

Dynamic Networks and Distributed Problem-Solving

Paul Smart, Trung Dong Huynh, Dave Braines, and Nigel Shadbolt. KSCO'10 – 21st September 2010

Dynamic Network Simulation

• Aims:

- understand the effect of dynamic changes in network structure on group-level cognitive processing
- Background:
 - rate of information dissemination often seems to be important to collective problem-solving and decision-making
 - precipitant forms of information sharing can compromise collective performance

- Approach
 - computer simulation study
 - 100 agents attempt to find optimal design solutions by progressively adjusting the values of a 20-bit solution string
 - each design solution is associated with a fitness score based on the structure of a fitness landscape
 - agents adopt superior solutions from network neighbours
 - network structure emerges across time – links added randomly between agents

The NK problem fitness landscape

N = 20 and K = 5

Network Growth

Experimental Design

- Two independent variables:
 - Network Growth Rate (NGR)
 - 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 (7 levels)
 - Network Growth Delay Period
 - 0, 10, 20, 30, 40, 50 (6 levels)
- Two-way (7*6) factorial design
 - 42 experimental conditions
 - 1000 simulations per condition

- Research questions
 - what does the temporal profile of performance look like across the various experimental conditions
 - how good is the final solution found by agents in each of the various treatment conditions

Performance Profile of Dynamic Networks

Performance Profile (1)

Performance Profile (2)

Quality of Final Solutions

Quality of Final Solutions

Dynamic versus Static Networks

Static Network Structures

- Static network topologies were used to generate network links in a population of 100 agents.
- Performance of agents within these static networks was then assessed by running 1000 simulations.

Random

Static Networks – Performance Profile

Southampton

School of Electronics

and Computer Science

Dynamic vs Static Networks – Quality of Final Solutions

1100 1001 1.00 0.99 0.99 0.97 1000 0.89 900 800 0.75 0.70 700 600 Cycle 508 500 400 300 210 200 112 100 64 40 28 0 10 5.0 2.0 1.0 0.5 0.2 0.1

Network Growth Rate

Conclusions & Future Work

School of Electronics

Dynamic Networks and Collective Cognition

School of Electronics and Computer Science

- Dynamic networks contribute to better problem-solving performance (on at least some tasks) compared to static networks
- There is a delicate balance between autonomy and influence, with initial autonomy important for the discovery of better solutions

Future Focus Areas

- Beyond Collective Search
 - investigation of different types of problem solving contexts.
 - understand how features of tasks relate to network variables and problem-solving performance.
- Inter-agent Trust
 - the adaptive role of distrust.
 - trust-based dynamic rewiring of the network structure.
- Constructive Algorithms
 - network links created according to preferential attachment laws.

- MANETs
 - the impact of patterns of information flow in MANETs on the collective creativity, understanding and decision making potential of groups.
- Network Structure and Shared Interpretation
 - effects of inter-agent communication on the ability to arrive at an accurate shared interpretation of ambiguous environmental information.
 - how do dynamic networks affect belief propagation?
- Hybrid Networks
 - networks consisting of agents, services, sources, sensors, and human actors

Trung Dong Huynh tdh@ecs.soton.ac.uk

Briksdal glacier, Norway. (Image credits: ECS Glasweb Team)