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Abstract 
 

Information sharing among coalition partners must balance the benefits that can accrue from 
improved coordination with the risks of releasing information that ideally would be kept private. 
We consider how advanced privacy technologies can enable improved information sharing among 
coalition partners by both providing increased control over how information is used or released, 
and enabling principled characterizations of the impact of individual and cumulative sharing 
activities. We describe this work in the context of a humanitarian aid and disaster relief scenario, 
showing how the technologies can enable significantly increased and informed sharing.    

 

1.  Introduction   
Information sharing is a major challenge for coalition operations. Coalitions can range in 
composition from single-nation, inter-service or inter-agency teams to large, multi-national 
groups augmented with non-governmental organizations (NGOs) and corporations. Members can 
range from close allies to infrequent collaborators to adversaries or competitors. Furthermore, 
these relationships can change abruptly, underscoring the need for flexibility and adaptiveness. 

Effective coordination with partners can require the intentional release of information that 
ideally would be held private, given the anticipated benefits that can result. However, information 
security mechanisms developed for the military have been designed to impede rather than 
facilitate sharing, due to concerns over unintended consequences of information releases. The 
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cryptography community has made significant strides in recent years in developing advanced 
technologies that can be leveraged to safeguard privacy (for example, see the description in 
[Archer et al., 2016]). This paper describes an exploration into how these types of technologies 
can be employed to enable informed and controlled information sharing within coalitions.  

To ground our work, we have been considering a use case rooted in humanitarian aid and 
disaster relief (HADR). We chose to focus on HADR for several reasons. First, it is representative 
of real-world, multi-nation coordination tasks that happen on a regular basis. Second, it 
encompasses privacy concerns at multiple levels: individuals, intra-organization, and inter-
organization, with organizations spanning nation-based, commercial, and NGOs. Third, it 
supports a range of challenging privacy problems, including access to both structured and 
unstructured data, and multi-party coordination tasks that require sequences of information 
exchanges and joint computations. 

At the heart of our approach is a platform called PRIME (Privacy-preserving Information 
Mediation for Enterprises). PRIME provides privacy management by integrating a set of privacy 
controls, comprised of security mechanisms and policy setting capabilities for data owners, as 
well as various analysis tools for measurement and prediction of information leakage. Beginning 
with requests from authorized users, PRIME manages request processing using permitted data 
and services to provide a response that satisfies the requester’s needs while remaining in 
compliance with the privacy requirements of data owners. Many tasks within coalitions involve 
ongoing, temporally extended coordination. For this reason, our approach adopts a process-
oriented perspective, performing selection and configuration of workflows for responding to 
information and coordination requests while taking into account privacy implications for their 
execution.  Figure 1 provides a graphical depiction of this concept. 

 
 

Figure 1. PRIME concept: privacy-aware request processing 
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 The privacy technologies used currently within PRIME include searchable encryption, secure 
multi-party computation, function secret sharing, and differential privacy. To complement those 
technologies, PRIME also leverages information-theoretic characterizations of what is being 
revealed through data releases, thus enabling informed decisions regarding the implications of 
sharing.  

Much attention in the security community and the media is focused on adversaries that access 
data systems without authorization, for example by stealing credentials or exploiting software 
vulnerabilities. In this work, we focus on adversaries that access information solely through 
authorized channels. We note that such adversaries may still exploit that legitimate access to 
obtain information that an owner would prefer to keep private, for example by performing more 
data accesses than typically expected, or by inferring connections between data that are not 
explicitly related. 

The remainder of the paper is organized as follows. Section 2 summarizes our HADR use 
case.  Section 3 presents the core our PRIME information mediation platform, covering policy, 
workflow management, and services.  Section 4 describes the privacy technologies that 
incorporated into PRIME to date and provides examples of their use. Section 5 describes 
directions for future work. Section 6 presents our conclusions.  

2.  Use Case: Humanitarian Aid/Disaster Relief (HADR) 

Within our HADR scenario, a typhoon has caused extensive damage across a set of countries in 
the Pacific and relief (food, medicine, water, fuel, shelter, security, etc.) is needed in a number of 
communities. Adding to the complexity of the situation is the outbreak of a deadly and highly 
infectious disease that begins working its way through the populace.    

