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Abstract.  Work  reported  in  this  paper  was  done  as  part  of  the  DARPA Joint  Force  Air  Component  Commander
(JFACC)  project.  Its  objective  was  to  investigate  the  possibility  of  improving  the  stability  and  agility  of  military
operations using the  concepts of modern control and game theories within  the framework of state-of-the-art computer
science and operations research.
Military operations are always defined and executed within the context of a command and control (C2) hierarchy. The
questions we have studied at the Task level were twofold. What is the minimal effective task force size and composi-
tion for a  given task,  and how to guarantee successful task  execution in the presence of uncertainties  in combat, both
due to random effects of weapons and an intelligent  adversary? At the  Task Group level,  we asked how to optimally
allocate  and  schedule  available  resources  to  satisfy  the  force  size  requirements  for  as  many  concurrent  tasks  as
possible.  We  have  developed  probabilistic  Markov  models  of  combat  dynamics,  and  then  used  them  to  build  the
Model Predictive Task Commander and Model Predictive Resource Allocator systems, which are  briefly described in
the paper along with experimental results showing their performance in simulated battles.

1 Introduction

War  or,  on  a  smaller  scale,  any  battle  can  be  viewed  as  a  trade  in  which  opponents  mutually  “trade”  their
resources until one side is forced to declare bankruptcy due to its bad trading decisions. The traditional mathemati-
cal  approach to optimize this  process is to view it  as a resource allocation problem, whose objective is to match
resources to targets  in  the  most  “profitable” way as  defined by a  suitable criterion.  Obviously, the  fundamental
question is how to properly value resources to be traded.  Dollars spent to procure them do not make much sense
in war since their military values derive largely from expected opportunity costs and not from the numbers listed
in  accountants’  ledgers.  The military  value of a bomber is surely different at  the outbreak of war than  on the V
day and on any day in between, and the difference depends strongly on the war strategy and many other factors.

In  any model  of war  based on the  notion  of trade  the  issue of resource valuation  cannot  be eventually avoided.
However, the  responsibility for  resource valuation  should  be assigned  to  those  who can  be expected to possess
knowledge and  information  relevant  for such decisions, which,  in  practice,  means the higher  rungs  of the com-
mand  and  control  (C2)  hierarchy.  If  the  resource  value  derives  mostly  from  the  opportunity  costs,  then  it  is
neither  fair nor reasonable to ask a field commander to decide, say, how many of his bombers are worth a given
heavily defended enemy air base he was ordered to destroy. Yet he somehow has to compose his strike packages,
devise  their  offensive  and  defensive  capabilities,  schedule  their  employment  and  then  manage  the  battle  to
success once it gets underway.

In the project  we are  reporting  on here,  our objective was to investigate the potential of improving the stability
and  agility  of  military  operations.  We  have  focused mostly  on  the  lower  rungs  of  the  C2  hierarchy.  For  the
reasons outlined above, we have rejected the more traditional  design concepts based on straightforward  resource
allocation.  Instead,  we proceed in  two steps.  For  every task we first  try to establish  what  it  takes  to get  it  done
regardless of whether the resources are actually available. We call the answer the minimal effective  force (MEF).
Only  then  we  attempt  to  allocate  available  resources  to  the  set  of  given  tasks  in  amounts  sufficient  for  their
successful completion.  As  it  turns  out,  most tasks  can  be successfully completed in  more  than  one  way so that
their  MEF  is  actually  a  set  of  alternative  solutions.  This  extra  degree  of  freedom  provides  the  planner  with
greater  flexibility  to  reconcile  competing  demands.  Moreover,  the  breakup  of  planning  into  the  two  phases
improves  the  transparency  of  the  planning  and  battle  management  algorithms,  significantly  simplifies  their
computer implementation  and  speeds up their  execution. Below we explain  the gist  of our approach,  show some
experimental results and outline issues for further work.
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2 Concept of operations

The technology underpinning  our approach  cannot be judged properly without some notion of concept of opera-
tions. The concept emerging from our current work is as follows.

