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Abstract

Production management involves planning, scheduling and control. Whereas
MRP-II systems have contributed greatly to production planning, detailed schedul-
ing and control remain problematic and have proved a significant research challenge.
TOSCA is a research and development programme which provides an overall frame-
work for production planning, scheduling and control based around representations
of factory resource and setup capacity.

Up to this time, work on TOSCA has concentrated on predictive scheduling focusing
on (i) representations for capacity and setup constraints and objectives, (ii) methods
to monitor the criticality of these constraints during scheduling, and (iii) methods
to allow critical constraints to be effectively managed to enable good solutions to be
achieved. Current research on TOSCA is investigating re-scheduling and methods of
schedule repair following shop-floor feedback.



1 Introduction

Production management involves planning, scheduling and control. It is now generally
accepted that whilst Manufacturing Resource Planning (MRP-11) systems have introduced
a number of benefits in terms of overall factory communication most specifically in pro-
duction and inventory planning, they leave a significant gap when it comes to detailed
production scheduling and control. This ‘gap’ has been effectively dealt with in some
manufacturing environments through the use of Kanban. Such an approach to schedul-
ing and control has proved successful in streamlining production activities within plants
with high volume and a limited range of products. Where volumes are low and the
product range extensive, however, Kanban has been less successful. It is within these
production environments that shop floor control relies heavily on the support of detailed
capacity analysis and production scheduling. The current TOSCA system provides such a
detailed scheduling capability and future developments are planned to extend the system
to provide an integrated production management framework.

The Tosca project was initiated by Hitachi’s Expert Systems Group as a response to
the frequent requests they received for factory scheduling systems. Hitachi have been suc-
cessfully using an expert systems development toolkit to build factory scheduling systems
for a number of years [3], but have been aware that scheduling methodologies and tools
could potentially expedite the development of scheduling applications and also improve
the quality of solutions obtained.

This paper reports work undertaken by the Artificial Intelligence Applications In-
stitute (A1a1) aimed at the development of generic factory scheduling methods and at
increasing understanding of production constraints and their management through the
scheduling process. In this section, the current work is placed in the broader production
management context.

1.1 Scheduling in the Context of Production Management

Production scheduling should not be viewed in isolation. The potential benefits of a good
scheduler can only be fully exploited if appropriate scheduling tasks are set (production
planning is effective) and once schedules have been generated, the factory is able to
effectively manage their execution. It is in this context, that the TOSCA programme is
being undertaken.

TOSCA is an evolving system inspired by the architecture and approach of O-Plan [5],
a planning and control system developed at ATAI. O-Plan adapted the blackboard archi-
tecture of problem solving, for domain independent planning problems, by engineering an
efficient agenda-based control architecture. O-Plan2 has continued this theme, expanding
the capability of the original O-Plan system by incorporating the ability to model several
‘agents’ involved in planning and control and allowing for the exploitation of parallel pro-
cessing platforms in the future. Up to this time, TOSCA has used a relatively simple flow
of control but future work is planned to more extensively exploit the O-Plan framework
for reactive repair and overall production management control.

O-Plan defines activity planning within a three-agent architecture, in which the plan-
ner communicates with job assignment and execution agents. TOSCA views overall pro-



duction management from a similar three-agent perspective in which a scheduler com-
municates with job assignment and execution agents. This is show in Figure 1.

Below is a description of the scenario for which the production planning, scheduling
and control architecture is envisaged.

The Scenario
The scenario we aim to support is as follows:

o The user specifies the scheduling task which corresponds to the planning elements of
production (i.e., the acceptance of orders, the selection of lot sizes, and the making
available of factory resources). This process is referred to as job assignment.

o The scheduler generates a schedule ready for execution. The scheduler has knowl-
edge of the general capabilities of the execution system, but does not need to know
about the actual activities to be executed.

e The execution system seeks to carry out the operations specified by the scheduler
while working with a more detailed model of the execution environment than is
available to the job assigner and to the scheduler.