The use case focuses on three fictional nations (Cebu, Bohol, Siquijor) that have sustained 
significant damage. To enable the use of state-of-the-art mapping and visualization capabilities, 
we elected to ground these fictional nations in real-world geographic entities, namely islands in 
the Philippines (see Figure 2). Each nation has five communities, which are marked by push-pins 
in the map.  

HADR activities are being organized at multiple levels. Response Coordinators have been 
defined for each community and nation; there is also an over-arching International Response 
Coordinator to address cross-nation issues. There are ships from multiple nations in the general 
vicinity that could potentially provide resources to assist the impacted areas. An ad hoc coalition 
forms among nations (both aid providers and aid recipients) with varying degrees of 
amity/hostility/trust towards each other in order to distribute resources and to support necessary 
evacuations. Coalition members, while eager to coordinate on the relief effort, must take steps to 
ensure that information sharing is deliberate and conducted in a manner consistent with their 
organizational policies on information sharing.  
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To simulate the pandemic outbreak, we used the well-known Susceptible, Infectious, 
Removed, (SIR) compartmental model of disease progression [Kermack & McKendrick, 1927], 
augmented to support a Deceased compartment (i.e., an SIRD model); 
 

• S(t): # individuals not yet infected at time t 
• I(t): # individuals currently infected at time t 
• R(t): # individuals recovered at time t 
• D(t): # individuals deceased at time t 

Possible state progressions for an individual are summarized below: 
 

 
The standard model computes aggregate SIRD totals; we enhanced the model to track disease 

state for individuals and to support inter-community transmission. Figure 3 shows the equations 
used in the simulation along with a sample progression of the disease for a given set of model 
parameters. 

Within this overall HADR use case, our focus to date has been on the three detailed scenario 
threads summarized below.  

 
 
 
 

Figure 2. HADR scenario setting: three fictitious island nations, each with five communities 
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Figure 4. Model used to generate pandemic data, with graph of a sample progression for 
one community 

• Privacy-aware COP: The operational objective in this thread is to provide a continuously 
updating common operational picture (COP) to the coalition members for ships in the 
area of responsibility. The privacy challenge is to provide information that will facilitate 
situational awareness and coordination without revealing information about ship 
positions, trajectories, and capabilities to parties that should not receive it. In particular, 
different nations will receive different views of the COP, based on controls imposed by 
the individual data owners. 

• Pandemic: The operational objective in this thread is to predict the progression of a major 
disease outbreak through the impacted communities and to take steps to counter it. This 
thread introduces the challenge of protecting personally identifying information (PII) 
within medical records of individuals in the impacted communities while providing 
access sufficient to enable accurate characterization of the disease and its spread. A 
second privacy challenge relates to protecting information about certain aspects of the 
disease itself, to avoid inducing panic that could lead to mass migration and increased 
transmission among communities. 

• Aid Distribution: This thread focuses on allocating and distributing resources (food, 
water, medicine) from coalition ships in the area to provide relief to hard-hit 
communities. Allocation and distribution planning require knowledge of ship positions, 
capabilities, and content, as well as of transportation and logistical capabilities in areas to 
which aid will be delivered. Each of these elements has contextually dependent privacy 
implications.   
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3.  PRIME Platform  

3.1  Overall Design 

PRIME has been designed as an information mediator that provides access to data in accord with 
privacy restrictions imposed by data owners (see Figure 1). The PRIME platform leverages two 
proven, core technologies:  

• A service-oriented architecture (SOA), called SIMON (Smart Integration Manager 
Ontologically Networked), that provides industry-standard identity management, policy 
enforcement, and micro-service capability integration. SIMON has been used to build and 
deploy a number of U.S. government systems for multi-nation information sharing.1  

• An adaptive agent platform, called Lumen, that is used as a high-level workflow engine 
for processing requests within the system. Lumen is a hardened implementation of the 
SPARK framework [Morley & Myers, 2004], which has been operationally deployed to 
support adaptive task execution within the U.S. Army’s Command Post of the Future 
[Myers et al., 2011]. 