Superficially, the proposed C2 structure remains  hierarchical.  In its  functionality, however, there are  substantial
differences  in  the  way information  flows about  the  hierarchy.  The   traditionally  strong  top-down information
flow is  complemented  by  a  comparably strong  bottom-up  flow,  producing  a  structure,  in  which  decisions  are
reached through  a  negotiation  process, whose objective is  to optimally match  the  war  objectives at  the  top with
the resources and  operational constraints  existing  in the field at any given moment. Conceptually, we are trying
to  move away from  directive-  to  more  consensus-based command  and  control,  in  which  different  levels of the
hierarchy  are  seen  more  like  peers  united  by  a  shared  interest  in  winning  the  war  rather  than  disinterested
subordinates asked to fulfill orders passed down to them.

The hierarchy,  its levels and  the kinds  of information passed between them are shown in Figure 1. The Mission
Execution  Level  has  a  place  in  our  hierarchy,  even  though  we  have  not  addressed  it  in  our  work.  We  have
focused on  investigating  the  Task,  Task  Group  and,  to  some degree,  Operations  Levels.  We  have  not  studied
levels above the Operations Level.

 

Task Group Level 
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Mission Execution Level 
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{T1N} 

TG1 TGM 

O

… 

{ …} 

Battlefield 

Figure 1. The Command and Control hierarchy

The  basic  notion  in  our  approach  is  that  of  the  task.  Task  is  a  relatively  simple  activity,  whose  objective is
already stated in military terms (i.e., not strategic or political). It has a deadline, by which it has to be completed,
and  the issuer  specifies the urgency of its  successful completion by providing the  desired probability of success.
He also specifies what is  the  acceptable own loss to fulfill  the task.  This  formulation reflects a  realistic  view of
combat as always involving a  significant  random component, which is much better to be dealt  with in  the open
than  to pretend  that  it  does not  exist.  The battle  is  then  the  process of executing a task.  In  this  sense,  task and
battle are  more or less synonymous words, one stressing  more the objectives, the other  the process of achieving
them.  Battles are  generally  viewed as  sequences of simpler  combat activities.  The  reader  can  interpret  them  as
missions, sorties, etc. 

The Task Level commander’s role is in designing appropriate minimal  effective forces (e.g., strike packages) for
each  mission  of  the  given  task  and  then  making  the  necessary  corrections  to  them  prior  to  the  next  mission
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depending on the battle  damage assessment (BDA) feedback he receives. Executing the missions is the mission
commander’s responsibility and as we have pointed out above, is not the subject of our interest.

Any operation will likely consist of a large number of tasks running  concurrently, with overlapping demands on
resources. The Task Group Level commander,  who is generally seen as the “owner” of resources, is responsible
for apportioning his resources to the individual tasks that were assigned to his group for execution.

The Operations Level job is to translate  the broader, strategic objectives (e.g., destroy enemy air base Alpha) into
an interconnected web of individual  tasks,  which are then passed down to the Task Group Level commander for
execution.  The  interface  between the  two levels  is  a  queue  of  tasks  � ... , T11, T12, ... � ,  which  is  continuously
filled by the former on one end and emptied by the latter on the other.

The  reader  may have noticed  that  in  our  concept of operations  there  is  no  notion  of target  and  hence  of target
value. To be sure, targets are discussed, but only internally at the Operations Level, when tasks are being defined.
In our C2 philosophy, the notions of targets and their values are not used in communication between levels below
the  Operations  Level,  because  commanders  working  there  lack  the  knowledge context  to  properly  understand
them.