Job Assign Domain Scheduler Domain Fixec Systen Domain
Capability Model Capability Model Capability Model
Requirements Output
. .. Real
User Job Assign Scheduler Communication Exec System W
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Reporting [ Input
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Figure 1: TOSCA three agent model: Job Assignment, Scheduler and Execution System

Communication between Agents

The agents have common representations of the capabilities of the job-assignment
agent, the scheduler and execution agent, the requirements of the schedule and the
schedule itself with any ‘flaws’ (outstanding requirements). Of particular impotance is
communication relating to flaws relating to production requirements and capacity.

Based on the knowledge of its own capabilities and that of the execution environment,
the scheduling agent will generate a schedule which may then be executed via an execution
agent. The execution agent monitors the execution, responding to failures in one of two
ways: either dealing with the problem itself or, if a repair is beyond its capabilities,
feeding back a request to the scheduling agent. Where the scheduler is unable to deal
with a problem, failure is fed back to the job assignment agent.



2 The Scheduling Problem

We now address the specific scheduling context to which Tosca has been applied.

With some notable exceptions (e.g., [14]), production scheduling research has concen-
trated on highly restricted and abstract target applications. Such abstract applications
provide a means of focusing on key aspects of the job-shop scheduling problem and estab-
lish a good platform for controlled experimentation, but their validity and extendability
is more difficult to establish. The TOsCA project research has attempted to achieve some
level of validity by concentrating on the modelling and scheduling of real or realistic
factory datasets.

The initial test domain is derived from but extends real factory data. It is based on a
general job-shop but remains grounded in a genuine application. By including extensions
to the real factory data, the test domain enables issues to be explored which may not
exist in any currently accessible real world system.

2.1 The Test Domain

The test domain is based on a printed circuit board (PCB) fabrication covering the
activities associated with the insertion of four types of components into the boards, the
key characteristics of the problem being: (1) realistic scale, (2) complex constraints, and
(3) JIT scheduling objectives.

Scale

- The research was based on real factory data covering more than 2 200 operations.

- The factory is able to manufacture 350 different product types. A concomitant
feature was relatively frequent machine setups.

- A detailed schedule is required over a 30 day period (i.e. 90 eight hour shifts).

- There are 35 machines, which in terms of their processing capabilities, can be
broadly divided into four major groupings. Machines within the groupings are not
all identical.

Constraints
The problem involved the following constraint types:
- Temporal precedence between operations.

- Restrictions on the frequency of machine setups (i.e. the number in a day). This
applies to both individual machine and workcentres.

- Enforced time periods between machine setups. This applies to machines in a
specified workcentre.

- Resources with overlapping capabilities. In other words, non-identical resource
types may be capable of processing the same operations.
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- Operation durations are fixed but contingent on the resource selected. Setup dura-
tions, too, are fixed but contingent on the resource selected.

Objectives

The objectives of the schedule can be summarised as being in accordance with the JIT
philosophy. Most particularly, this involves the reduction of WIP and finished-goods
inventory without introducing high levels of order tardiness. The overall level of factory
inventory rests on the extent to which due dates are satisfied and the timing of the order
release. The objectives of the scheduler are to avoid: (i) order tardiness and (ii) the
unnecessarily early release of orders into the factories; that is, produce when required but
no sooner.

3 The System

3.1 The Approach

TOSCA aims to restrict the need to backtrack, through ‘intelligent’ decision making based
on the principles of least commitment and opportunism

The principles of least commitment have been applied to various problems domains
as a means of limiting backtracking (e.g., [15], [5]). In the scheduling domain, TOosca
seeks to make ‘low commitment’ decisions based on information regarding the current
schedule state. Instead of treating operation allocations as the atomic level of scheduling
commitment, the system permits alternative (lower-order) decision types which can be
applied to deal with the predicted problems associated with a schedule state. These
decisions act to progressively restrict the domain of possible allocations.