Requests are processed initially in SIMON, making use of its native authentication and logging 
capabilities in a pre-processing phase. Acceptable requests (as determined by identity 
management policies) are then forwarded to Lumen, which applies workflow models to respond 
appropriately. These responses can involve posting service requests back to SIMON for retrieving 
and processing data, or invoking various privacy technologies. Before making these service 
requests, the system consults a policy reasoning engine, built on an ontology framework called 
Sunflower [Ford et al., 2016], to determine appropriate controls on query-related data accesses. 
The Lumen workflow orchestration assembles the results and returns them to the user’s display, 
via the SIMON framework services. Throughout, logging is performed to track all accesses and 
transformations to data, providing the means to support continuous awareness of what 
information has been released, to whom, and for what purpose. 

The computational environment in which the system operates include a range of data and 
processing capabilities, wrapped as services within the SIMON SOA, that are leveraged during 
workflow execution. Most interesting here are the privacy-enhanced data and services, which are 
used to protect information.  Section 4 elaborates further on those technologies.  

                                                
1 For example, SIMON was used to build the Cooperative Situational Information Integration (CSII) system 
for US Southern Command (US SOUTHCOM). CSII integrates partner nations with the U.S. into a 
regional, web-based, unclassified, network-centric information sharing system that spans air, maritime, and 
land domains.  
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Figure 5. PRIME platform architecture 

3.2  Workflow Management  

The workflow manager in the PRIME platform responds to user requests in a manner that is 
consistent with privacy policies defined by data owners. In particular, a given request may require 
a sequence of information retrieval and processing steps, each of which must be performed in a 
manner permitted by the policies. Thus, while the policy reasoning engine provides the capability 
for representing and reasoning with policies, the workflow manager is responsible for policy 
enforcement.  

Workflows are used for two purposes in the current system. One is to support processing and 
coordination tasks that necessarily involve multiple data accesses and computations. For example, 
in response to a user’s request for berth allocations, the PRIME workflow manager orchestrates 
predefined queries and computations to perform the allocation. 

The second use of workflows is to compensate for technical shortfalls in query support within 
the encrypted database technology, which currently supports a restricted subset of SQL.2 Relative 
to our HADR use cases, current gaps relate primarily to advanced/aggregate query capabilities. 
For such gaps, workflows decompose the complex queries into simpler ones that fit within the 

                                                
2 We anticipate less need for compensation of this type in the future, given the rapid advances being made 

in encrypted database technologies.  
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capabilities of the current query language, invoke those simpler queries, and then aggregate the 
results for presentation to the user. In other words, the workflow manager effectively performs 
the database operations not supported currently in the encrypted database. This approach has the 
potential to leak information from intermediate results. One possible way to address this leakage 
(to be explored in future work) is to compile this workflow into code that can be migrated to the 
client; if intermediate results are sent encrypted, then the potential for additional leakage is 
greatly reduced.  

3.3  Policies 

Data owners can define policies that limit access to structured data based on characteristics of the 
requester, request history, and request details. Policies are enforced through a query rewriting 
mechanism (described in the next section) that guarantees all information releases from encrypted 
databases are sanctioned by relevant data owners. Currently, policies are limited to controlling 
query access to structured data and web services. In future work, they will be extended to control 
access to a broader range of data types and information services. 

The details of the policy language are beyond the scope of this paper. At its core, however, 
the representation allows expressive specification of constraints for accessing specific pieces of 
data as well as aggregate information (e.g., counts and averages), leveraging an underlying 
ontology of classes and relations. The policy representation also contains two constructs that are 
particularly important for privacy controls within coalition settings. One construct is an override 
mechanism, which enables one policy to take precedence over another in the event that they 
conflict. The second is an explicit linkage to organizational structures, which can provide the 
basis for defining overrides. Within the HADR use case, for example, nation-level policies are set 
to override community-level policies. Together, these constructs enable increased modularity of 
representation for policies within hierarchically structured organizations, compared to having to 
explicitly embed override conditions within policies for lower-level organizations. Overall, the 
policy representation is much richer than that of entitlement mechanisms in standard information 
systems, providing the flexibility to express the kinds of complex privacy restrictions necessitated 
in a coalition setting.  
 One interesting property of the policy reasoner is that it can generate residual constraints that 
serve as conditions for accessing requested information. In particular, policies do not gate access 
on a yes/no basis. For example, a policy may allow a Response Coordinator to access 
demographic information for people in a community but only for people older than thirteen.  In 
the event that a request is made by the Response Coordinator for demographic information, he 
would be returned only the records for appropriately aged individuals.  