A task  exists since  the  moment  the  Operations  Level pushes  its  statement  into  the  task  queue,  well before any
resources have been allocated to it. Indeed, once the Task Group commander retrieves it from the queue, his first
job is not to allocate his resources to it,  but to find out what is the minimal  effective force to successfully prose-
cute  it.  To  do so,  he  assigns  the  task  a  Task  commander,  effectively passing  it  down to  the  Task  Level.  This
officer calculates the  Minimal  Effective Force needed to fulfill it.  Since tasks can generally  be fulfilled in  more
than  one way, he compiles a  list  of alternative  solutions and  sends it  back to the  Task Group commander,  who
then  attempts  to choose the  alternative  that  best utilizes  his  resources. If none of the  alternatives  can be recon-
ciled with other already scheduled tasks, he can
1. either report back to the issuer, i.e., the Operations Level, or 
2. can attempt to exchange resources with other Task Group commanders, or 
3. can possibly define down or even drop some of the existing tasks, if the issuer has given him a specific permis-
sion to do so on his behalf.

Infeasibility  to  simultaneously  provide  for  all  the  tasks  currently  in  the  task  queue  can  trigger  an  extensive
negotiating  process running  up and  down the hierarchy,  when the issuer can ask for sensitivity analysis of other
tasks already in progress, their  status and prospects. He can modify or drop some of them in order to make room
for new ones. All those activities are conceptually supported in our system and, in fact, can happen automatically.

3 The nature of a task

As  mentioned  above, battle  is  the  process  of  achieving  a  task's  objective. Actually,  we should  use  the  plural,
because the  enemy has  his  objectives as  well.  This  competitive process has  its  dynamics,  which  arise  from the
dynamic interaction  of several components as depicted in Figure 2, and which each combatant tries to control in
his  favor.  Prior  to the  first  mission,  each  commander  composes his  package  and  sends it  off to  the  battlefield.
When  the  combat  is  over  and  survivors  return  to  their  bases,  the  commanders  evaluate  their  battle  damage
assessment information and based on this feedback put together the second mission. Such iterations proceed until
either  one  side  succeeds in  attaining  its  objectives or  misses  the  deadline  stated  in  its  task  specification  and
subsequently terminates the battle.

A control  theorist  readily  recognizes in  the  description  something  that  looks like  a  batch  control  problem. The
Blue commander,  who is the good guy whom we want to help, resembles a discrete controller which responds to
the observed plant  output by calculating  a new control value to be applied next in order to bring the plant  closer
to meeting his objective. Admittedly, the control "value" is unusual and rather  abstract, being represented by the
composition, weapons, munitions  and other  attributes of the package sent into combat to drive the battle state in
the  desired  direction.  The  BDA block represents  sensors  that  map  the  state  into  the  observable plant  outputs,
most likely with a lot of distortion, incompleteness, false readings and latency.

In  addition  to  similarities,  there  are  some  important  differences,  too.  As  Figure  2  shows,  Blue's  links  to  the
system go through  the battlefield, which we view as a giant trading  floor, where combatants trade their assets. In
our  approach,  all  deal-making  is  governed  by probabilistic  laws  to  reflect  the  random  effects of  weapons  and
other  uncertainties  of  combat.  Mathematically,  we describe  the  trading  which  goes  on  on  the  battlefield  as  a
Markov decision  process,  whose control  variables  are  the  package  attributes.  Such models  addressing  different
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kinds  of  combat  have  been  developed  and  studied  [Clark  1969],  [Ancker  1982],  [Ancker  &  Gafarian  1992],
[Jelinek 2001a], [Jelinek 2001b]. Interpreting  the battlefield as the trading  floor also readily offers an  important
generalization  of the notion of the package, namely viewing it as a set of all  the assets the combatants bring  for
trade.  While  some  of  them  will  undoubtedly  be  weapons  systems,  others  may  be  passive  assets  like  bridges,
airfields, power stations, etc.

 Battle dynamics as perceived by Blue 

Battlefield Red 
commander 

Blue 
BDA 

Red 
BDA 

Blue 
commander 

u(k) 

x(k) y(k) 

v(k) 

u’(k),v’(k) 

Figure 2. The internal structure of battle when viewed as a dynamic system

Unlike  the  mother  Nature,  which  is  an  indifferent  player  in  industrial  applications,  the  Red  commander  has
vested interest in the outcome of trading.  Blue does not generally know what Red’s interests exactly are, nor what
strategy Red is going to pursue in advancing them. This brings in a different kind of uncertainty than the random-
ness of combat, one that  must be addressed by the game-theoretic means.  These problems have been intensively
studied since the 1950's [Dresher 1961], [Basar & Olsder 1982].