Opportunism, the ability to dynamically re-direct the attention of the problem-solver
in the light of emerging information, has been successfully applied in various scheduling
systems (e.g, [13], [2], [12]). The aim is to address the most critical constraints early in
the scheduling process, before resourcing options are reduced and flexibility restricted.

The approach adopted by Tosca involves: (i) identifying potentially threatened global
constraints (i.e. scheduling flaws) associated with the schedule state and selecting one
to address, (ii) taking ‘small” decisions to tackle the flaw and (iii) propagating the con-
sequences of each decision. The system relies heavily on constraint propagation and
prediction to drive decision making.

TOSCA uses four different types of decision:

- Perform two or more operations consecutively to avoid a setup. This is achieved by
adding a zero duration time constraint between the end of one operation and the
start on the other.

- Restrict the resourcing options of an operation. The demand on a specific resource
time period is redistributed by deciding that an operation (which could legally be
allocated to that resource time period) will be processed on an alternative resource.



- Restrict the start time window of an operation. The demand on a specific resource
time period is redistributed by deciding that an operation (which could legally be
allocated to that resource time period) will be processed within a more restricted
time period.

- Start an operation at a particular point in time.

Each decision type relates to a scheduling flaw identified from predicted threats to
global constraints. Decisions are taken to reduce the predicted threat to a specific con-
straint. In the test data under consideration, the primary global scheduling constraint
types are: (i) the machine capacity limits, and (ii) the factory imposed setup restrictions.
Each of these constraints is continuously monitored across the full scheduling horizon
using predictions of expected demand. Threats are identified by comparing estimates of
demand for capacity and demand for setups against known capacity limits and the setup
restrictions.

3.2 The Representation of Constraints

The scheduling solution must respect a number of constraints, in particular temporal-
capacity constraints which may be dynamically monitored throughout the scheduling
process. Temporal capacity constraints refer to capacity restrictions that apply over time;
for instance, total time available for processing on a resource during a day or maximum
number of setups permitted at a workcentre during a shift. Tosca monitors demand at
individual resources and groups of resources. In addition to associating operations with
resource time periods through their time windows, operation preferences and associated
demand are also associated with resource time periods.

Temporal-capacity constraints can be monitored in terms of the degree of threat to
their satisfaction, which is a function of estimated demand and available capacity over
time. Estimates of demand change in accordance with decisions taken by the scheduler,
and for this reason, variables which relate to demand at resource time periods are main-
tained. These include the list of operations which need (or may need) time at a resource
during a particular period to ensure that their start and due date constraints are not vio-
lated, and the list of operations which need (or may need) to be set up at a resource during
a particular period to ensure that their start and due date constraints are not violated.
These temporal constraints on operations impose a demand for time and a demand for
setups at the resource time period. TOSCA represents overlapping resource time periods
of various durations covering the entire scheduling horizon. Operations are associated
with the smallest resource time period which covers the operation time window.

Whenever the scheduler introduces an action, an operation’s resourcing options or
time window is restricted. Because operations are linked by temporal and temporal-
capacity constraints, scheduling actions will in general introduce further operation re-
strictions and also alter the profile of expected demand on resources.

The term used for the temporal constraint monitoring information which is used
to guide the schedule generation process is strategic knowledge. The key features of
strategic knowledge are (i) the provision of a global (constraint-based) perspective on the



scheduling problem, (ii) the identification of the most critical current constraints, and
(iii) the requirement for dynamic updating of the global perspective.

Specifically with respect to support for search management, strategic knowledge pro-
vides search management information; wviz., the basis for

- problem decomposition,
- focusing scheduling decision making, and

- choosing between alternative allocations.