Figure 5 illustrates the application of policies within the HADR use case, showing different 
views of information depending on the policies in force for different information requestors. 
Here, pie-charts depict percentages of the population in the different SIRD compartments. As 
shown, the International Response Coordinator is allowed to see nation-level views of the SIRD 
data (left); the Cebu City Coordinator is allowed to see a community-level view for its own 
community (middle); and the Bohol Nation Coordinator can see the community-level view for 
Bohol communities but only nation-level views for other communities (right).  
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Figure 6. Policy-differentiated information access, with different content and resolution 
based on community, national, and international roles 

3.4  Policy enforcement 

As noted above, the policy reasoner stores policies and makes decisions about what policies apply 
(and how) to a particular request. Actual enforcement of the policies, however, is done within the 
workflow manager.  

Our current approach to policy enforcement centers on the notion of policy-safe queries 
(depicted in Figure 6). A given query is made policy safe by reformulating it to ensure that all 
information accesses are allowed given current policies. The simplest way to make a query policy 
safe is by reducing it to a ‘null’ query. However, our goal is to maximize the exchange of 
information while remaining compliant with policies. To this end, we developed an approach for 
automatically rewriting SQL queries to provide maximal access. With this approach, an initial 
query gets mapped to a collection of derived queries, some with additional WHERE clauses (to 
limit access to records) and some with SELECT clauses removed (to prevent access to data that 
should not be revealed to that user). The results of executing this modified set of queries are then 
merged to provide the overall policy safe response to the query. The additional constraints for the 
WHERE clauses and the set of SELECT clauses to be removed are generated by the policy 
reasoning engine.  
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Figure 7. Policy-safe query reformulation 

Figure 7 shows an example of this policy safe reformulation for a particular SQL query that 
seeks to retrieve information (name, gender, birthdate, nation) for evacuees that have tested 
positive for an emerging virus, ZV1. Extant policies from different nations limit what information 
that requestor is allowed about their citizens: while Japan places no restrictions, the U.S. 
disallows access to birthdates and New Zealand disallows access to gender.  

Consider first the case of Japanese evacuees. Because there are no restrictions in this case, the 
query can be made mostly as is, simply adding a constraint to the WHERE clause limiting the 
scope to evacuees from Japan (step 1). In step 2, separate queries are made for the countries that 
imposed limits on access. For records from New Zealand, the query is modified to exclude gender 
from the SELECT clause; for records from the U.S., the query is modified to exclude birthdate. In 
step 3, these partial results are then aggregated by the workflow manager into a composite result 
to be returned to the requestor.  
 

 

Figure 8. Example of policy-safe query reformulation, with modifications highlighted in red. 

Query:	retrieve	info	for	ZV1-positive	evacuees

SELECT	name,	gender,	birthdate,	nation

FROM	evacuee
WHERE	ZV1Positive	=	TRUE;

Policies
• US:	no	access	to	birthdate

• NZ:	no	access	to	gender

• Japan:	no	restrictions

Policy-safe	 response:

1.	Collect	results	for	countries	with	no	restrictions

SELECT	name,	gender,	birthdate,	nation	FROM	evacuee
JOIN community	on	community.id =	evacuee.community_id

JOIN organization	on	organization.id =	community.organization_id

WHERE	ZV1Positive	=	TRUE	AND	organization_name IN	(‘Japan’)

2.	Collect	filtered	results	 for	countries	with	restrictions

SELECT	name,	gender,	birthdate,	nation	FROM	evacuee
JOIN community	on	community.id =	evacuee.community_id