Battle damage assessment poses yet another  obstacle. In  the world of smokescreens and  deceit, even Blue's own
BDA cannot  be  completely trusted.  It  is  very difficult  to  find  out,  how much  one  actually  does not  know and
somehow  quantify  this  ignorance.  For  those  reasons,  we  include  the  Blue's  own  BDA  block  into  the  battle
dynamics model to stress the  fact that  the ground  truth  of the battlefield is not available to him  for battle plan-
ning and management and that he can only see it through the lenses of his own BDA.  

In order to rationally calculate the minimal  effective force for a task, the Task Level commander has to model all
the components enclosed in the gray box in Figure 2 along with their dynamic interaction. Compared to a control
engineer  facing a  batch controller  design problem, his  plant-battle  has  not  yet been "built"  so his  model cannot
be, say, a neural  network or some other  regressor to be fitted to the plant  using experimental  data.  Furthermore,
in a typical operations center, hundreds  of tasks are handled  every day, so the ease and speed of model construc-
tion are paramount.  Once built, the model will be run only once and then discarded. 

The Task Group commander,  whose job is to provide requested resources for tasks,  deals only with their  respec-
tive minimal  effective forces. He is  not  interested  in  the  details  of how their  they were calculated nor  how the
tasks'  execution  will  be  managed,  and  thus  has  no  need  to  know  the  battle  models.  As  it  will  become clear
shortly,  the  minimal  effective  force  specification  is,  in  fact,  the  specification  of  a  set  of  controlled  random
processes. It  includes not only the immediate  resource allocation request for the next  mission,  but, more impor-
tantly,  provides a  forecast of the  expected battle  evolution, including  expected losses and  resource demands  for
all future missions all the way to the task completion deadline. The challenge we are now facing is how to build a
planner  and  scheduler  that  would take  full  advantage  of this  information  to  maximize  the  resource  utilization
and minimize  disruptive plan and  schedule modifications. Put in  more mathematical  terms, we are  interested in
the planning  and scheduling of activities, which are characterized by sets of partially observable Markov decision
processes operating  over finite horizons  [Sondik 1971], [Monahan  1982] or,  in  the  most general  form, partially
observable competitive Markov processes [Filar & Vrieze 1997].
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4 Minimal effective force

We  have  seen  that  each  of  the  four  components  of  the  battle  model  in  Figure  2  introduces  uncertainties  so
fundamental  that  they  cannot  be  ignored  in  the  minimal  effective force calculations.  Uncertainty  entails  risk,
which can be reduced by appropriate design, but never completely eliminated for very practical  reasons: The cost
of risk reduction tends to progressively escalate the faster, the closer we are approaching  certainty, until  at some
point  a  low risk  solution  becomes unaffordable.  We are  thus  caught  between two conflicting  interests.  On  one
side, the task issuer wants to minimize the risk of task failure, because he will have to live with its consequences.
On  the  other  side,  the  task  executor wants  to  lower the  demand  on  his  resources,  which  always seem in  short
supply, and is thus interested in relaxing the risk threshold. Furthermore,  uncertainty in combat is not a constant,
but varies in  time as new information  becomes available and  effects of earlier  decisions make an  impact  on the
battlefield. This time variability requires continuous reevaluation of risk and making adjustments to the deployed
forces, if the acceptable risk level is to be maintained  with the minimal  amount of resources. Having adopted this
perspective as the central  theme of our approach,  we do not consider the notion of risk management  to be just a
metaphor.  On the contrary,  we view the C2 hierarchy  as a hierarchical  control system, which is to be explicitly
designed to manage (control) risks arising from the uncertainties present at its different levels.

