

 1

I-X Process Panels – User Guide

Austin Tate, Jeff Dalton, Jussi Stader, Stephen Potter and Jessica Chen-Burger
Artificial Intelligence Applications Institute
Centre for Intelligent Systems and their Applications
School of Informatics
The University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, UK

Web: http://i-x.info
E-mail: query@i-x.info

Version 2.3 – 3rd October 2002

 2

1 Introduction to I-X and I-X Process Panels (I-P2) 3

1.1 I-X Research Programme .. 3

1.2 I-X Process Panels (I-P2) ... 4

1.3 I-X Domain Editor (I-DE) .. 5

2 Quick Start Guide ... 7

3 Using an I-X Process Panel .. 7

4 Using the I-DE Domain Editor Tool ... 9

4.1 Domain Editor Window ... 9

4.2 Working with the Domain Editor .. 10

5 Using the I-X Messenger Tool.. 11

6 Using the I-Space Tool ... 12

7 Creating your own I-X Process Panel ... 12

8 Creating your own I-X Domain/Process Library............................... 14

9 Further Tailoring ... 16

9.1 Communications Strategy .. 16

9.2 Custom World State Viewer.. 16

10 References .. 16

Appendix A: I-P2 Parameters ... 18

Appendix B: <I-N-C-A> XML Message Formats.................................... 21

Appendix C: Test Menu Setup ... 23

 3

1 Introduction to I-X and I-X Process Panels (I-P2)

1.1 I-X Research Programme

I-X is a research programme with a number of different aspects intended to create a well-
founded approach to allow humans and computer systems to cooperate in the creation or
modification of some product such as a plan, design or physical entity – i.e. it supports
synthesis tasks. I-X may also be used to support more general collaborative activity.

The I-X research draws on earlier work on O-Plan (Tate et.al. 1998; 2000; 2002), <I-N-OVA>
(Tate, 1996), the Enterprise Project (Fraser and Tate, 1995; Stader, 1996; Uschold, et.al.,
1998) and the TBPM project (Stader, 2000) but seeks to make the framework generic and to
clarify terminology, simplify the approach taken, and increase re-usability and applicability of
the core ideas.

The I-X research programme includes the following threads or work areas:

1. I-Core, which is the core architecture, and an underlying ontology for activity and
processes termed <I-N-C-A> (Issues, Nodes, Constraints and Annotations), and the
terminology used to describe systems or applications built in the I-X framework.

2. I-P2, which are I-X Process Panels used to support user tasks and cooperation.

3. I-DE, which is the I-X Domain Editor, which is itself an I-X application but is also used

to create and maintain the domain description, process models and activity
specifications used elsewhere.

4. I-Plan, which is the I-X Planning System. This is also used within I-P2 and other

applications as it provides generic facilities for supporting planning, process
refinement, dynamic response to changing needs, etc.

5. I-Views, which are viewers for processes and products, and which are employed in

other applications of I-X. I-Views can be for a wide range of modalities and types of
user.

6. I-Faces, which are underlying support utilities to allow for the creation of user

interfaces (User I-Faces), inter-agent communications (Communications I-Faces) and
repository access (Repository I-Faces).

7. I-X Applications of the above work areas in a variety of areas. These currently

include:
a. Coalition Operations (CoAX)
b. Emergency and Unusual Procedure Assistance (I-Aid, I-Help, I-Rescue)
c. Support Desks (I-Support)
d. Multi-Perspective Knowledge Modelling and Management (I-AKT)
e. Medical Best Practice Procedures or Protocols (I-Medic)
f. Natural Language Presentations of Procedures and Plans (I-Tell)
g. Collaborative meeting and task support (I-Space: I-Room and I-World).
h. Intelligent Messaging (I-Me).

8. I-X Student Projects, which are deepening and refining a number of aspects of the I-
X research programme.

9. I-X Technology Transfer, including work on standards committees, especially for

process, plan, activity and capability models.

 4

1.2 I-X Process Panels (I-P2)

The aim of an I-X Process Panel (I-P2) is to act as a workflow, reporting and messaging
“catch all” for its user. It can act in conjunction with other panels for other users if desired.

• Can take ANY requirement to:
o Handle an issue
o Perform an activity
o [later: Maintain a constraint]
o [later: Note an annotation]

• Deals with these via:

o Manual (user) activity
o Internal capabilities
o External capabilities (invoke or query)
o Reroute or delegate to other panels or agents (escalate, pass or delegate)
o Plan and execute a composite of these capabilities (expand)

• Receives reports and messages and, where possible, interprets them to:

o Understand current status of issues, activities, constraints and annotations
o Understand current world state, especially status of process products
o Help control the situation

• Copes with partial knowledge

Three example process panels are shown in the figure below. These panels are from a
demonstration of agent systems within a military Coalition context – part of the Coalition
Agents eXperiment – CoAX (Allsopp et.al. 2001, 2002).

 5

An I-X Process Panel supports a user or collaborative users in selecting and carrying out
"processes" and creating or modifying "process products". Both processes and process
products are abstractly considered to be made up on "Nodes" (activities in a process, or
parts of a process product) which may have parts called sub-nodes making up a hierarchical
description of the process or product. The nodes are related by a set of detailed
"Constraints" of various kinds. A set of "Issues" is associated with the processes or
process products to represent unsatisfied requirements, problems raised as a result of
analysis or critiquing, etc.