Problem decomposition:

Decomposition involves the partitioning of the problem into sub-problems which can
be solved more easily than the original problem. This is an approach very widely adopted
in planning and scheduling (e.g, [11], [13], [5])-

Strategic knowledge is used to decompose problems in terms of constraints; thus
allowing sub-problems - a subset of operations, resources and sub-interval of the overall
scheduling horizon - to be defined.

Focusing scheduling decision making:

Just how problems are decomposed greatly affects the space to be searched. This
conclusion is backed up by studies of Constraint Satisfaction Problems indicating that
the order in which variables are chosen for instantiation is found to have a substantial
impact on the complexity of backtrack search (e.g., [8], [9], [10]). Heuristics preferring
the most constrained variables first are usually most successful in restricting search. The
benefits of opportunistic search-rearrangement has been demonstrated both empirically
and analytically for a heuristic developed by Bitner and Reingold [3] which involves
repeatedly focusing on the variable with the fewest remaining alternatives.

Strategic knowledge supports opportunistic problem focusing by identifying the most
critical current constraints.

Choosing between alternative allocations:

During schedule generation, it is difficult to judge which of the possible alternative
decisions is best. The judgement relies on a sound analysis of the current partial schedule
state. This may be provided by the strategic knowledge (e.g., [12], [2]). Where decisions
are taken which lead to constraint violations resulting in the need to relax constraints,
the overall quality of the schedule is compromised.

Strategic knowledge informs allocation decisions by identifying the elements account-
ing for potential constraint threats. The scheduler can use this information to reduce or
manage the most critical constraints.

Representing Strategic Knowledge: Habographs

In Tosca, novel datastructures referred to as habographs have been defined to repre-
sent strategic knowledge. Habographs consist of a number of cells corresponding to time
periods across the scheduling horizon. (The size of the habograph is set by the time gran-
ularity chosen by the user.) Each cell holds information pertaining to a constraint over
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a particular period, most importantly: the operations which impose a demand over the
period, the available capacity, the estimated demand and the demand pressure, the ratio
of demand to available capacity which is used as measure of constraint criticality. The
information provided by habographs has much in common with other capacity planning
lookahead mechanisms in identifying bottlenecks (i.e. the most critical constraints), but
in addition, they provide a mechanism for identifying constraint violations [1]. This pro-
vides the means of identifying failure in partial schedules (i.e. identifies schedule states
from which to backtrack or relax constraints). In that the operations implicated in the
constraint violations are known, possible tactics for constraint relaxation can be readily
identified.

A range of different types of habograph have been defined. Each specific habograph is
characterised in terms of three dimensions: (i) the type of information represented (time
or setup habographs), (ii) whether the information pertains to one or more than one
resource (individual or aggregate resources) and (iii) whether the demand is associated
with the legal limits imposed by lot start and due dates or with the temporal preferences
(limits or preference habographs).

These datastructures are widely exploited in the schedule generation process: for the
management of setups, the allocation of resources of overlapping capabilities, and the
management of the trade-off between hard and preference temporal constraints.

3.3 The Scheduling Method

Scheduling in TOSCA occurs at three levels: pre-scheduling, high-level scheduling and
low-level scheduling.

3.3.1 Pre-Scheduling

The motivation behind the pre-scheduling phase is the identification of infeasible or tight
scheduling constraints. This information can be used by the scheduler itself or be passed
back to the production planning components. The scheduler may or may not accept
infeasible problems. During pre-scheduling, three major functions are performed: reading
in of the data files, merging operations and setting up of the resource hierarchy.

Read in: Files defining the scheduling problem (i.e. the process plans, the lots to
be produced, the machines being used and the workcentres with their associated setup
constraints) together with a file defining schedule parameters including such things as
habograph granularity are initially read in.

Merging operations: Scheduling problems may be defined for which setups are a
critical constraint. In such cases it is necessary to restrict the overall number of setups
by enforcing the contiguous processing of operations of the same type and process plan.

