Links between constructs can have properties, e.g., the inputs to an activity can be obligatory or optional. Constraints can be specified between links, e.g., between the inputs to an activity; the requirement for an input can be conditional on the existence of other inputs or the properties of other inputs, activities or agents. Though the framework includes timing issues the current implementation of ASPEN does not support scheduling of activities. Presentation and scheduling of project activities could be done by integrating ASPEN with a project management tool.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6�: Representation of development process in ASPEN

Software Engineering Knowledge

The software engineering knowledge bases facilitate the construction and assessment of a process model. These knowledge bases include knowledge of the requirements of particular application domains, best practice engineering knowledge, characteristics of available methods and the contents of standards. The following sections describe these knowledge bases in more detail.

Standards

Regulations, standards and company procedures contain requirements on the process or artifact; they are effectively constraints on the development or procurement processes. Most of these constraints can be modelled and used to analyse the actual development process for compliance. DEF-STAN-00-56 (MOD, 1993), for example, specifies that a Safety Programme Plan must be created at project initiation; that a Project Safety Engineer and a Project Safety Committee must be appointed; and that the roles and qualifications of these personnel are defined. These constraints relate directly to the basic elements of the AUSDA modelling framework, i.e., artifacts, activities, and agents. Standards thus translate to constraints on the composition of the software development model, e.g.:

constraints on products and their contents, e.g. existence of a hazard log and the data to be recorded for each hazard;

specification of product quality attributes;

existence of project activities, e.g. Safety Analysis;

use of specific methods, e.g. Preliminary Hazard Analysis;

existence of specific agents, e.g. Project Safety Engineer and Independent Safety Auditor;

constraints on agent attributes, e.g. requirements for experience and training.

Figure 7 illustrates part of DEF-STAN-00-56 represented using the AUSDA modelling framework. Standards are represented using an extension of the notation used to model processes. The extended notation includes Rationale and Explanation. Rationale represents the objective of the specific constraint or clause in the standard. It is a good idea to include this explicitly in a representation of a standard, especially where the clause is optional or recommended. It allows project engineers and auditors to assess whether a project has conformed to the “spirit” of the standard, if not exactly to the “letter”. Explanation represents an explanation of the concepts included in the clause. This is a textual and/or graphical description that includes background information and is provided for the benefit of users to help increase their understanding of standards.

However, the process modelling framework is limited in expressiveness compared with text and unconstrained diagrams. This is also true of other techniques used to represent the contents of standards (Chung and Stone, 1994). A number of representation formalisms are used and have been proposed to represent standards and guidelines (18). Requirements like “adequate means” and “sufficient provision” are difficult to represent formally and are better expressed in clear, concise language, which is quite easy to understand and which can be interpreted by the reader or user of the standard. This is also true of concepts such as rationale and explanation. In ASPEN this knowledge is represented using hypertextual descriptions, which are linked to the elements of the process representation. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �7� Partial representation of standards in ASPEN

Hence, in ASPEN, standards are represented using both hypermedia and process-oriented descriptions. The ASPEN supports “marking up” standards, i.e., creating explicit links between hypermedia blocks and the basic elements of the software process modelling ontology. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints. ASPEN supports navigation of these links between the hypermedia and process-oriented representations, see Figure 8.

This combination of the ASPEN framework and hypertext has proved to be very useful for representing standards. However, through the process of creating and using these models of standards, we have discovered some limitations with hypertext based interfaces: they are not always effective or easy to use and even in moderately large documents readers can experience problems of disorientation and digression. Most documents have sections and sub-sections that can be classified as introduction, rationale, etc. These roles can be made explicit, so that, for example, the rationale for a particular clause can be identified even if it is included as part of the introduction or in a sub-section titled “Foreword”. Links between sections can also be made explicit, for example, a section describing personnels’ required characteristics can be linked to the activities for which they are responsible. Hypertext does not model explicitly the semantics of these sections and links.