Processes and process products in I-X are represented in the <I-N-C-A> (Issues – Nodes –
Constraints – Annotations) model of synthesised artifacts (Tate, 2000).

1.3 I-X Domain Editor (I-DE)

The process descriptions used by I-X Process Panels are
kept in a domain library. This can be loaded when a panel
is started, and can be added to dynamically by a user of a
panel.

Simple Mode - the process panels contain a simple, form-
based domain and process editor (right). This allows
simple task breakdown structures to be specified along
with a temporal constraint that the sub-steps should all be
sequentially ordered or all kept in parallel.

Advanced Mode - a more
powerful domain and process
editor allows for multiple
perspectives and views to be
used to create rich process
models beyond those that can
be created with the simple mode
editor. This can be reached by
selecting advanced view from
the Views pull down menu of the
domain editor. I-DE is also
available as a stand-
alone application to
maintain a set of domain
and process libraries.
The advanced editor
provides a “minimal” view
which is deliberately
similar to the Simple
Mode Editor (and could
one day replace it). It
also provides a
“comprehensive” view
that allows the user to
specify more complex
temporal and world-state
(condition/effect)
constraints. Other constraints, like spatial ones or constraints on resources, can also be
specified using the advanced view. A graphical view provides an alternative view to the form-
based views. The graphical view illustrates precedence relationships between the sub-steps

 6

of a process. This view can also be used to specify task breakdown structures via the
expansion of nodes in the graph. In the advanced view, a tabbed option is available to allow
access to related information about a domain model. The minimal, comprehensive and
graphical views are all available via the Activities tab. Also available are “Domain” and
“Grammar” tabs to view further details.

Use of XML and Text Editors - the process and domain models are maintained in XML. You
can also modify them using an XML Editing Tool - such as the freely available Microsoft XML
Notepad (see http://msdn.microsoft.com/xml/notepad/intro.asp) or a text editor.

 7

2 Quick Start Guide

To quickly get started using the I-X Process Panels and run the demonstrations follow the
following procedure. This is specifically for Microsoft Windows platforms – but a similar
procedure can be used on Unix/Linux also.

1. Obtain and uncompress the I-X system distribution. This will create a single directory
with all necessary files. It can be placed anywhere.

2. Ensure that you have a working Java Development Kit environment with the

necessary Java programs on your current path, i.e. you should be able to run a
command “java” from any location. You will need to alter the script provided in
scripts\win\java-command.bat to set the path explicitly if this is not the case.

3. An example for using the I-X Process Panels is available in apps\isample. You can

start up a demonstration by executing (e.g. by double clicking on) 3 of the batch script
files in this sub-directory called scripts\win. Run xml-itest-nameserver.bat (done first
to provide a simple name/address lookup service to the other process panels), and
then xml-supervisor.bat and xml-operator.bat. A process panel customised to have a
name based on your system user name and machine domain name is available by
running xml-ime.bat. Similar scripts are available for Unix systems in scripts\unix.

4. You can then test the panels by sending sample issues between panels – one way to

do that is to use the Test menu on I-Test to send sample issues, activities,
constraints, reports or chat-style messages to other panels.

5. To use communications strategies other than simple inbuilt ones (simple and xml -

which are available immediately), it is necessary to edit some scripts to set the
location of the relevant code on your computer. Edit the script files in
comms*\scripts*.

3 Using an I-X Process Panel

An I-X Process Panel (I-P2) contains a number of sub-panels that describe:

• A set of “issues” to be “handled”.
• A set of “activities” to be “performed”.
• Current state information reflecting the current set of “constraints” to be “respected”.

This includes the status of a range of “process products” being created or
manipulated by the processes

 8

The panel supports it’s user in handling issues, deciding on a course of action and performing
activities, and maintaining awareness of the current state, constraints, process products, etc.

Entries on panels can be expanded using information provided in the process library used by
a panel, or the entries can be passed between panels.

Right click on a line to get a context sensitive menu that describes operations you can
perform on the entry. This includes where relevant the ability to pop-up a window with more
details of the entry (say an activity or an issue), or to expand or contract the display of some
levels of hierarchically specified activities, to send information about the entry to the
Messenger tool for sending on to others (perhaps in a modified form), etc.

A “tools” menu is available to make accessible the following:

• A domain or process library editor to view, edit or add to the list of process
descriptions which may be used to “expand” entries on the process panel.

• A tool to view and change the relationships of the current panel to others (“I-Space”).
• An instant messaging or “chat” tool to communicate in free format or the encouraged

<I-N-C-A> structured forms with other I-X Process Panels and other systems
(“intelligent messaging” or “semantically augmented messaging”).

 9

4 Using the I-DE Domain Editor Tool

The main window of the Domain Editor (the frame) contains several editor panels for editing
different aspects (or constructs) of the domain. Currently the editors available are

• the Global Domain Editor, which edits information about the domain itself (e.g. the
domain name)

• the Activity Editor, which edits information about activities and how they break down
into sub-activities (refinement)

• the Grammar Editor, which currently only shows the patterns that are in use in the
domain

An editor panel may itself have different "views" that are used to display and edit the panel's
constructs. The Activity Editor has three such views:

1. Minimal View: a simplified version of the activity and its refinement. The main
simplification is that no constraints are shown

2. Comprehensive View: a view that can display and edit all of an activity's specification

3. Graphical View: a graphical view that uses nodes and arcs to show an activity's sub-
activities and the temporal relationships between them.

