Distributed Deliberative Planning with Partial Observability: Heuristic Approaches

Don Perugini, Dennis Jarvis, Shane Reschke, Don Gossink

Decision Automation Group Command and Control Division, DSTO

Australian Government

Department of Defence

Defence Science and Technology Organisation

Outline

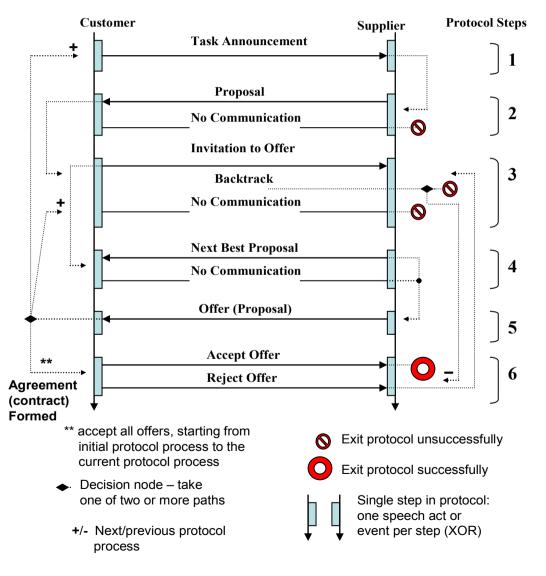
- Motivation
- Legal Agreement Protocol (LAP)
- Deliberative Planning & Partial Observability
- Heuristics
- Results

Characteristics of Military Operations

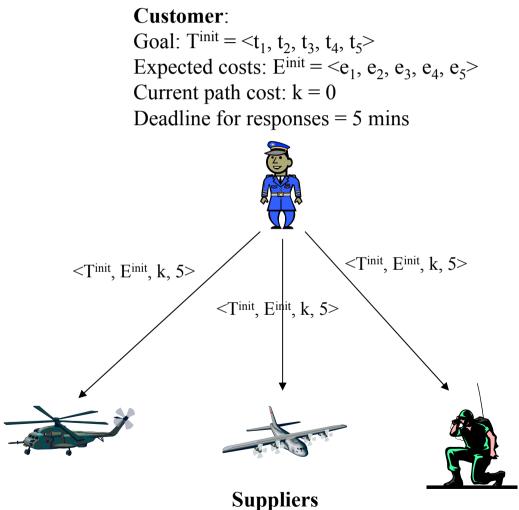
- Decentralised:
 - cooperation among distributed autonomous organisations
 - make their own self-interested decisions (not controlled)
 - may keep information/capabilities private
- Dynamic
 - organisation's capabilities, information & goals may change
 - the environment in which they interact may change
- Open
 - organisations with indeterminate capabilities may come and go at any time
- Agreements
 - formation of "legal" agreements for services/capabilities
 - contract law to establish commitment and agreements

Legal Agreement Protocol (LAP)

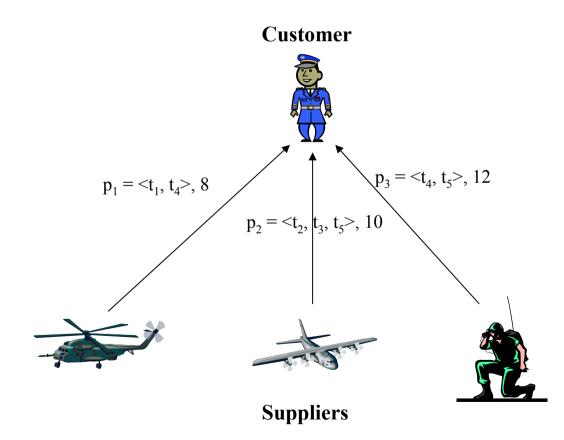
- LAP facilitates cooperation and coordination among organisations (or agents)
 - Enables planning, task allocation and agreements among agents in a decentralised, dynamic and open environment
- Extension of the Contract Net Protocol (CNP)
- Comprises an iterative interaction process:
 - *Customer* agents extract, match and negotiate capabilities from *supplier* agents
 - Distributed assembly of capabilities (e.g. using A*)
 - Adapt via updating, withdrawing & backtracking mechanisms (not discussed)

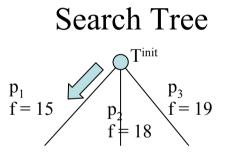


LAP Components

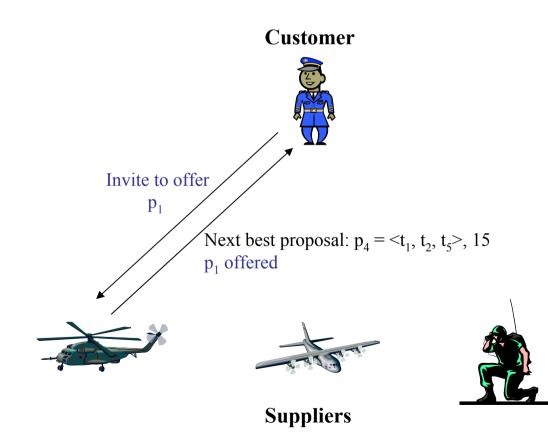

- Messaging component
 - Describes the sequence of messages (speech acts & semantics) and events that can occur at various stages of the protocol
- Reasoning component
 - Drives the protocol (messaging component)
 - e.g. when to offer, update, backtrack, negotiate, etc.
 - Highly domain dependent
 - Require heuristics to facilitate effective reasoning and planning within the complex environments that LAP is applied