JOIN organization	on	organization.id =	community.organization_id

WHERE	ZV1Positive	=	TRUE	AND	organization_name =	‘NZ’

SELECT	name,	gender,	birthdate,	nation	FROM	evacuee
JOIN community	on	community.id =	evacuee.community_id

JOIN organization	on	organization.id =	community.organization_id

WHERE	ZV1Positive	=	TRUE	AND	organization_name =	‘US’

3.	Aggregate	results
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The workflow manager also provides a query relaxation capability that can enable responses 
with lower fidelity than what was originally requested in response to policy restrictions, thus 
adhering to privacy requirements while releasing the maximally allowed amount of information. 
For example, if policies prohibit SIRD queries at the community level, the system will retry the 
query at the nation level. This type of relaxation is possible in cases where there is a natural 
generalization to a lower-fidelity characterization of the requested data. 

3.5  Common Data Model  

Following our initial platform development, we identified the need for a general data model that 
abstracts from particular data storage and processing representations to facilitate independent 
advances in design of the data processing, policy reasoning, and data storage specific schemas. A 
general model was needed that would both capture the ontologies of our scenarios and support 
automated mappings to the languages or schemas used for policy reasoning, request processing, 
and data storage. This model would also capture the meta-properties of the associated data and 
policies, including owner, time of creation, and their relationships. Such a model would greatly 
facilitate extension of the PRIME platform to other enterprise settings, which typically would 
have pre-existing data models. 

To this end, we developed a common data model (CDM), using the Web Ontology Language 
(OWL) standard [Patel-Schneider et al., 2004], to represent relevant object classes, their 
properties, and relationships. The CDM is used to capture the information and relations needed to 
map data request representations to any independent data sources. It is also used as the underlying 
ontology for the policy representations. In this way, the CDM provides the semantic glue to 
connect the various components in the system, enabling metadata about information and services 
in the system to be captured in one place and then distributed to the modules that need it. It also 
isolates the policy engine and interface development from the specifics of individual data stores. 
Our first implementation handles SQL access to secure databases. Future developments will add 
mappings for RESTful data web services and unstructured file systems. 

We developed automation tools to leverage the CDM representation for workflow and 
database accesses, as well as integration with the policy reasoner, enabling a common ontology to 
be used for data requests, processing, policy reasoning, and data accesses. This metadata 
explicitly captures the correlation intention of requested data (how requested data elements are to 
be connected in a single request) so that the appropriate set operations (e.g., JOINs in SQL) can 
be determined automatically from the mapping information associated with the CDM. 

Figure 8 shows a subset of the HADR pandemic thread ontology and associated schema. The 
CDM-based classes and properties on the left are captured explicitly in OWL. The associated 
SQL schema, on the right, includes typical relational normalizations. The CDM intentionally 
abstracts the objects and instances within a particular domain, such as person or nation, as well as 
the hierarchy of their relationships such as DiseaseStatus as a specialization of MedicalStatus, 
which is in turn a specialization of MedicalInformation. While these abstractions are useful for 
building an ontology for policy representations, a typical normalized database schema is quite 
different in both structure and naming conventions. These differences were intentionally captured 
in our data models to explore the challenges in providing privacy-preserving technology for 
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existing enterprise systems. The needed mapping information is captured directly in the CDM 
model syntax and is then used to convey what information is being requested for determination of 
applicable privacy policies and request construction, as well as how to map this ontology to the 
SQL schema stored in the secure database for data access. 

 
 

 

Figure 9. Pandemic subset of the HADR CDM with associated database schema 

Figure 9 shows a sample mapping for the pandemic thread from the requested data elements 
represented in the OWL/RDF representation used by the CDM to the associated SQL query. The 
syntax of this CDM request contains the data elements requested using abbreviated RDF 
namespaces (e.g., prime#, medical#), as well as any user or policy-safe constraints that must be 
applied. In this example, the information requested is all persons’ first and last names, gender, 
resident community, and current disease state. The constraints include a user-defined filter for 
only those persons whose last checkup is before 10 April, 2017, and policy-based restriction that 
limits the request to data owned by the person’s community policy authority. The CDM-based 
mapping metadata is used by the automation tools within the PRIME platform to generate 
corresponding SQL queries. 
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Figure 10. Sample (abbreviated) CDM property chains and constraints auto-mapped to 
SQL 

4.  Application of Privacy Technologies 

In this section, we discuss the various cryptographic and reasoning technologies used in PRIME 
to achieve privacy objectives for the HADR use case, focusing on their utility within the coalition 
setting and current limitations in their use.  