4.1 Domain Editor Window

This window provides access to the most functions of the overall domain editor via its menu
bar and access to the most commonly used functions via its tool bar. The window can display
in one of three styles: simple, tabbed, and card style. The style can be changed via the
Options in the File menu.

The Menu Bar

The menu bar has 5 standard menus:
1. File for closing the Domain Editor and for file access (open/save). All functions here

manipulate the domain as a whole, not individual constructs;

2. Edit for manipulating the current construct, i.e. the construct that is currently shown in
the Domain Editor's panel;

3. View for changing which panel is shown in the Domain Editor and - if applicable - for
changing which view is shown in that panel;

4. Tools for additional support like consistency checks etc.;

5. Help for access to this manual, other help, and information about the application.

The Tool Bar

The tool bar provides access to the most commonly used functions via buttons. All these
functions are also available via the menu bar (in most cases, the image on the toolbar button
is shown in the menu next to the corresponding menu item. The toolbar can be switched on
and off via Options in the File menu. Moving the mouse over a toolbar button will, after a

 10

while, display a "tool tip text" that gives a brief explanation of the button's function.

4.2 Working with the Domain Editor

The Domain Editor maintains different levels of updates. The original domain model that the
editor is started with is considered a public domain model, which other applications may be
using for their own purposes (e.g. within a process panel). This public domain model is kept
as it is unless it is explicitly “published” by the Domain Editor's user. (Note that this is true
whether the Domain Editor is used in stand-alone mode or as part of another application).
There is also a "draft domain model" which is the one that is being edited. The Domain Editor
keeps track of any changes that are made to the draft domain model so that updates to the
original domain model can be made explicitly.

Saving and Reverting

There are 3 levels of saving:

1. When a construct has been edited in the Domain Editor Panel, initially these changes
may be made only in the panel itself, not in the domain construct that is being edited. In
order to transfer changes from the panel into the construct in the draft domain, the user
has to modify the draft, i.e. note the changes into the draft domain via the toolbar button
or the Edit menu. When the user has edited a construct and not modified the draft, the
system will prompt the user to note or discard changes if the user decides to switch
constructs, views, or panels, or if the user decides to save or publish the draft domain.

2. Modifying the draft (noting changes) does not save to file, so the next level of saving is to

save the draft domain to file. As with all editing applications, it is recommended to do this
frequently to ensure that work is not lost. Saving the draft domain to file will write the
whole domain with all its constructs into a file in XML format. This can later be loaded
into the Domain Editor for further editing, or it can be accessed by other applications.

3. The underlying public domain is not changed by any of the above (simple editing,

modifying draft, or saving the draft domain to file). The only way to update the public
domain is to publish the draft domain via the toolbar button or the File menu. When this
happens, the changes are made to the original domain and these chages will be seen by
any applications that have registered as listeners to this domain. Note that publishing is
always done for a whole domain, not for individual constructs. Note also that publishing a
domain will not save it to file, but the same effect can be achieved by saving the draft
domain to file just before or straight after publishing. At that point the draft domain and

 11

the public domain can be represented by the same XML structures. It is a good idea to
publish from time to time even if the Domain Editor is running stand-alone because it will
make the editor more efficient.

It is worth noting that the Global Domain Editor Panel, i.e. the panel that is responsible for
editing details about the domain like its name, only considers domain details as part of its
editing remit, not the constructs within the domain.

While there is no "undo" function that undoes individual editing steps or editing of individual
fields, the following functions are available, corresponding to the 3 levels of saving:

1. Undo: revert a construct to the last time it was saved to the draft domain (via Edit
menu), i.e. undo all changes that have only been made in the editing panel;

2. Revert to published: revert a construct to the public version (via Edit menu), i.e. undo

all changes to this construct since the domain was last published;

3. Re-load: revert the whole domain to the last time it was saved to file by opening that

file via the File menu.

There is a fourth "revert" function for convenience: "discard changes to draft" which reverts
the whole domain to the public version, i.e. undo all changes to all constructs since the
domain was last published.

5 Using the I-X Messenger Tool

The I-X Messenger tool is used to compose and send messages to other panels and agents.
It also shows any “chat” messages received form other agents (in the Transcript window).
You can send messages to your own panel (“me”) and there is a simple group sending facility
(which will be expanded in future releases).

 12

6 Using the I-Space Tool

The I-Space tool allows for the management of the organisational relationships of the current
panel (referred to as “me”) to other panels, agents and external services. New agent names
can be added ion the type in box at the bottom. Existing agents or panels can have their
relationship altered. The Commit button is used to inform the process panel of any addition or
changes to relationships of existing entries. You can undo any changes made to the I-Space
table that have not been committed already.

The relationships allow for the setting up appropriate “Action” menu entries for items on the
panel. The relationships provided are:

Relationship Action Menu Item
Superior Escalate to (with report back)

Peer Pass to (with report back)
Subordinate Delegate to (with report back)

Service Invoke (with report back)
Contact None
None None

Providing an external-capabilities description of the verbs associated with any agent can be
used to selectively show the agent in the Action Item menu only for the given verbs. If no
verb association is provided, it is assumed that all Superiors, peers and Subordinates can
take any item (with any verb). It is expected that an external-capabilities description is given
for a service or it will not appear on the menu at all.