We define the risk  � as the probability of task failure. Alternatively, we may be using  the probability of success
Ps ,  which  is  related  to risk  as  Ps � �1� �� .  Let u�k�, v�k�  be vectors,  whose components are  the  attributes  that
characterize  the  packages  employed in  the  k -th  mission  by  the  Blue  and  Red  commanders,  respectively. The
attributes  may  be,  for  example,  the  numbers  of bombers and  escort  fighters  in  a  strike  package,  their  weapon
lethalities against  the opponent’s assets, combat tactics to be used, etc. Recall that  not all  assets brought for trade
by the combatants are necessarily weapon systems. In  the course of combat, some of the attributes are traded for
others  so  that  when  the  fighting  is  over,  the  status  of the  surviving  packages  will  be u’��k�, v ’��k� .  Due  to  the
randomness  inherent  in  combat, the  particular  values of u’��k�, v ’��k�  are  impossible to predict.  The best we can
hope for is to find their  probability distribution  P��u’��k�, v ’��k�� . It  can be computed providing that  we know the
conditional  probability distribution   P��u’��k�, v ’��k� � u�k�, v�k��  which we call  the combat model.  This  model, in
contrast  to the full model of battle dynamics, describes only the  block named Battlefield in  Figure  2. Assuming
that the vectors u�k�, v�k�  take on only a finite number of discrete values, their sets ��k�, ��k�  are also finite and
the  combat  model   P��u’��k�, v ’��k� � u�k�, v�k��  can  be  viewed as  the  set  of  transition  probabilities  of  a  Markov
chain.

The vectors u’��k�, v ’��k�  generally are  not directly available to the commanders for observation in  their  entirety.
While  the  commanders  usually  get  a  good grasp  of  own  losses,  their  information  concerning  their  opponent’s
losses often is  at  best incomplete  and  at  worst wrong. In  our  approach,  we capture  their  less-than-perfect BDA
capabilities  by a  pair  of conditional  distributions  P��x�k� � u’��k�, v ’��k��  and  P��y�k� � u’��k�, v ’��k�� ,  which  relate,
although only in the probabilistic sense, the battle  state �u’��k�, v ’��k��  to the vectors x�k�  and y�k� , which repre-
sent the observables available to the Blue and Red commanders after the k-th mission, respectively.

Let ��k�  be the sets of all possible vectors x�k� . Using Blue's task objective, we identify the subsets �S�k� � ��k� ,
�F�k� � ��k�  that  Blue considers task success for himself  and  Red (i.e.,  Red's success is Blue's failure),  respec-
tively.  If  the  battle  reaches  any  one  of  those  states,  he  terminates  it.  All  other  vectors  are  clearly  indecisive
situations, for which the battle continues with the �k � 1�-st mission unless Blue has reached his task deadline, in
which case he declares all  such indecisive vectors x�k�  a success for Red (i.e.,  failure for Blue). Now it is easy to
calculate the probability of Blue's success in the k -th mission

(1)P��x�k� � �S�k� � u�k�, v�k�� � �
�S

�
���

P��x�k� � u '��k�, v '��k���P��u '��k�, v '��k� � u�k�, v�k��

where we assume that  the set  ���  of all  admissible values of the  pairs  �u '��k�, v '��k��  is  finite.  Let J�n�m�

denote the probability of success in any of the missions between n and m

(2)J�n�m� � �
i�n

m
P��x�i� � �S �i� � u�i�, v�i��

Then the minimum effective force �u��k�, ... , u��K��  calculated prior to the k-th mission is
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(3)

�u��k�, ... , u��K�, v��k�, ... , v��K�� � arg min
��k�

max
��k�

J�k�K�

so that

J�1� �k � 1��� J�k�K� 	 PS

where  PS  is  the  desired  probability of task  success. For  the  sake of notational  clarity,  the  obvious assumptions
regarding the nonnegativity of attributes, etc. are omitted.

