Expanding ERA using TMS Specification Document
Dave Crighton

Crighton@gmail.com
07/06/05

Functionality

ERA version 4 should provide at a minimum the functionality of the previous version with the added ability to retract decisions at any point during the session. Any dependant conclusions drawn from these decisions should be retracted but all other parameters should remain unchanged. This essentially allows a user to complete the sections in any order and to return to previously completed sessions.

The addition of this functionality may change the way ERA is used and may also provide ERA with greater inference capabilities which may be exploited to enhance ERA version 4 beyond the basic minimal functionality.

Less important features which could be implemented dependant on time constraints includes the ability to easily tweak the parameters which cause the system to return an “accept” or “reject” result (for use by a conference organiser for example). A facility for viewing and returning to previous reviews may also be desirable.

Architecture

There are three possibilities for the architecture of ERA version 4 these are given in order of preference with a short discussion of the pro’s and cons of each approach.

1. Re-implement using modular and object-oriented php

In this architecture a simple forward chaining inference engine would be built as a separate module responsible for handling at minimum the sub-set of logic used by the existing ERA system. Current CPU/memory resources and the relatively small knowledgebase in this project means that performance shouldn’t be an issue but if so the Rete algorithm could be implemented.

The JTMS would be implemented as a separate module, again creating a reusable component. Both the inference engine and the JTMS would have a set of well defined APIs which would be used to build general expert systems. 

In this case a central control flow module would interface between the JTMS and inference engine modules to re-implement the logical rules found in ERA version 3. The actual input and output would be handled by standard html forms and could be styled using CSS to create a polished web application.

A further advantage of this approach is that state information can be stored in a database (either mySQL or simply flat files) which allows the addition of a more sophisticated user interface. For example all screens could have a side-bar with a list of previously made decisions. The user could backtrack on one of the decisions in the sidebar simply by clicking on it.

Advantages: Highly maintainable clean code, Slicker looking web application since logic can easily be separated from styling, only one language used in codebase.

Disadvantages: Much more work, does not directly reuse any existing ERA code (although can obviously reuse the rules themselves). 
2. Interface php JTMS with existing ERA system

In this architecture a separate JTMS will be built in php based on the prolog prototype. webCLIPS will be run in cookies mode so that all visible facts/rules are written to a file in-between screens. This will allow the facts and rules to be parsed to build the JTMS network. The JTMS would then rewrite the file based on the results of JTMS analysis before the next webCLIPS screen is evoked. 

In this case the webCLIPS code would need to be embedded within php pages which control program flow to ensure that webCLIPS doesn’t try to read in the facts/rules until after the JTMS has updated them.

3. Three Layered Architecture (webCLIPS, php/perl, prolog)
In this architecture the existing ERA system running on webCLIPS will be modified to run in cookies mode. This causes ERA to store all current visible rules/facts in an external file. This file could then be parsed using a scripting language such as php/perl and fed to a web enabled prolog JTMS (based on the prototype) which would replace the file written by webCLIPS. The php/perl layer would also be responsible for controlling program flow.
Advantages: Code reuse of prolog prototype and existing ERA code

Disadvantages: Requires working on essentially 3 disjoint code bases, architecturally unsound and will result in highly un-maintainable code

Current Plan

Since the most favoured two architectures both involve building a JTMS in php this is the current focus of work, this code will be usable in either of the first two architectures.