7 Creating your own I-X Process Panel

A single process panel or a small cluster of panels in superior, peer or subordinate
relationships to one another can be quickly adapted to a new application. We will later support
more dynamic and adaptable combinations of multiple panels in more complex organisational
structures (which we called I-Spaces), but much of the necessary support for this is not yet
sufficiently generic to provide in an easily altered form.

An example I-P2 application is provided in the apps\isample directory, which can be copied
and adapted as follows:

• Copy the whole Isample directory to become a new directory with a name of your
choice (e.g. apps\appname).

• In the directory config alter the property file names and contents of those files as you
wish to tailor display names and labels used on the process panels.

• You can modify the ways in which the panel “actions” are set up using “I-Space”
relationships such as superior, peer and subordinate.

• In the directory images add in any logo or logos for panels as you wish. Replacing
the logo images\isample-logo.gif will mean the default logo is amended without
further changes.

 13

• Tailor a panel to a new application usually involves providing a suitable “domain
model” that describes ways in which activities can be refined into more detailed sub-
activities. Domain models in I-P2 are stored in XML format (although a Lisp-oriented
format is also available) and for I-Sample Process Panels are in the domain-library
directory. A domain editor (see below) is provided to create or amend domain
models, and domain models can be augmented while a Process Panel is running.

• You can add appropriate “Test Menu” entries (see below) .

A wide range of parameters can be specified to simply customise a range of things about
each panel. A property file for a panel can specify most of these and can be set using, e.g.,

ix.ip2.Ip2 -load config/isample-supervisor.props

For example, the file config/isample-supervisor.props contains such things as:

symbol-name=Supervisor
display-name=Supervisor I-X Process Panel
logo-line-1=Supervisor I-X Process Panel
logo-line-2=Based on I-X Technology
logo-image=images/isample-logo.gif
domain=isample-supervisor.xml
subordinates=Operator

You can also set one property individually when the process panel program is started using a
command-line argument, such as

 "-display-name=App-Name Whatever"

The domain model including process descriptions available to the panel can be preloaded
from a domain library file (e.g. as in the case above which loads the isample-supervisor.xml
file describing sample processes that the panel is made aware of and can use to “expand”
entries put onto the panel.

It can be convenient to provide some example issues, activities or other entries that can be
added to a panel, which could have come from other systems or panels. It can also be
convenient to provide messages that could be sent to other panels and agents. This allows
simple demonstrations and testing to occur. The contents of the "Test" menu can be set using
an XML file describing the entries, and informing the panel about this file using the
 -test-menu=<pathname>
parameter – see the appendix for details of all parameters. An example test menu file follows.
“me” for the “to-name” means the message is sent to the current panel rather than externally.
The menu text is what actually appears as an entry in the Test menu. The $to item in the
menu-text string (if present) is substituted by the “to-name” of the panel or agent to which
then message is sent.

<?xml version="1.0" encoding="UTF-8"?>
<list>

<test-item
menu-text="Send $to a request for transport"

to-name="Supervisor">
<contents>

<activity priority="high"
report-back="yes">

<pattern>
<list>

<symbol>transport_by_helicopter</symbol>
<item-var>?wounded</item-var>
<symbol>field_hospital_a</symbol>

</list>

 14

</pattern>
</activity>

</contents>
</test-item>

...

</list>

More details of setting up a test menu are provided in the appendix.

You can further tailor an I-X Process Panel to a specific application by renaming and
amending the I-Sample Process Panel code as follows:

• You can rename the java\isample directory to be java\appname and, in that directory,
rename Isample.java to be AppName.java or whatever you wish. Delete the compiled
class files included there.

• Edit this renamed file to change the package name from isample to appname.
• Change the class name Isample to AppName whereever it occurs.
• Change any strings that refer to I-Sample to App-Name as you wish.
• You can provide a customised “state” viewer for panels. A description of how to do

this is in the I-X Developer Guide.
• Recompile the AppName.java code with the compile script provided.
• In the directory scripts\win (and unix) alter the script names and script contents as

necessary to refer to the new name rather than the basic ix.ip2.Ip2 class or the
custom isample.Isample class.

The I-X Process Panels can have a number of “issue handlers” which can handle issues in
specific ways:

• Escalate, Pass and Delegate: One type of handling is to reroute the issue to other
users or panels. At present the issue handlers are defined using information supplied
in the “I-Space” description for a process panel which is currently done by specifying
the superiors, peers, subordinates and contacts parameters (whether via the
command line or via the property file provided on panel start up).

• Invoke: External agents defined as being a “Service” in the I-Space tool appear on

the action menu as capabilities to address items that they are registered as being
able to handle (though defining their “external-capabilities” in panel properties.

• Connect: Actions of forma (connect panel-a relationship) have a connect handler that

sets the appropriate entries in I-Space automatically.