4.1  Secure Multiparty Computation for Resource Allocation 

Secure multi-party computation (MPC) enables agreed-upon computations to be performed on 
data supplied by multiple stake-holders without revealing any more information than the output of 
the function itself. In particular, the stake-holders provide encrypted versions of their inputs to the 
computation and derivative information from intermediate steps of the computation remain secret 
[Yao, 1982; Goldreich et al., 1987; Chaum et al., 1988; Ben-Or et al., 1988;]. One recent example 
of an application of MPC technology is for performing a secure probability analysis of satellite 
collision [Hemenway et al., 2016]. 
   One use of MPC within PRIME is to support resource allocation. As an example, consider the 
following aid distribution task. There are k communities each of which requires Mc amount of a 
particular resource (e.g., food, medicine), and p resource providers each of which can supply Ri 
amount of the resource. The resource allocation task requires finding a set of feasible assignments 
 

 Provider 1: M1
1, …, M1

k 
 Provider 2: M2

1, …, M2
k 

      …  
 Provider j: Mp

1, …, Mp
k 

 
such that  

[(prime#Person,prime#lastName)]
[(prime#Person,prime#firstName)]
[(prime#Person,prime#gender)]
[(prime#Person,prime#residence),(prime#Community.prime#name)]
[(prime#Person,prime#medicalInformation),(prime#DiseaseStatus,medical#state)]
(LTE([(prime#Person,prime#medicalInformation),(prime#DiseaseStatus,medical#checkupDate)],'2017-04-10'))
(EQ([(prime#Person,prime#residence),(prime#Community, prime#authority)],'CebuNationPA'))

SELECT person.lastname, person.firstname, person.gender, community.community_name, 
person2diseasestate.diseasestate
FROM person, community, person2diseasestate, policyauthority2community, policyauthority
WHERE person.residence = community.community_id

AND person2diseasestate.person_id = person.person_id
AND person2diseasestate.transitiondate <= '2017-04-10’
AND community.community_id = policyauthority2community.community_id
AND policyauthority.authority_id = policyauthority2community.authority_id
AND policyauthority.authority = 'CebuNationPA';

Map
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• for each provider 1≤ i ≤ p: Mi
1 + … + Mi

k  ≤  Ri 
• for each community 1≤ c ≤ k:  M1

c + … + Mp
c  ≥  Mc 

 
 In particular, we require a given resource provider to completely service the request from an 
individual community; however, the provider can service multiple communities provided it has 
sufficient resources to satisfy their aggregate need. We also assume that provision of resources 
has an associated cost, which could be the cost of delivering the requested resources, or simply 
the motivation for servicing a particular request. Costs are considered private, with each 
participant seeking to protect this information from other coalition members. 
 We explored a range of different MPC algorithms to address this problem, considering options 
for optimal usage (relative to the provided cost models) and fair allocation that seeks to balance 
the costs evenly between the resource providers. Even within an MPC setting, care must be taken 
to avoid unintentional leakage of information. Consider an approach that seeks to optimize the 
allocation relative to the stated cost model by always selecting the lowest cost bid. In the case 
where there are two resource providers, each assignment of a resource provider to a requester 
reveals the relative costs for each of the two parties (i.e., the lower-cost bid always gets assigned). 
For this reason, we chose to mask this cost information by selecting the lower-cost bid only P 
percent of the time, for some selected threshold P. Through this probabilistic selection, the 
involved parties cannot be certain whether the assigned nation was in fact the lower bid for a 
particular request. 