Note  that  the  optimization  is  always  done  over  the  entire  remaining  task  horizon.  As  a  result,  the  minimum
effective force  specifies  not  only  the  package  to  be  immediately  employed in  the  upcoming  k-th  mission,  but
provides the  estimates  of all  future  packages all  the  way up to the  task  deadline.  As will  be shown in  the  next
section, the estimates are  continuously updated after each mission.  Numerous experiments  suggest that  if Blue’s
battle model  is  reasonably accurate,  total  upsets  of his  expectations are  rare.  In  most cases, the  updates  will be
only modest corrections of the previous estimates, which enables the stable operation of forward-looking resource
allocation planning  and  scheduling  algorithms  supporting  the  tasks at  the  Task Group Level. Second, as  a side
benefit of this  game-theoretic optimization,  Blue also develops his  best estimate,  �v��k�, ... , v��K�� ,  of how Red
is  going  to  conduct  the  battle  in  the  future  given  his  current  knowledge  of  Red’s constraints.  Although  the
problem statement  (3)  implies  an  assumption  that  the  Red’s sole objective is  to prevent  Blue from reaching  his
objective,  which  may  be  unrealistic  in  individual  cases  (and  which  turns  our  problem  into  a  neat  zero-sum
game), other, more general game-theoretic formulations preserve this useful feature.

Since the problem statement (3) does not restrict  what are  the acceptable attribute  values in  the minimum  effec-
tive  force  �u��k�, ... , u��K�� ,  we  call  it  the  Victory-at-Any-Cost  formulation.  Most  tasks,  however,  limit  the
amount  of  resources  the  Task  Level  commander  is  allowed  to  sacrifice.  This  extra  constraint  appears  in  the
following Victory-With-Acceptable-Loss formulation [Jelinek & Godbole 2000].

(4)

�u��k�, ... , u��K�, v��k�, ... , v��K�� � arg min
��k�

max
��k�

J�k�K�

so that

J�1� �k � 1��� J�k�K� 	 PS

ui
��1� � ui

��K� 
 li , i � �

where  �  is  the  set  of attributes  whose change  between the  first  and  last  mission  we want  to limit  so as  not  to
exceed the given threshold li .

5 Model predictive risk control

Unless the battle terminated  after the (k-1)-th mission,  the commanders have to determine the package composi-
tion  for  the  k-th  mission.  How the  Red  commander  actually  makes  his  decisions  is  rarely  known  to  the  Blue
commander.  Blue may know Red's doctrine and  rules of engagement,  and  often has intelligence  assessing Red's
resources. If Blue is proactive and holds the initiative,  he may reduce most of the Red's objectives to attempts at
stopping him. Calling the games affords Blue an additional foresight into what to expect of his opponent. Further-
more,  it  is  reasonable to expect the  Red commander  to be rational.  All  this  constrains  Red's decision space and
enables  Blue  to  produce  a  qualified  estimate  of  Red's  likely  decisions  when  calculating  the  minimal  effective
force.

The  above constraints  are  known a  priori  and  are  not  tied to any particular  task.  In  addition  to them,  however,
Blue also receives real  time  BDA feedback from the battlefield in  the  form of the observation vector x�k� .  This
additional  information allows him to either strengthen some of them or add new ones that reflect the customized,
up-to-date  knowledge about  the  task  being  prosecuted.  When  translated  into  the  mathematics  of the  minimum
effective force calculations (3) or (4), the feedback loop is closed by making the sets of admissible attribute values
��k�, ��k�  dependent  on  x�k� .  Since  combat  results  in  asset  attrition,  these  sets  generally  shrink  with  each
mission, reducing the combatants' options in the process.

Using  the  model  predictive  control  paradigm  as  a  framework we have  integrated  the  minimum  effective force
and real time feedback concepts into a system which we call the Model Predictive Task Commander (MPTC) and
whose purpose  is  to  assist  the  Task  Level Commander  in  the  planning  and  execution of individual  tasks.  The
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whose purpose  is  to  assist  the  Task  Level Commander  in  the  planning  and  execution of individual  tasks.  The
next section offers a simple illustration of how the MPTC works.

6 Example

The task specification may look as follows.