Expertext combines expert systems and hypertext and can represent explicitly the semantic structure of documents, the role of nodes and the relations between them. The expert system can then make inferences based on the semantics of the hypertext, i.e., the hypertext data, and not some auxiliary repository, is the actual knowledge base. An example of an expertext system is PLINTH (Casson, 1993) developed at AIAI. PLINTH integrates hypertext, expert systems and semantic nets to provide tools and intelligent support for the authors and readers of technical documents. Authors can assign types and slots to nodes and links to mark their function and relations in the network. PLINTH then supports this augmented hypertext with rule-based navigation, which interactively computes a customised path through the document for the reader.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �8�: “Marking-up” the hypertextual representation of Standards

In the future we plan to to combine expertext and process modelling and provide a more powerful representation of standards than is currently provided. Expertext focuses on ensuring the effective and efficient use of a document, while the ASPEN modelling framework represents the contents of nodes. Information that is not suitable for representation using the ASPEN modelling framework can be represented in hypertext and presented to the user for interpretation.

Methods

A method can be thought of as a procedure for doing something (Mayer, et al., 1992). A method can be of assistance and a source of motivation for a software process, but it does not make decisions or create products. These are done by the agent who uses the method to carry out some activity. Methods can have descriptive and/or prescriptive aspects. The descriptive aspects specify what type of information is represented and how it should be represented. The prescriptive aspects specify how the information should be acquired or transformed from one representation to another.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �9�: Graphical and form-based methods’ editors

Descriptive Representation. The descriptive aspects of a method are defined by the informational content, syntax and formality of representation, e.g., Yourdon specifies a graphical and structured representations for modelling entities for the requirements model. Figure 9 shows a representation of part of the Yourdon (Yourdon, 1989) method using the ASPEN notation. The relationship shown is “Part-Of”, e.g., the “Essential Model” is comprised of an “Environmental Model” and a “Behavioural Model”. At the leaves of the tree are “model components”, which are defined in terms of the information concepts that they represent, i.e. the information items defined in the information framework, as described in Section 3. The form-based editor shows “Data Flow Diagram”, which is part of “Process Model”. This component has three information items, relating to process, entities (which includes data flows) and agents. Figure 10 shows the more detailed contents of the “Behaviour dfd (entity)” information item. This relates to Entities in the Requirements Information Model of the proposed (or future) system at the System scope. The representation is structured graphics and the method allows paper or digital media.

Prescriptive Representation. The prescriptive aspects of a method considers how information is to be obtained and how it is to be represented in the specified syntax. This includes the transformation of information from one model in to another and the overall strategy or procedure for developing the models, i.e., the lifecycle. Information items and hence method models have dependencies, e.g., software specification is dependant on a design, even if the design is informal and represented only in the programmer’s mind. These dependencies indicate that some activity must exist for transforming the information from one model into another. The type of information, its representation and formality determine the type of activity that is required. The lifecycle implied or made explicit in a method determines the order that models are developed regardless of the constraints imposed by these dependencies. For example for the behavioural model in the Yourdon method it is recommended that DFD’s and ERD’s are produced in parallel and independently of each other. Implied in the integration of these two models is a consistency check. However, consistency could be achieved by creating one from the other - the process of building them independently helps ensure a level of completeness. The activity for transforming information from one model into another can be made explicit and hence the requirements for agents to enact/carry out the activity.

Currently, ASPEN does not explicitly represent the procedural aspects of a method; as we have yet to define a detailed activity ontology similar to that for the descriptive aspects of a process model.

Application Knowledge

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �10�: Information Item Editor

The application domain affects factors such as type of processing, e.g., knowledge-based or real-time, which in turn influences development issues including method suitability and type of testing. For example, Knowledge Based Systems applications usually model complex problem solving and hence have a requirement for methods which facilitate rich representations of problem solving knowledge. Real-time applications have a requirement for rich representations of dynamics, including sequencing of events. The domain also determines the type of and criticality level of the risk associated with system failure, e.g., economic loss, loss of human life, etc. The characteristics of the risk determine the safety criteria for the system. The derivation of these criteria also varies from application to application and is influenced by national and international laws, licensing authorities, etc. A criticality analysis translates these criteria into safety criteria for the software component, which in turn influences the suitability of verification & validation and safety analysis methods.

Best Practice Knowledge

Software engineering has evolved a set of best practices for developing software over the decades. Sometimes best practices are compiled into the requirements of in-house and external standards, e.g., the use of formal methods for safety-critical applications or inspections by personnel independent of the development team. Other practices form “folk-knowledge”, which can be industry wide or local to a company or project.