4.2  Searchable Encryption Meets Secure Multiparty Computation 

A searchable encryption scheme securely encrypts data in a way that preserves one or more 
properties of interest, such as relative order or equality [Song et al., 2000; Boneh et al., 2004; 
Curtmola et al., 2006; Bösch et al., 2014]. PRIME provides a privacy-preserving relational 
database functionality implemented using the complementary technologies of secure multi-party 
computation (described above) and searchable encryption.  

Unfortunately, while such encryption schemes may enable fast data access, they typically 
allow information leakage that may be observed by adversaries. In contrast, secure multi-party 
computation typically leaks very little information but is often several orders of magnitude slower 
than computation in the clear. In the Jana privacy-preserving database used in PRIME, relational 
queries written in SQL are answered in part by normal queries over such searchable encryptions, 
and in part by operations executed using a secure multi-party computation engine [Damgard et 
al., 2012]. By combining the two, and by allowing for each attribute in each database relation to 
be encrypted in one of several ways, Jana supports bespoke trade-offs between information 
leakage and query performance. Some configurations of Jana may be practically limited to 5,000 
or so records in often-accessed relations. Other configurations may provide practical performance 
for much larger relations. Jana provides a tool for studying such trade-offs in practical use cases, 
something not previously reported in the secure computation literature. 
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4.3  Secret sharing 

Secret sharing [Shamir, 1979] is a secure multiparty computation technique in which shares of 
some secret value are distributed to a group of participants by a trusted party. The original secret 
can be reconstructed only when a threshold number of shares are recombined. Function secret 
sharing (FSS) [Boyle et al., 2015] extends that concept to the computation of a function. Shares 
of a function are distributed to multiple participants in such a way as to enable them to each 
compute part of the overall function given a sufficient number of shares (otherwise nothing is 
revealed), and the result of the function on the secret inputs is additively recovered at the end of 
the computation without revealing anything about the inputs. 

We use FSS to compute multi-level aggregation of SIRD population data, in accord with 
policies. In particular, the numerical SIRD pandemic population counts are stored over multiple 
function secret sharing services, along with representative attributes for functional processing. 
Our PRIME system, using the same workflow and policy decision mechanisms described above, 
accesses the policy-safe level of aggregations of these statistics (i.e., either nation-wide 
aggregation or community-wide aggregation) on a specific date. In this way, the FSS services, 
potentially kept by members of a non-trusting community, cannot reveal anything about the 
shared data without a minimum number of participants answering the policy-safe request. 

4.4  Differential Privacy 

Differential privacy [Dwork, 2006] enables statistical queries (in particular, aggregations) over a 
database of values, while minimizing the chances of identifying any individual within its records. 
Differential privacy is achieved through the use of principled noise injection for the results of 
aggregate queries to obscure the presence or absence of individuals within a database, with the 
amount of noise added linked to a specification of the degree of privacy that is to be maintained.  

As a concrete example, consider an epidemiologist working to track and predict the disease 
spread. Policies are in place that enable him to access gender, birthdate, and disease status from 
the collected medical data as part of this process; however, to protect personal privacy, he is not 
allowed access to names. Consider if the epidemiologist is allowed access to fully accurate counts 
of people in the various SIRD categories. Suppose an update to the data is made to record a new 
entry for an infected individual. Queries immediately prior to and after the update would show 
that the new entry increased the Infected count by one, hence the addition must be infected.  
 Although the epidemiologist does not have direct access to the identify of this person, prior 
work has established that birthdate, gender, and zipcode are sufficient to identify individuals in 
85% of cases [Sweeney, 2000]. As such, the epidemiologist could now likely determine the SIRD 
status as an indirect result. If instead the epidemiologist can access only differentially private 
counts of the number of infected people, the difference between the pre- and post-update count 
queries would not reveal the infected status of the new entry. Importantly, though, the 
differentially private counts can still provide useful statistical information for epidemiological 
modeling purposes [Ellis et al., 2017].   

Differential privacy can also be combined with the multiparty computation technologies 
described above. As such, these enhancements have been included by the developers of the 
encrypted database and the FSS services in their technologies to further protect data privacy data. 
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4.5  Quantitative Leakage Analysis 

To complement the above technologies for privacy preservation, we are exploring the use of 
technologies that can characterize what secondary information is being revealed through data 
releases. Awareness of this “leakage” is important for enabling informed decisions regarding the 
implications of sharing.   