At  0600  the  commander  of  the  Blue  Task  Group TG1 is  given  the  order to  destroy  Red’s surface-to-air  missile
(SAM) assets  made  up  of  LR  real  sites  and  DR  decoy  by  1800  tomorrow. Because  the  objective  is  needed  to
clear the way for an already planned subsequent offensive,  the Operations Level requests the order be executed
with a very high degree of certainty,  say less than 1 in 20 chances that it will not be met in full. The Red’s SAMs
are known to have the lethality  �R  against the attacking aircraft that Blue is intending to use. They also have a
good radar tracking capability to know the accurate numbers and positions of attackers in real time.

The MPTC helps answer the following questions:

� How many airplanes,  LB , does Blue need in his strike package, if his kill rate on the Red SAM’s is known to be
�B  ? 

� How many missions (sorties), K , he should divide his objective into, one, two, or perhaps ten?

�  If  he  decides to  fly more  missions,  how should  he  define  their  individual  objectives, against  which  he  could
measure  the  task’s progress  once  it  gets  underway?  Without  them,  he  would  not  be  able  to  identify  looming
problems until it may be too late for any correction.

� If he decides to fly more missions, how should he optimally assemble the strike packages for each one? On one
side, gradual enemy attrition  will lower the threat,  but he will have his losses as well. How big? What is the total
number of aircraft he should ask to be allocated for the task?

� If, for whatever reason, the task execution does not proceed as planned, what corrective action to take?
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Figure 3. Probability distributions of the battle state �u’��k�, v ’��k��  forecast how battle is going to evolve over the
next 5 missions if Blue applies the minimum effective force calculated prior to the first mission. The first column

are the win states for Blue.

To be specific, let us say that Blue’s intel tells him that Red has LR � 11  sites and DR � 1  decoys. His SAMs are
known to have the lethality against Blue aircraft � � 0.2 . On the other hand,  Blue’s weapons system data tell him
that  he  can  expect  to  kill  this  particular  type  of  SAMs  with  the  lethality  �B � 0.9 .  Blue  assumes  that,  when
attacked,  the Red commander  will always employ all  his  surviving SAM sites to defend himself (which is actu-
ally the best policy for him in the game-theoretic sense). Because the mission turnover time is 6 hours due to the
target  distance, Blue can fly at  most 6 missions before hitting  the deadline. When Blue calculates his minimum
effective force for PS � 0.95  using the data,  he is advised to employ 7 strikers for the first mission and then fight
the remaining  ones with survivors only (which is also the best policy for him).  The MPTC also tells him that he
can  expect to lose slightly  less than  3  aircraft  on average in  this  job. The  expected course of battle  is shown in
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Figure  3. The rows and  columns in  the  frames correspond to the numbers of Blue and  Red units  that  are  alive,
and plot densities are proportional to the state probabilities. 

The top left frame is the initial  state of battle,  when Blue knows with probability 1 the initial  numbers (LB � 7,
LR � 11). The outcome of the first  mission shown in  the next  frame is not that  unequivocal anymore. The most
likely number  of survivors will  be (LB � 5,  LR � 4),  but other  outcomes still  rather  close to those numbers  are
possible. As the battle progresses (read Figure 3 row-wise), the cluster spreads more and more until  it eventually
splits  into  two, i.e.,  the distribution  becomes bimodal. (This  is  not  well visible in  the  figure.)  The  last  frame in
the bottom right  corner says that Blue is most likely to win with 3 to 5 survivors, but battles with 2 or 6 survivors
are a fairly likely outcome as well.

The MPTC repeats the same minimum force calculations after each mission upon receiving BDA feedback. The
plots of their distributions would be similar except that the initial  distribution, that is, the first frame in Figure 3,
would be replaced by the latest battle state estimate and the planning horizon gets shorter with each new mission.
The closed loop behavior is also a random process, whose distributions  - of which we do not have their  analytic
forms to readily obtain their  density plots - would not be much different from the open loop distributions shown
in Figure 3.