Task Knowledge

Task knowledge refers to the tasks required to meet the objectives of the users of the process model. The are two broad categories of tasks that need to be considered: process assessment and process configuration. Assessment is concerned with the efficiency and effectiveness of a process; configuration concerns the creation of a process model that is both efficient and effective. Efficiency measures the value of the outputs against the value of the resources consumed; this is useful for measuring and predicting productivity and progress. Effectiveness measures how well the actual process satisfies its objectives. Currently, we are focusing on assessment of conformance to standards and the effectiveness of the development processes. The overall approach to assessing the effectiveness of the processes of development, verification & validation and risk/safety analysis is similar and involves four basic steps, which are described briefly below.

Strategy This considers the overall approach to technical development, verification & validation or safety analysis. A development strategy includes such high level issues as the lifecycle and maturity of approach; the number of analysis (design (coding (testing iterations; the involvement of the user in the process; re-use of existing strategies, etc. Verification & validation and safety analysis strategies are dependent on the development approach and include such issues as the degree of testing and analysis during development, before release and when the system is deployed.

Completeness The completeness of the contents of the project artifacts are analysed using the information framework, relevant standards and guidelines. This is a first level check and can not assess whether a document, e.g., the requirements specification, is actually complete; simply that all ‘classes’ of concepts have been considered. Completeness of verification & validation and safety analysis relates to the level of testing and analysis of the various technical artifacts produced by the project. This includes such issues as the existence of design reviews, test specifications, test reports, etc.

Consistency Software development involves the transformation of information from one abstraction into another, e.g., the requirements specification are transformed into design specifications, which in turn are transformed into code. It is important that these dependency links are acknowledged during the transformation processes, e.g., that code is not produced before being designed. In addition verification & validation and safety assessment artifacts are dependent on each other and on technical artifacts.

Activities The two main aspects of an activity that must be considered in an assessment are the agents involved and the methods used. Agents (tools and personnel) are responsible for carrying out the activities that produce artifacts. Their skills and experience are critical in ensuring the efficacy of any activity. For methods it is important to consider how information is represented (descriptive aspect) and the technique used to transform the information into the representation (prescriptive aspect). For example, formal transformations are more likely to be complete and consistent than informal ones though the expertise of the respective agents is also very important.

Visualisation

Editors and viewers are provided for describing and visualising the current development process and the software engineering knowledge bases. Different users will require different “views” on the process model. Presenting a number of different views can help increase understanding and can be used to check the consistency and correctness of the process. These views are also useful when constructing or refining the model. ASPEN has form-based editors for each of the major process elements and a graphical tree-diagram visualiser. These editors are also the means by which the process model is defined. Figures 6, 8 and 9 show examples of graphical and form-based editor and viewers. Editors are also provided for marking up standards in a hypertext format and creating explicit links with the elements of the software process modelling ontology. Relationships and constraints can then be specified between these elements to create process fragments and process configuration constraints. A methods editor supports the construction of the various components of methods.

Reporting Output

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �11�: Example reporting output in ASPEN

ASPEN generates assessment reports in a number of formats including Windows Help, Microsoft Word and Postscript. Currently output reports are limited to conformance to standards and an evaluation of the development methods used. Figure 11 shows an example of an assessment report in Windows Help.

Potential Applications For Process Modelling Technology

Introduction

The software process modelling technology, embodied in ASPEN, has many potential applications that range from support for planning to actual enactment of processes. This is a relatively new technology and much of its potential has yet to be exploited. The following sections briefly describe a number of application areas where software process modelling can provide many important benefits.

Guidelines & Standards

Many parts of software development standards can be expressed as a combination of abstract process models, process model fragments and constraints on acceptable process models. During the development of standards these models can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. These models can then be used to supplement the conventional textual descriptions, in order to assist the users in understanding the standards. For example, the US Software Engineering Institute have converted the IEEE Project Management and Configuration Management Process standards into structured models and diagrams using the Design/IDEF tool. Combining process modelling technology with Expertext technology (Casson, 1993), could provide further support for the developers and users of standards. Expertext combines expert systems and hypertext technologies and can be used to explicitly represent the semantic structure of documents and relate the textual descriptions to the process models.

Project Planning

The development and maintenance of a project plan for a software development project is a complex activity. Current project planning tools provide little more than task scheduling functionality. Project planning tools that contain explicit representations of knowledge of relevant standards, methods and best practice would provide significantly greater support for creating and refining a software development plan. The tools could contain libraries of process models and process model fragments, which could be used to configure appropriate process plans while knowledge-based support within the tool ensures compliance with relevant standards. The tools could also support incremental planning of the project as it is impractical to define an entire project in detail prior to its commencement. It would also be useful to integrate these planning tools with enactment systems which support the software development. This would allow the project planning tools to monitor progress on the project automatically and assist with plan refinement and re-planning when required.

