# Risk Aggregation Methodology for Joint Fires Coordination

Adel Guitouni, DRDC, Canada Snezana Mitrovic-Minic, MDA, Canada

KSCO, Vancouver, September 21-23, 2010

### Outline

- Motivation
- Introduction
- Where aggregation is required?
- Our methodology
- Applications





- Research on risk aggregation is scarce
- Risk aggregation methodologies for joint operations
  - mission planning and
  - plan execution





### Outline

- Motivation
- Introduction
- Where aggregation is required?
- Our methodology
- Applications





**Risk** is the expression of the likelihood and impact of an event with the potential to influence the achievement of an organization's objectives [Treasury Board Canada Secretariat 2001]





#### Thick Snow Cover and Construction Work Requiring Explosives



|              |    | Risk          | Evaluation M  | latrix          |           |                            |
|--------------|----|---------------|---------------|-----------------|-----------|----------------------------|
|              |    |               |               | Probability     |           |                            |
| Severity     |    | Frequent<br>A | Probable<br>B | Occasional<br>C | Rare<br>D | Improbabl<br>e<br><b>E</b> |
| Catastrophic | -  | EH            | EH            | Н               | H         | ١M                         |
| Critical     | Ш  | EH            | н             | Н               | М         | L                          |
| Marginal     | Ш  | Н             | М             | М               | L         | L                          |
| Negligible   | IV | М             |               | L               | L         | L                          |





#### Thick Snow Cover and Construction Work Requiring Explosives



|              |    | Risk          | Evaluation M  | latrix          |           |                     |
|--------------|----|---------------|---------------|-----------------|-----------|---------------------|
|              |    |               |               | Probability     |           |                     |
| Severity     |    | Frequent<br>A | Probable<br>B | Occasional<br>C | Rare<br>D | Improbabl<br>e<br>E |
| Catastrophic |    | EH            | E             | H               | Н         | M                   |
| Critical     | Ш  | EH            | н             | Н               | М         | L                   |
| Marginal     | Ш  | Н             | М             | М               | L         | L                   |
| Negligible   | IV | М             | L             | L               | L         | L                   |





### What is **Risk Management?**

- Risk management is a systematic approach to setting the best course of action under uncertainty by identifying, assessing, understanding, acting on, and communicating risk issues [Treasury Board Canada Secretariat 2001]
- Risk management is crucial for effective joint decision making to enhance operational capabilities and mission accomplishment, with minimal acceptable loss





### Principles:

- Accept No Unnecessary Risk
- Make Risk Decisions at the Appropriate Level
- Anticipate and Manage Risk by Planning





Principles:

- Accept No Unnecessary Risk
- Make Risk Decisions at the Appropriate Level
- Anticipate and Manage Risk by Planning

Needed:

- Proper communication of risk information





Principles:

- Accept No Unnecessary Risk
- Make Risk Decisions at the Appropriate Level
- Anticipate and Manage Risk by Planning

Needed:

- Proper communication of risk information







### Outline

- Motivation
- Introduction
- Where aggregation is required?
- Our methodology
- Applications





### In Joint Operations, Risk Aggregation is Needed Due to:

- Risk-related information is collected from diverse sources
- Different risk categories

Aggregation of risk through command structure because:

Risk information are collected at lower level of command and decisions are made at higher level of command





### Outline

- Motivation
- Introduction
- Where aggregation is required?
- Our methodology
- Applications





- (S1) Generate a tree-like graph representing a Mission Decomposition Structure (MDS) dividing the mission in tasks, subtasks, and actions;
- (S2) Determine the importance weights for the edges of the MDS (representing importance of a success of a child node to a success of the parent node);
- (S3) For each action/task, identify associated risks; and
- (S4) For each risk, identify its core factors and generate corresponding Bayesian network, influence diagram, Expanded Bayesian Network (EBN) or Expended Influence Diagram (EID) combining Dempster-Shaffer methodology and influence diagram

### Mission Decomposition Structure (MDS)







#### **Expanded Influence Diagram**



Disaster and post-disaster effects: Combination of influence diagram and Dempster-Shafer for risk assessment

### Mission Decomposition Structure (MDS) and Risk to Personnel Lives







### Outline

- Motivation
- Introduction
- Problems requiring aggregation
- Potential solutions
- Application





### **The Intervention Plan for Fire Scenario**



#### **Joint Fires Coordination in Urban Environment**



### Mission Decomposition Structure (MDS)







Relevant to joint operations:

- Personnel (health and life)
- Population (health and life)
- Mission success
- Resources and equipment
- Important buildings (schools, hospitals)





#### Risk assessment: Risk of collateral damage using Bayesian network







#### Decision making and Risk assessment: Risk of collateral damage vs. choice of delivery assets using Influence diagram



Aggregation of risk related information: Decision making and Risk assessment Risk of collateral damage vs. choice of delivery assets using Expanded Influence Diagram



#### Bottom-Up Aggregation of Risks along the Mission Decomposition Structure

Aggregation strategy depends on risk type:

- Max rule
- By importance
- Weighted sum

In each leaf node:

- (Expanded) Influence Diagram or
- (Expanded) Bayesian Network<u>Mission Decomposition Structure (MDS) and Risk to Personnel Lives</u>





### Mission Decomposition Structure (MDS) and Risk of Mission Failure



Risk levels and (qualitative, quantitative) conversion rules





### Aggregation/Disaggregation of Risk

Aggregation of different risk types is usually not recommended

But if aggregation of different risk types is done, it has to be transparent

| Assignment             |                    |
|------------------------|--------------------|
|                        |                    |
| T1 T2 T3 T4 T5 Automat | ic Manual Clear    |
|                        |                    |
| D3 / Solution          | 1 [a, 4]: 3Y, 6Y   |
| D4 j Solution          | 2[a, 5]: 30, 40    |
| DS/ X Solution         | 3 [m, 4]: 30, 50   |
| Diff Solution          | 4 [m, 5]: 2 K, 3 K |
|                        |                    |
| Save D                 | elete Accept       |
| Agg M P C R B          |                    |
|                        |                    |





### **Decision-making support**





DÉFENSE



### **Decision-making support**



#### Mission Decomposition Structure (MDS) and Risk to Personnel Lives













### **Real-time risk assessment and aggregation**

Do regularly (iteratively or triggered by events):

(D1) For each risk, assess its level, using EID;

- (D2) For each risk type, aggregate risks over tasks, going upwards along the MDS, and
- (D3) If needed, at each level of command and MDS, aggregate different risk types.





### Conclusion (1/2)

- Proposed Aggregation/disaggregation methodology includes:
  - Aggregation of risk related information from different sources: Expanded Bayesian network (by using Dempster-Shafer theory of evidence)
  - Aggregation of decision making and risk related information from different sources: Expanded Influence Diagram (by using Dempster-Shafer theory of evidence)
  - Risk aggregation through command structure: Mission Decomposition Structure and different risk aggregation strategies for different risk types
  - Each leaf of the Mission Decomposition Structure has corresponding influence diagrams





Presented methodologies support:

- Risk aggregation and disaggregation
- Comprehensive view for easier decision making
- Real-time monitoring of causes, risks, and controls
- Proper communication and visualization of risk related data
- Risk management at different levels of command structure
- Collaboration in joint multi-agency operations





## Questions?