In merging operations, new temporal constraints are added between operations from
different lots. This reduces the time windows of each of the operations and, where previ-
ously, the start and end times of the two operations were independent, they are now tied
by the following relationships between their earliest start and ends, and latest start and
ends:
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181 + d2 = 191 = 152

When considering operations to merge there may be alternative candidates which
could merge with a specified operation. Preference is given to merging operations whose
time windows overlap most. Where setup demand is very high, as many operations as
possible are merged.

Building the resource hierarchy: The Tosca scheduler uses a resource hierarchy
in order to represent the relationship between resources. This hierarchy, shown in Fig-
ure 2, is split into two main subtrees, one for homogeneous and one for heterogeneous
resources.

Resources
Homogeneous Heterogeneous
Resources Resources
..... Work-1 ... Work-W
(R%OUFCe Wor kcentres)
Famll|7 \ ( )
(Resource
(Machmes)

Figure 2: The Resource Hierachy in Tosca

The homogeneous side of the hierarchy is based on abstractions of groups of resources
based on their capabilities. The elements in this hierarchy from the bottom up are:
resources (machines), resource types and resource families. The leaf nodes of the hierarchy
are physical resources (machines). Resource types are groups of identical machines, with
the identical capabilities. Resource families consist of resource types with overlapping
capabilities. The heterogenous side of the hierarchy is based on abstractions of groups of
resources based on mutual constraints (e.g., joint restrictions on the number and timing
of machine setups). These groups of resources are referred to as workcentres.

Habographs are associated both with physical resources, the leaf nodes of the resource
hierarchy, and abstract resources, the non-leaf nodes on both sides of the hierarchy.
Currently, habographs are not associated with resource types (i.e. groups of identical



resources. Time habographs are used on the homogeneous side of the tree and setup
habographs are used on the heterogeneous side.

Since there is ultimately only one actual set of operations being modelled there is
inevitably a close relationship between the habographs at the various level of the resource
tree. In all cases when a change is made to one habograph, the results of that change
need to be propagated across the resource hierarchy and into affected habographs. The
habograph module within ToscA performs this propagation automatically in order to
keep the schedule in a consistent state at all times.

3.3.2 High-level Scheduling

High level scheduling involves two phases: (i) resource allocation and (ii) high level
temporal allocation. The high level scheduler allocates a specific resource and narrow
time period in which the processing of the operation will start and its output serves as
the direct input to the low-level scheduler.

Resource allocation

Resource allocation in TOsSCA is concerned with balancing demand for time and demand
for setups across resources. Because demand for time and demand for setups are in
general positively correlated, balancing the one tends to have the effect of improving the
balance of the other. The decision as to which constraint type (time or a setup) is taken
on the basis of the estimated criticality of the constraint, it being most important to
ensure a good balance at the most critical resource.

The initial focus during resource allocation is set by the most critical time period
at the aggregate family level (i.e. resource family or workcentre). This becomes the
problem focus and is decomposed both in terms of its constituent resources and time
periods. The task is to achieve an effective balance across the involved resources and time
periods. The approach adopted is, considering time period by time period, to balance
demand by deciding not to use the most heavily loaded resource for one of its possible
operations. Operations associated with the narrowest time periods are dealt with first
and the dropping of operation resourcing options continues until each operation has but
a single resourcing option (i.e. resources have been allocated).

High-level temporal allocation

High-level temporal allocations are achieved by the iterative refinement of operation time
windows. As is the case with dropping resourcing options, operation time window re-
striction decisions are driven from a capacity constraint perspective.