8 Creating your own I-X Domain/Process Library

Each I-X Process Panel can make use of a domain model or process library which describes
ways in which issues can be handled or high level activities can be broken down into more
detailed activities which may be performed. A panel can operate without such process
descriptions, but becomes more useful and helpful if it has such knowledge. A process library
can be loaded when a panel is started up, and additional process descriptions can be
provided while it is running, and indeed they can be saved at any stage to amend the stored
version for later preloading.

You can create the process descriptions with the I-X Domain and Process Editor provided. It
can be run on its own or can be called from within a Process Panel from the Tools menu.
Since the process descriptions are actually stored in a simple XML format, it is also possible
to use any XML editor to change the descriptions if you wish. The format of the XML is as
follows:

 15

domain ::=

<domain>
<name>string</name>
<refinements><list>refinement...</list></refinements>

</domain>

refinement ::=
<refinement>

<name>string</name>
<variables><list>variable...</list></variables>
<pattern><list>...</list></pattern>
<issues><list>issue...</list></issues>
<nodes><list>node-spec...</list></nodes>
<constraints><list>constraint...</list></constraints>
<orderings><list>ordering...</list></orderings>
<comments>string</comments>

</refinement>

variable ::=
<item-var>?name</item-var>

issue ::=
<issue

status="status"
priority="priority"
sender-id="name"
ref="name"
report-back="yes-no">

<pattern><list>pattern-element...</list></pattern>
</issue>

node-spec ::=
<node-spec id="name">

<pattern><list>pattern-element...</list></pattern>
</node-spec>

constraint ::=
<constraint

type="name">
<parameters><list>pattern-element...</list></parameters>

</constraint>

ordering ::=
<ordering>

<from>node-end-ref</from>
<to>node-end-ref</to>

</ordering>

node-end-ref ::=
<node-end-ref

end="end"
node="name">

</node-end-ref>

end ::= begin | end

status ::= blank | complete | executing | possible | impossible | n/a

priority ::= lowest | low | normal | high | highest

 16

yes-no ::= yes | no

pattern-element ::=
<symbol>name</symbol> |
<string>text</string> |
<item-var>?name</item-var> |
<integer>digits</integer> |
<long>digits</long> |
<double>...</double> |
<list>pattern-element...</list> |
other pattern-elements are possible

Example domain models and refinements can be found in the apps\isample\domain-library
directory. Variables begin with “?” and can be used anywhere. Unbound variables appear in
the process panel and can be bound by the user of the panel (and in later versions by
external query capabilities). The representation used is based on the <I-N-OVA> constraint
representation of activity (Tate, 1996).

9 Further Tailoring

An I-X Developer Guide is available with details on more ways to tailor I-X Process Panels
and systems. This usually involves Java programming add-ons.

9.1 Communications Strategy

I-X Process Panels can also be used with any of a number of “Communications Strategies”.
Example strategies are provided for the DARPA CoABS Grid (“grid”), the University of West
Florida Institute of Human and Machine Cognition (UWF/IHMC) KAoS (“kaos”), the Jabber
(www.jabber.org) XML framework (“jabber”), and the UK EPSRC-sponsored Advanced
Knowledge Technologies AKT Bus (“akt”). Also provided is an adaptor for a simple direct link
between panels possibly supported by a simple name server (referred to as the “simple” or
“xml” communications strategy). Writing a suitable Communications Strategy can provide
other message transport routes. More details are available in the I-X Developer Guide.

9.2 Custom World State Viewer

It is possible to replace the simple table view used for the current world state. Viewers that
show the state information clustered into the various objects or process products being
handled, and giving their attributes and values in a convenient form can be provided.
Graphical images of the process products can be added where required. This could include
map-based data to show the position of the objects.

10 References

Allsopp, D., Beautement, P., Bradshaw, J.M., Carson, J., Kirton, M., Suri, N. and Tate, A.
(2001) “Software Agents as Facilitators of Coherent Coalition Operations”, 6th International
Command and Control Research and Technology Symposium, US Naval Academy,
Annapolis, Maryland, USA, 19-21 June 2001.

Allsopp, D., Beautement, P., Bradshaw, J.M., Durfee, E.H., Kirton, M., Knoblock, C.A., Suri,
N., Tate, A. and Thompson, C.W. (2002) "Coalition Agents Experiment: Multi-Agent Co-
operation in an International Coalition Setting", Special Issue on Knowledge Systems for
Coalition Operations (KSCO), IEEE Intelligent Systems, June 2002.

 17

Fraser, J. and Tate, A. (1995) "The Enterprise Tool Set -- An Open Enterprise Architecture",
Proceedings of the Workshop on Intelligent Manufacturing Systems, International Joint
Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August 1995.

Stader J., Moore J., Chung P., McBriar I., Ravinranathan M., Macintosh A.. (2000) "Applying
Intelligent Workflow Management in the Chemicals Industries"; in “The Workflow Handbook
2001”, L. Fisher (ed), Published in association with the Workflow Management Coalition
(WfMC), pp 161-181, Oct 2000.

Stader J. (1996) “Results of the Enterprise Project”, in Proceedings of Expert Systems '96,
the 16th Annual Conference of the British Computer Society Specialist Group on Expert
Systems, Cambridge, UK, December 1996.

Tate, A. (1996) "The <I-N-OVA> Constraint Model of Plans", Proceedings of the Third
International Conference on Artificial Intelligence Planning Systems, (ed. Drabble, B.), pp.
221-228, Edinburgh, UK, May 1996, AAAI Press.