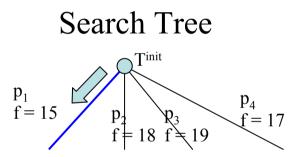
LAP Messaging Component

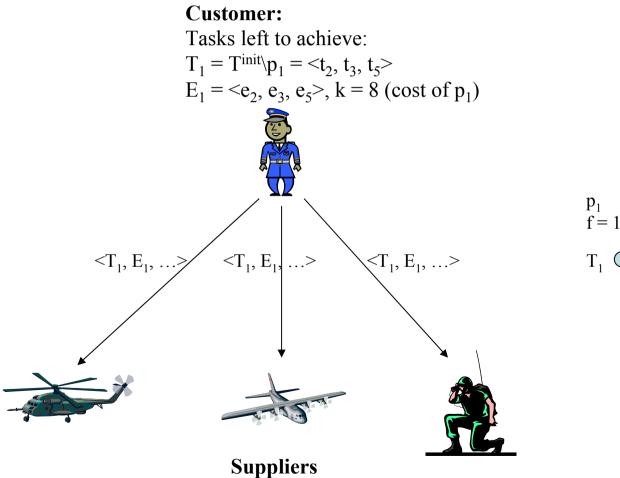

A* search, branches evaluated by: f = g + h g = current path cost h = expected cost to achieve remaining tasks

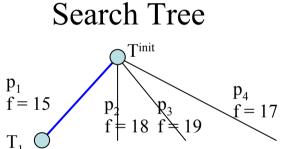

h must be an underestimate to guarantee optimality

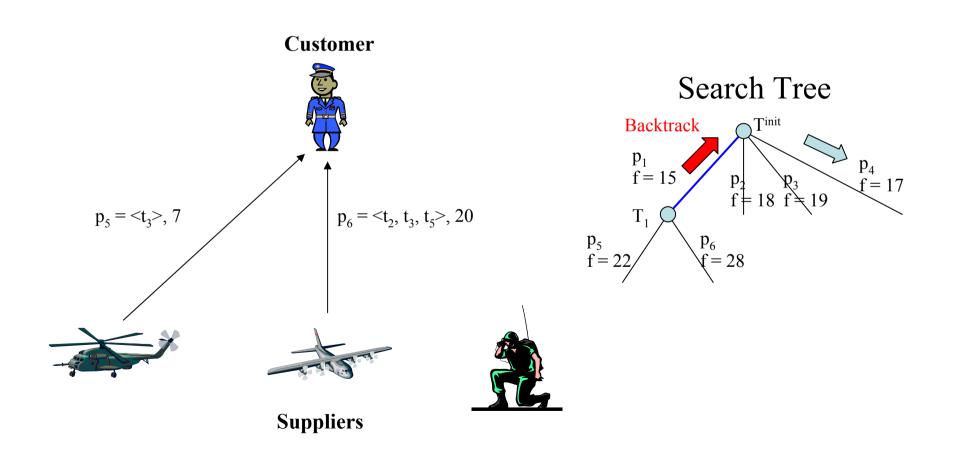
Search Tree

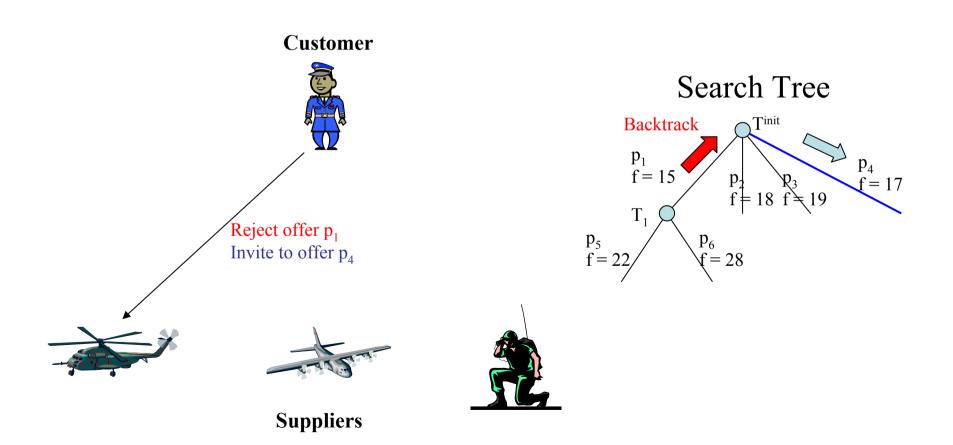

 $\bigcirc^{T^{init}}$











Partial Observability

- With centralised search approaches, the expected cost e_i for each sub-task can be determined naïvely using $\min_{\substack{j \mid i \in p_j | p_j|}} c_j$
- Requires visibility of all proposals
- In a decentralised environment, and with LAP, the customer does not have access to all other agent's capabilities (proposals)
- Makes finding e_i difficult
- Solution: the expected cost e_i is determined dynamically during planning as the customer receives information about other agents' capabilities