Resource time periods with excessive time or setup demand indicate a constraint
threat which prompts the redistribution of demand by restricting the time windows of
operations. Constraint criticality may be derived from either: (i) demand associated
with the limits constraints (i.e. the outer legal limits) or (ii) demand associated with the
preference constraints. The temporal preferences of JIT operations are to be processed
as late as possible but still permitting the due date to be achieved. Where limits demand
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pressure is above 100% (i.e. the demand is greater than capacity), no complete set of
allocations is feasible. Where preference demand pressure is above 100% the preferred
set of allocations is not feasible. Where the limits demand pressure is less than 100%
and the preference demand pressure is greater than 100%, a solution may be feasible
but involves a trade-off between making allocations in line with preferences (i.e. cost
savings through inventory reduction) and maximising the number of orders meeting their
due dates. Temporal restriction decisions are taken to maintain preferences where that
can be done without violating due date constraints, preferences being sacrificed where
necessary to avoid due date constraint violations. This relaxation of preference constraints
proceeds only as far as is necessary to make the limits constraints feasible.

Temporal refinement proceeds as follows: an operation from the most critical prefer-
ence time period is selected and moved from this period (i.e. scheduled away from its
most preferred timing.) This involves restricting the operation’s (limits) time window
and updating its preferred timing to fall within its new limits. The operation may be
selected by various criteria: the operation with the most slack (i.e. the operation with the
largest time window duration minus the operation duration) is normally selected. This
procedure of time window refinement continues until the operation’s temporal preferences
can be satisfied or until all operations have been restricted to the point where the limits
have been restricted to the pre-defined temporal granularity.

3.3.3 Low-Level Scheduling

Following high-level scheduling, each operation has been allocated to a single resource
and its start to a single time period. No specific operation start time has been set and
operations allocated to the same resource and time period remain to be sequenced. This
output from the high-level scheduler serves as the input to the low-level scheduler. The
current system does not make provision during low-level scheduling to return to the
high-level.

Two approaches have been developed for low-level scheduling. Omne involves a full
search, and the other uses a dispatch-based approach. The feasibility of undertaking
a full search depends on the number of allocation options remaining after high-level
scheduling. This is primarily determined by the extent to which temporal refinement is
made by the high-level scheduler.

Low-level scheduling proceeds by identifying decision points (i.e. start times for op-
erations at a resource), finding all possible operation allocations, and selecting one to
be allocated to this resource at this time. It also tests constraints which have not been
resolved by the high-level scheduler (e.g., enforcement of time periods between setups).
Start times are usually identified from the predicted operation completion time (i.e. when
the machine becomes free) but, when no operation can be allocated or when allocating an
operation would result in a constraint violation, a time gap is introduced into the resource
schedule. The gap is only as long as is required to ensure that no constraints are violated.
In the case of the dispatch rule approach, the selection of which operation to allocate is
made on the basis of a general heuristic, i.e. the operation with the earliest due date.
Following each allocation, the time windows of dependent operations are updated, and,
in addition, operation orderings are inferred where possible. An ordering of operations
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can be inferred where for a pair of operations only one allocation sequence would allow
the due dates to be met.

Future work to the high-level scheduler is planned to enable more refined temporal
allocations to be made for the operations which are soon to be processed. This would
allow the low-level schedule to undertake a comprehensive search for just these operations.

4 Conclusion

The size of the job-shop scheduling scheduling search space is too large to allow brute-force
generate and test approach with backtracking. This paper describes a knowledge-based
approach to guide the scheduling process thus restricting search. The information used to
guide search, referred to as strategic knowledge, is derived from the dynamic monitoring
of potential constraint conflicts, and is used to avoid setups as well as for resource and
temporal allocations.

The information provided and maintained by habographs is of general value within
production planning, scheduling and control and it is planned to exploit these datastruc-
tures in contexts other than predictive scheduling wviz., capacity planning and reactive
scheduling. In that habographs offer a basis for understanding production requirements
and constraints they could be used as a basis for determining resource and labour re-
quirements (i.e. capacity planning). In that they provide insights into the implications
of disturbances to an existing schedule, they could be usefully applied in a reactive con-
text. Current research on TOSCA is investigating re-scheduling and methods of schedule
repair following feedback from the shop floor.
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