Tate, A. (1998) “Roots of SPAR”, in "Special Issue on Ontologies", Knowledge Engineering
Review, Vol.13 (1), March 1998, Cambridge University Press.

Tate, A. (2000) “<I-N-OVA> and <I-N-CA> - Representing Plans and other Synthesized
Artifacts as a Set of Constraints”, AAAI-2000 Workshop on Representational Issues for Real-
World Planning Systems, at the National Conference of the American Association of Artificial
Intelligence (AAAI-2000), Austin, Texas, USA, August 2000.

Tate, A., Dalton, J. and Levine, J. (1998) "Generation of Multiple Qualitatively Different Plan
Options", Fourth International Conference on AI Planning Systems (AIPS-98), Pittsburgh, PA,
USA, June 1998.

Tate, A., Dalton, J. and Levine, J. (2000) “O-Plan: a Web-based AI Planning Agent”, AAAI-
2000 Intelligent Systems Demonstrator, in Proceedings of the National Conference of the
American Association of Artificial Intelligence (AAAI-2000), Austin, Texas, USA, August 2000.

Tate, A., Levine, J., Dalton, J. and Nixon, A. (2002) “Task Achieving Agents on the World
Wide Web”, in “Creating the Semantic Web”, Fensel, D., Hendler, J., Liebermann, H. and
Wahlster, W. (eds.), MIT Press, 2001.

Uschold, M., King, M., Moralee, S. and Zorgios, Y. (1998) "The Enterprise Ontology", in
"Special Issue on Ontologies", Knowledge Engineering Review, Vol.13(1), March, 1998,
Cambridge University Press.

 18

Appendix A: I-P2 Parameters

IPC

-symbol-name=symbol

Note that symbol-name, by default, also becomes the ipc-name. If
not provided, the default symbol-name is set to
“IX-<user-name>@<machine-name>”.

-ipc-name=name

Note that ipc-name is only available for special uses. It is
recommended that symbol-name is used generally to name agents, and
this will by default be used for the ipc-name. Wherever agent
names are required, the ipc-name is used.

-ipc=strategyName
-ipc=class

strategyName can be simple (default) or xml using built in support. With suitable
communications strategy add-ons other strategies can be specified such as: grid, kaos,
jabber or akt.

See the javadoc for IPC.getCommunicationStrategy(String strategyName)

Default/Simple and XML Communication Strategies

-port=number

Tells the agent to use a specific port number rather than to ask the underlying operating
system to allocate a free one. This is especially useful in environments with a firewall.

-host=hostname

Used to tell the agent what to call the machine it is running on when the default name will be
incorrect. The default is the name returned by

 InetAddress.getLocalHost().getHostName()

-run-name-server

Tells the agent to run a name-server.

-name-server
-name-server=servername:port
-no name-server

Tells the agent whether to use a name-server to look up the addresses of other agents, and if
so what host and port to connect to. The name-server servername:port defaults to
localhost:5555

Jabber Communication Strategy

-jabber-server=hostname (e.g. jabber.org or akt.aiai.ed.ac.uk)
-jabber-username=username
-jabber-password=password
-jabber-resource=resource (I-X by default)

 19

Usually leave the jabber-resource at its default value. The assumption is made that all other
panels with which this panel will communicate will share the same resource name. Hence, the
resource name is used for two purposes:

1. to distinguish I-X panel jabber clients from non-I-X panel jabber clients, and;
2. to distinguish I-X panel clients belonging to a particular I-X 'cluster' from other I-X
panels.

Caution should be applied when setting this parameter to anything other than its default
value.

-jabber-presence=keyword (e.g. Online)
-jabber-allow-queuing=boolean (default false)

Can set true to allow asynchronous communications between panels that are not on-line at
the same time (queuing is provided by Jabber servers). The default mode (false) will indicate
a communications failure if the target recipient resource is not on-line or, if no resource is
specified, the target user has no on-line resources at all. (In the latter case, if no resource is
specified and the target user has an I-X Process Panel on-line, then this Panel will be the
preferred destination for the message.)

IXAgent

-debug=boolean

Set to true for more detailed diagnostics in the Java console window.

-classic=boolean

Use alternative (simpler) interface for table views and other user interface elements.

-domain-editor-class=classname
Possible values are currently:

ix.iview.DomainEditor
ix.iview.SimpleDomainEditor

Select domain editor to use.

IP2 Domain Library

-domain-library=pathname (URL syntax)

-domain=filename

Initial Panel Contents (Initial Plan)

-plan=pathname (URL syntax)

An XML file can be provided to specify the initial plan or initial
panel contents on start up.

IP2 Visual Appearance

-display-name=text

Note that display-name is set to “<symbol-name> Process Panel” if
not explicitly set.

-logo-line-1=text
-logo-line-2=text
-logo-image=pathname (URL syntax)
-metal-theme-secondary-3=colour

 20

-frame-size=WIDTHxHEIGHT

The initial width and height of the process panel in the form
WIDTHxHEIGHT (e.g. 800x400)

-font-increment=integer

The relative font size for text, buttons and labels in I-X process
Panels. E,g, 2, 4 or –2. Odd numbers (e.g. 1 or 3) may not have
bold fonts installed on all systems).