Software Procurement

When procuring a new system it is important to assess the software process capabilities of the software supplier, i.e., the level of maturity of their software planning, analysis, design, testing etc. practices and processes. Tools could be developed to help the procurer derive the required or desirable capabilities from the characteristics of the system, for example, its size, complexity, level of safety-criticality, novelty, whether it is real-time or not, delivery language, etc. There is also the possibility of suppliers using tools to assess their own software process capabilities in order to determine what types of system they can currently supply and which areas to focus on improving. Knowledge-based process analysis tools could be developed to help auditors and assessors who are comparing an organisation’s generic development processes, or a specific project, against standards. In due course it would be �hoped that standard interchange representations for software process models could be established, such that external auditors could take a copy of an organisation’s software process models and analyse them using their own tools.

Software Development

Software process modelling technology can provide support to software engineers through the use of process driven integrated project support environments (IPSEs). IPSEs can use an explicit model of the development process to help co-ordinate activities amongst developers and can use the model to identify steps that can be automated. This is the same type of technology as used on the workflow systems that automate other business processes. If the process models are sufficiently rich to include details of the rationale and purpose behind the process plan then the enactment tools could use this knowledge to provide explanations of the process when queried by the software developers and to support intelligent re-planning of the process when problems occur.

Quality and Process Management

There is a growing interest in tools that support the capture, representation and gradual refinement of models of an organisation’s software processes, especially in the light of schemes like TickIT and SPICE. These explicit models can be used to help discover and resolve ambiguities, inconsistencies and gaps in the development processes. Visualisation tools can present the models in a number of different graphical and textual notations suitable for training and are also helpful in identifying areas for improvement. Knowledge-based tools can analyse the software process models, for example, comparing them against standards or best practice, or assessing their maturity according to standards such as the Capability Maturity Model or SPICE. On the basis of the analyses, areas requiring improvement can be identified and prioritised. Potential changes to the processes can be modelled in order to understand the impact of improvements, or the impacts of adoption of new methods and tools.

Concluding Remarks

Software process modelling is a relatively new technology for formalising and representing software development processes. A software process model makes development processes explicit and facilities the understanding and communication of the development process to auditors, project assessors and project managers. This technology also facilitates assessment of existing processes and supports improvement in the way that software is developed. The ASPEN software process modelling framework is based on an ontology that includes, artifacts, agents, activities and methods. We have developed a support tool for testing our framework that provides facilities for representing standards and assessing the effectiveness of the development process by considering a wide range of criteria, including suitability of the methods used, suitability of personnel and conformance to standards.

Potential users of ASPEN include project managers, technical managers, project auditors and authors of standards. ASPEN can be used on both non-safety and safety critical/related projects and provides support for project auditors/assessors in evaluating existing projects and for project managers in planning new development projects. Authors and users of standards and procedures would benefit by explicit document structuring and information representation. During development these explicit representations can be used to help resolve ambiguities and make ideas, assumptions and rationales explicit. Users of standards would also benefit: with knowledge of node and link meanings it is possible to tailor the presentation of information to readers and to reduce information overload. Specific categories of information can be presented and the relationships between information items can be used to tailor the level of detail presented to the reader.

Acknowledgements

This work has been carried out as part of the JFIT Safety Critical Systems Research Programme supported by EPSRC grant number GR/J18378 in collaboration with Loughborough University.

REFERENCES

Beringer, B. 1995. The model architecture frame: quality management in a multi method environment. In Software Quality Management III, Proceedings of the Third International Conference on Software Quality, Seville, Spain, April 1995. Computation Mechanics.

Casson, A. 1993. PLINTH: Integrating Hypertext, Semantic Nets and Rule-Based Systems in an Expertext Shell for Authors and Readers of Regulatory Documents. In Proceedings of Workshop on Intelligent Hypertext, Arlington, VA, November 1993. edited by J. Mayfield and C. Nicholas.

Chung, P.W.H. and Stone, D. 1994. Approaches to representing and reasoning with technical regulatory information. The Knowledge Engineering Review, 9(2):147-162.