Heuristic Approaches

Commence with $e_i = 0$

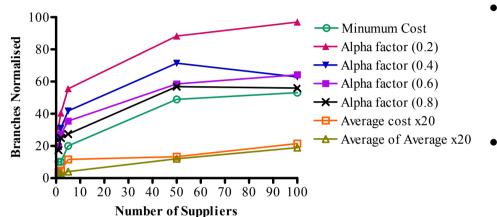
- 1. Minimum cost heuristic
 - e_i is the minimum cost observed so far

2. Alpha factor on difference, limited

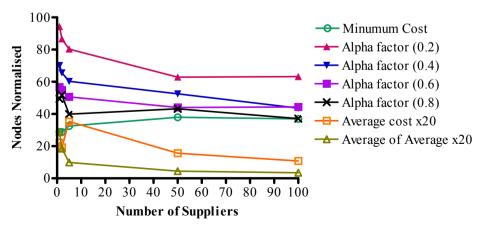
- Increase e_i slowly to prevent over-estimation
- s is a newly observed sub-task cost
- If $s < e_i$, set $e_i = s$, use minimum cost heuristic
- Otherwise, $e_i = e_i + \alpha \cdot \Delta$, where $\Delta = e_i s$
- 3. Average over all sub-tasks
 - e_i is the average over all observed sub-task costs
- 4. Average of current average
 - $e_i = (e_i + s)/2$, where s is a newly observed sub-task cost

Experiments

- Used set partitioning problem datasets
 - Set of tasks T = {1, 2, ..., m} need to be achieved using a set of package propoals B = {B₁, B₂, ..., B_n}, where B_j = <p_j, c_j>, p_j \subseteq T is a set of achieving capabilities at cost c_j
 - Aim: achieve all sub-tasks in T once, at minimum cost
- 90 scenarios
 - 18 datasets
 - 1, 2, 5, 10, 100 suppliers
 - α values of 0.2, 0.4, 0.6, 0.8
- Evaluated on: solution quality, number of nodes traversed, number of branches received


Results

Heuristic	Quality (% <i>above</i> optimal)	Nodes Normalized	Branches Normalized	# Opt
Minimum Cost	2.7 ± 6.9	33.0 ± 26.7	$28.7~\pm~30.7$	57
Alpha Factor (α=0.2)	0.07 ± 0.52	77.5 ± 22.5	62.2 ± 30.0	85
Alpha Factor (α=0.4)	0.36 ± 1.4	58.5 ± 23.8	46.3 ± 28.5	76
Alpha Factor (α=0.6)	0.51 ± 1.7	50.1 ± 25.9	41.1 ± 29.3	69
Alpha Factor (α=0.8)	0.71 ± 1.9	44.2 ± 25.0	36.6 ± 29.2	63
Average Cost	22.5 ± 20.5	1.0 ± 2.6	0.54 ± 0.83	5
Average of Average	30.9 ± 27.3	0.65 ± 1.8	$0.41~\pm~0.69$	4


- Average cost heuristics find a solution with less branches & nodes (i.e. less time and communication) than other heuristics, but at the cost of the quality of solution
- Minimum cost heuristic is 280% worse than the worst alpha factor heuristic (α = 0.8), but the reduction in effort was only 25% for nodes and 22% for branches

Results

- Number of branches increases with the number of suppliers since more suppliers can submit proposals for each task announcement
- Number of nodes traversed decreases (more efficient search) as suppliers increase for all but minimum cost heuristic due to increase in submitted proposals
 - Alpha factor: expected cost increases quickly to the min cost at the start of the search
 - Average: stable, accurate and larger expected cost
 - Min cost: minimum cost of many proposals is lower than the minimum cost of a few proposals

Conclusion

- Investigated four heuristics to dynamically determine the expected cost during planning using LAP in the presence of partial observability
- Heuristics have tradeoffs: quality of solution vs effort required to search (nodes & branches)
 - Average cost heuristics required less effort, but at the cost of the quality of solution
 - The quality by using the alpha factor heuristic is much greater than the minimum cost heuristic, with little extra effort
- Number of supplier influences search effort
 - Number of branches increase with the number of suppliers
 - Number of nodes traversed decreased with all heuristics except the minimum cost heuristic

Acknowledgements

Peter Smet, Dale Lambert, Jason Scholz

QUESTIONS?