IXAgent I-Space

-superiors=namelist
-subordinates=namelist
-peers=namelist
-contacts=namelist

-external-capabilities=name:verb,...

Note that namelist is a list of names of other process panels or
external agent resources. A namelist is comma separated, and the
list cannot contain spaces.

external-capabilities specifies the verbs associated with any
panel name or external agent name. If the panel or agent is not
in a defined relationship, then it is considered to be a
“resource” and will only be available for the specific verbs
specified. If it is already in a defined relationship (usually
for other I-X Process Panels) then it is treated as a restriction
specification, so the relevant action menu entries only come up
for those specific verbs – rather than for any pattern verb.

Test Menu

-test-menu=pathname (URL syntax)

An XML file can be provided to set the Test menu entries that
appear in the top right corner of a process panel, and which can
be convenient for testing and demonstrations.

General Notes

1. Filenames and pathnames are relative to the current directory when an application
is run. This is usually the root directory for an I-X application using default start up
scripts (i.e., <I-X-base-directory>\apps\<app-name>\).

2. When providing command line arguments, the "-" is not part of the parameter

name. It is just command line syntax.

3. -load is not a parameter. It is syntax that says to load name=value lines from a
file. More than one -load may be specified.

4. -no and -not can negate the following parameter (which is written without the initial

"-"). It is equivalent to giving the parameter the value "false" but can be used in
cases where it would seem odd to explicitly say "=false".

 21

Appendix B: <I-N-C-A> XML Message Formats

An I-X Process Panel can be sent a number of XML format messages from other agents or
systems to give it issues to address, activities to perform and reports to note. A Test agent
(called I-Test) is provided to give a simple way to try this out. The format of these messages
is as follows:

issue ::=
<issue

status="status"
priority="priority"
sender-id="name"
ref="name"
report-back="yes-no">

<pattern><list>pattern-element...</list></pattern>
</issue>

activity ::=
<activity

status="status"
priority="priority"
sender-id="name"
ref="name"
report-back="yes-no">

<pattern>pattern-element...</pattern>
</activity>

constraint ::=
<constraint

type="name"
relation="name">

<parameters>
<list>

<pattern-assignment>
<pattern>pattern element...</pattern>
<value>pattern element...</value>

</pattern-assignment>
</list>

</parameters>
</constraint>

constraint types allowed at present are “world-state” and the relations
for this are “condition” and “effect”. The value must be given, but a
default “value” can be set to “true”.

report ::=
<report

report-type="report-type"
priority="priority"
sender-id="name"
ref="name">

<text>string</text>
</report>

chat-message ::=
<chat-message

sender-id="name">
<text>string</text>

</chat-message>

 22

pattern-element ::=
<symbol>name</symbol> |
<string>text</string> |
<item-var>?name</item-var> |
<integer>digits</integer> |
<long>digits</double> |
<double>...</integer> |
<list>pattern-element...</list> |
other pattern-elements are possible

report-type ::= success | failure | progress | information | event

priority ::= lowest | low | normal | high | highest

yes-no ::= yes | no

status ::= blank | complete | executing | possible | impossible | n/a

Notes

Strings and symbols that contain some special symbols need to have these encoded. Use
"&" for ampersands, "<" for less-than, and ">" for greater-than.

In attribute values, double quote should be encoded as """.

It is possible to have a variable match all of the remaining elements in a list by using the
special symbol "&rest" followed by an ordinary variable. I.e.,
<symbol>&rest</symbol><item-var>?name</item-var>

 23

Appendix C: Test Menu Setup

Test-menu Files

To use a test-menu file, have a command-line arg or .props file entry test-menu=filename,
e.g., ip2 -test-menu=somedir/test-sequences.xml

The file contains a list; each element describes a single entry on the test menu. In outline, the
file therefore looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<list>
 ...
</list>

Three types of entry are allowed:

TEST-ITEM ::=
 <test-item
 delay-before="INT">
 <menu-text>STRING</menu-text>
 <to-name>STRING</to-name>
 <contents>SENDABLE</contents>
 </test-item>

TEST-SEQUENCE ::=
 <test-sequence>
 <menu-text>STRING</menu-text>
 <test-items><list>TEST-ITEM...</list></test-items>
 </test-sequence>

TEST-SEQUENCE-GENERATOR ::=
 <test-sequence-generator
 initial-delay="INT"
 delay-between="INT">
 <menu-text>STRING</menu-text>
 <template>TEST-ITEM</template>
 <to-names><list>...</list></to-names>
 <content-strings><list>...</list></content-strings>
 </test-sequence-generator>

A SENDABLE is an issue, activity, constraint, report or chat-message.

Note that string-valued fields (such as menu-text) may be written as attributes instead of as
elements if the string is sufficiently simple.

Test items, sequences, and sequence-generators do not have to come from files. They are
ordinary Java objects that can also be constructed in Java. However, it is often more
convenient to specify them in XML.

In each of the above syntaxes, the menu-text is a string that is displayed in the "Test" menu in
the top right corner of an I-X Process panel. For a test-item only, any occurrence of "$to" in
the menu-text will be replaced by the value of the same test-item's to-name. (That is not
done for a sequence, because the messages in a sequence might be to different
destinations.)

A to-name is the symbol-name of the agent the test-item's contents should be sent to.