As noted above, all information releases and processing in the PRIME system are logged. 
This information feeds a real-time quantitative information flow analysis [Mardziel et al., 2013] 
that maintains an information-theoretic model of how accumulated releases decrease the 
receiver’s uncertainty regarding some target value that ideally would be kept private (such as a 
resource capacity). In particular, the model quantifies this leakage in terms of the number of bits 
of information that have been revealed. 

To make this concrete, consider the task of allocating B berths in aggregate from nearby ships 
to transport seriously injured people from one of the impacted communities that has been 
particularly hard hit by the typhoon. The berths need to be available before some deadline T. 
Nations with ships in the area are willing to help out but do not want to reveal critical information 
about their ships (e.g., number of available/filled berths, position, travel speed). 

The workflow required to complete the allocation can require multiple requests to the ship 
owners regarding their capabilities. One approach (which we call separate) first determines which 
ships can arrive by the deadline. For those ships, a form of binary search is then performed that 
establishes lower and upper bounds on each ship’s berth capacity. To start, each ship is asked 
whether it can provide the required B berths. If one answers positively, then it can be selected and 
the task is done. If not, the initial bounds are [0, B] and the ships are then asked whether they can 
provide B/2 berths. If two of them can, the allocation is done. Otherwise, the bounds are adjusted: 
for a ship answering affirmatively, the lower bound is updated to B/2 while for ships answering 
negatively, the upper bound is reset to B/2. This process continues until a set of ships is 
determined whose sum of lower bounds exceeds the required number of berths. A variant 
algorithm (combine) merges the deadline and capacity queries. In this case, a negative response 
could mean either that the ship is too far away or that it lacks the requisite capacity, so can reduce 
the amount of information leakage. 

These algorithmic variations (separate, combined) can lead to different allocations and 
leakage. Figure 10 illustrates this point for two separate berth allocation tasks (i.e., initiated for 
different communities), showing overall allocations along with leakage from the perspective of 
the USNS ships. In the case on top, no USNS ships are required and therefore drop out of the 
allocation process early with low leakage. In the case on the bottom, the capacity of the USNS is 
needed, incurring greater leakage as the binary search process refines the bounds on available 
capacity. 
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Figure 11. Comparison of leakage (in bits) for the combined and separate allocation 
algorithms 

5.  Future Challenges 

Many issues remain in the area of technological support for privacy in coalition settings. Here, we 
describe three that we are addressing in our ongoing research. 

• Unstructured, streaming data: As noted above, much of the information that is used in 
operational settings is unstructured (text, imagery, acoustic, PowerPoint, etc.) and 
continuously changing. In contrast, most of the work on privacy has focused on 
protecting information stored in structured databases. Streaming, unstructured data 
introduces significant challenges for developing mechanisms to minimize unnecessary 
sharing and to understanding the implications of information releases.  

• Privacy vs utility: In this paper, we have focused primarily on mechanisms for 
safeguarding privacy. We are also exploring the tradeoff between increasing privacy 
versus decreased utility. For example, the work in [Ellis et al., 2017] examines the 
impact of different degrees of differential privacy on the accuracy of disease models that 
can be estimated by an epidemiologist.   
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• Organizational policies: Our work to date on policies has focused on controlling access 
to data. However, policies will also need to be formulated to control other aspects of the 
information systems. For example, policies should be defined to characterize who is 
authorized to write policies, or for what sorts of encryption levels are required to protect 
certain types of data.   

6.  Conclusions 

This paper summarizes an approach to applying state-of-the-art privacy technologies to enable 
increased and informed information sharing within coalitions. Given the focus on extended 
collaborations within coalitions, we adopted a process-oriented perspective, performing selection 
and configuration of workflows for responding to information and coordination requests while 
taking into account privacy implications for their execution.   

Appendix A: Privacy Technologies  

The table below summarizes the technologies being used within PRIME and the organization that 
is providing them.  
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