Curtis, B. and Kellner, M.I. and Over, J. 1992. Process modelling. Communications of the ACM, 35(9): September 1992.

Doheny, J.G. and Filby, I.M. 1996. A Framework for Modelling Software Development Processes. In Proceedings of Software Quality Management IV, Cambridge, April 1996, edited by M. Bray, M. Ross and G. Staples, pages 533-545.

Giarratano, J. C. 1993. CLIPS User Guide. NASA, Lyndon B. Johnson Space Center, May 1993.

Harris-Jones, C. and Barrett, T. and Walker, T. and Moores, T. and Edwards, J. 1992. A Methods Model for the Integration of KBS and Conventional Information Technology. In Proceedings of Expert Systems 92, December 1992. edited by M.A. Bramer and R.W. Milne. Cambridge University Press, pages 25-42.

Lee, J. and Yost, G. 1994. The process interchange format and framework. Technical Report Working Paper 180, (http://www-sloan.mit.edu/CCS/pifmain.html), The Center for Coordination Science (CCS), Massachusetts Institute of Technology, Massachusetts, December 1994.

Mayer, R.J. and Painter, Capt. M. K. and deWitte, P.S. 1992. IDEF Family of Methods for Concurrent Engineering and Business Re-engineering Applications. IED/4/2160 SMARTIE technical reports.

MOD. 1993. Defence Standard 00-56. Technical report. Directorate of Standardisation, Ministry of Defence, Kentigern House, 65 Brown Street, Glasgow.

Munck, B. and Orgren, P. and Perry, B. 1995. ARPA STARS PROGRAM. WEB Page URL: http://www.stars.ballston.paramax.com/index.html, Unisys, Reston, VA, USA, February 1995.

Paulk, M. C. and Curtis, B. and Chrissis M.B. and Weber, C.V. 1993. The Capability Maturity Model for Software, Version 1.1. Technical Report CMU/SEI-93-TR-24, Software Engineering Institute, CMU.

Rumbaugh, J. et al. 1991. Object-Oriented Modelling and Design, Prentice Hall.

Smart, Julian. 1994. HARDY 1.20 User Manual. AIAI, April 1994.

Sowa, J.F. and Zachman, J.A. 1992. Extending And Formalising The Framework For Information Systems Architecture. IBM Systems, 31(3): pages 590-616.

SPICE Project 1996. SPICE The Reference Framework, WEB Page URL:http://www.esi.es/ Projects/spice.html, European Software Institute, Bilbao.

Tate, A. 1994. O-Plan Ontology - A Working Document. In Proceedings of the Workshop on Ontology Development and Use. Cambridge University Press, November 1994.

TickIT 1992. TickIT: A Guide to Software QMS Construction using ISO 9001/EN 29001/BS 5750 Part 1 (1987). 2.0 edition, February.

Uschold, M. and King, M. 1995. Towards a Methodology for Building Ontologies. Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, September.

Warboys, B.C. and Snowdon, R.A. 1994. An introduction to process-centered environments. In Software Process Modelling and Technology, edited by A. Finklestein, J. Kramer, and B. Nuseibeh, Advanced Software Development Series. Research Studies Press.

Yourdon, E. 1989. Modern Structured Analysis. Prentice Hall, New Jersey.

�Conklin, J. 1987. A survey of Hypertext. MCC Technical Report STP-356-86, Austin, Texas, December 1987.

Law, D. 1992. DESMET Methodology: Specification of Requirements and Architecture. Technical report, National Computing Centre.

Nielsen, J. 1990. The art of navigating through hypertext. In Communication of the ACM, (33,3).

Tate, A. and Drabble, B. and Kirby, R. 1994. O-Plan2: An Architecture for Command, Planning and Control. In Intelligent Scheduling, edited by M. Fox and M. Zweben. Morgan Kaufmann.

AIAI-PR-65	AUSDA Deliverable D8:The ASPEN Toolkit

�PAGE �0�

�PAGE �19�

	

	

This report forms Deliverable D8 of the AUSDA project carried out as part of the JFIT Safety Critical Systems Research Programme supported by EPSRC grant number GR/J18378 in collaboration with Loughborough University.

Artificial Intelligence Applications Institute

The University of Edinburgh

80 South Bridge

EDINBURGH EH1 1HN

United Kingdom

(The University of Edinburgh, 1996