 24

The delay-before in a test-item is the number of milliseconds to wait before sending the
contents. Delay-before defaults to 0.

Note that within the SENDABLE test item contents you can specify a sender-id if you wish it
to look like an item came from that agent or panel. The syntax for SENDABLE items is
included in an earlier section.

Here is an example.

 <test-item
 menu-text="Give $to a report-back example issue"
 to-name="me">
 <contents>
 <issue priority="high"
 report-back="yes">
 <pattern>
 <list>
 <symbol>note</symbol>
 <string>sample note text</string>
 </list>
 </pattern>
 </issue>
 </contents>
 </test-item>

That test-item would appear in the "Test" menu as "Give me a report-back example issue"
and when selected would send the panel an issue with priority=high, report-back=yes, etc.

Here is a test-item that sends a report after a delay of 4 seconds:

 <test-item menu-text="Send $to a single report with a delay"
 to-name="me"
 delay-before="4000">
 <contents>
 <report report-type="information"
 text="Here's some information" />
 </contents>
 </test-item>

A test-sequence contains a list of test-items. The menu-text of those items is ignored (and
needn't be specified). The test-sequences' own menu-text appears in the "Test" menu.

When the test-sequence is selected from the "Test" menu, it processes the list of test-items in
order. For each item, it waits for the item's delay-before milliseconds and then sends the
item's contents to the agent named by the item's to-name. This allows a sequence to send
messages to a variety of different destinations. By using delay-before values of zero, it is
possible to get several messages to be sent (almost) at once.

Each item in a test-sequence may have a different type of contents. That makes it possible to
send an issue to one agent, a report to another, and so forth.

However, in some cases, all of the items in a sequence will have certain things in common;
and then it may be possible to use a test-sequence-generator.

A test-sequence-generator contains a single test-item that is used as a template. The menu-
text of that item is ignored (and needn't be specified), but all other fields may be significant.

A test-sequence may contain either a list of to-names or a list of content-strings, but not both.

 25

If it contains a list of to-names, a sequence is constructed by making a copy of the template
for each of the to-names, replacing the copy's to-name each time. The resulting sequence
will send essentially the same message to a series of agents

If there is a list of content-strings instead, the sequence contains one copy for each of the
content-strings, with the "main contents" of the copy replaced by the corresponding content-
string, suitably interpreted. This sequence will send a series of similar messages of the same
type (issue, report, or whatever) to a single agent: the agent specified by the to-name of the
template.

The interpretation of a content string depends on the class of the template's contents. If the
template contains an issue or activity, the content string is treated as a pattern and parsed in
the usual way (with ?names being variables etc); if the template contains a report or chat-
message, the content-string is placed in the object's text field. Constraints are not yet
supported (although they may appear in ordinary test-sequences.)

The test-items in the generated sequence have delay-before values determined as follows: If
the generator specifies an initial-delay, it becomes the delay-before of the first item in the
generated sequence. If the generator specifies a delay-between, it becomes the delay-before
of all subsequent items in the sequence. Otherwise, the template' delay-before is preserved.

Here is an example that when selected will send a series of chat-messages:

 <test-sequence-generator initial-delay="0" delay-between="2000"
 menu-text=”Send me some example chat messages”>
 <content-strings>
 <list>
 <string>Sample chat text 1</string>
 <string>Sample chat text two</string>
 <string>More chat</string>
 <string>This time there will be
several lines of text
 and maybe some indentation
 just for variety
and a last line</string>
 </list>
 </content-strings>
 <template>
 <test-item>
 <to-name>
 <string>me</string>
 </to-name>
 <contents>
 <chat-message />
 </contents>
 </test-item>
 </template>
 </test-sequence-generator>

Menu separators can be specified in the test-menu file. The XML syntax is

 <test-separator />

Just include it in the list between the test items you want to separate.

Using the "Test" Menu

Entries in the "Test" menu do not have to send messages. They don't even need to involve
any of the objects described here. However, this section will describe only the cases that can
be specified by a test-menu file.

 26

If a single message is to be sent, without a delay, it is sent as soon as its "Test"-menu entry is
selected. That is so regardless of whether it came from a single test-item or from a 1-item
sequence.

Otherwise, a new thread is created to supervise the message sending. While that thread is
running, the corresponding menu entry is prefixed by "Stop: " and, if selected, stops the
thread. When the thread terminates, the entry reverts to its original form.

However, all messages are actually sent by the GUI event thread just as in the normal
operation of a panel). The other thread exists only to control the timing.

Messages sent to "me" are given directly to the panel rather than going via the
communication strategy.

	Introduction to I-X and I-X Process Panels (I-P2)
	I-X Research Programme
	I-X Process Panels (I-P2)
	I-X Domain Editor (I-DE)

	Quick Start Guide
	Using an I-X Process Panel
	Using the I-DE Domain Editor Tool
	Domain Editor Window
	Working with the Domain Editor

	Using the I-X Messenger Tool
	Using the I-Space Tool
	Creating your own I-X Process Panel
	Creating your own I-X Domain/Process Library
	Further Tailoring
	Communications Strategy
	Custom World State Viewer

	References
	Appendix A: I-P2 Parameters
	Appendix B: <I-N-C-A> XML Message Formats
	Appendix C: Test Menu Setup