If  we performed  multiple  Monte  Carlo  simulations  of  the  task  execution  under  MPTC  control,  then  each  run
would produce a new realization of the closed loop random process. A couple of runs shown in Figure 4 invokes
the feeling for their  variability. What matters,  though,  is that  in spite of their  vastly different appearance,  Blue’s
MPTC will  drive over 95% of all  runs  to success as  requested  by the  task  statement  regardless  of good or  bad
luck, which is always a factor in combat. As can be seen in the plot on the left, here the MPTC decided after the
first and second missions that this battle was progressing better than expected and withdrew at first 3 and then  1
more survivors from action. In the battle on the right,  Blue was down on luck and  lost a lot more than  expected
in  the first mission. Subsequently, the MPTC called for 2 additional  airplanes  to be added to the survivors to fly
the  second mission.  Both  battles  shown happen  to  terminate  after  the  third  mission,  but  this  is  a  coincidence.
Battles can and do terminate anytime between 1 and 6 missions.
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Figure  4.  Monte  Carlo  simulation  of  two  battles.  Bars,  dots  and  solid  lines  represent  deployment
increments/decrements,  actually  deployed and  surviving  units  in  each  mission,  respectively. Lacking  color,  the
plots  lose some of their  explanatory power. The  left and  right  bars  in  the  first  round  (=  mission)  are  Blue and
Red,  all  bars  in  rounds  	  2  are  Blue.  The  segmented  line,  which  ends  at  the  x  axis  is  Red,  because Red gets

wiped out.

The true value of robust feedback control can be best appreciated when Blue does not get his  battle model quite
right.  With  so many unknowns  to consider,  such situations  are  very likely in  the real  world. Figure 5 shows on
the left the average of 100 randomly generated battles managed by the MPTC, when Blue’s model was right.  On
the right,  the user underestimated  the Red SAM’s lethality by 50%, i.e.,  instead of entering  �R � 0.2 , he entered
�R � 0.1 .  We  see  that  the  battles  are  generally  longer  and  average  withdrawals  per  mission  are  smaller.  The
simulation  statistics  for the perfect model example show that  99 battles were won, none lost in  fight  and  1 was
lost  by not  being  completed  by  the  deadline.  For  the  mismatched  model,  93  battles  were  won,  1  lost  on  the
battlefield and  6 were lost by not being completed in  time.  Although  these numbers  pertain  only to the  random
samples  of  100  battles,  they  are  indicative  of  general  results.  The  potential  improvement  the  MPTC  offers

80



becomes clear once we calculate that in the model mismatched case 17 battles out of 100 would have been lost on
average without it.
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Figure  5.  The  expected evolution of  battle  computed as  the  average  of randomly  generated  100  battles  for  the
perfect (left) and mismatched (right) models

7 Designing Package Defenses

A package can be viewed as an abstract weapon system that the Task Level commander custom designs and, with
help from the Task Group Level commander,  then  "manufactures" for each mission to effect the desired change
in  the  battlefield.  As  any  other  weapon,  this  one  also  has  its  offensive and  defensive  capabilities,  which  are
characterized  by  the  package  attributes.  While  designing  the  offensive  capabilities  is,  at  least  conceptually,
straightforward,  the design of defensive capabilities often is more difficult. As long as defensive components are
an  explicit  part  of  a  package,  we use  the  formulation  (4).  However, many  factors  contributing  to  the  package
defense are intangibles that are very hard  to model and quantify. The following concept offers a possible solution
[Jelinek 2000].

Improving  defense against  enemy weapons, in  effect, means lowering his  weapons’ lethality against  own weap-
ons. In other words, in this view Red's lethality �R  should not be treated as a constant, but as a variable that Blue
can  actively manipulate  in  his  favor.  For  example,  flying a  mission  at  night  against  the  enemy whose fighters
cannot  fly by instruments  would greatly  lower his  fighters'  lethality  against  intruding  Blue bombers. Likewise,
adding  a jammer  aircraft  to a  package will lower the  SAM's lethality by disabling  their  radar  tracking.  Just the
threat  of Wild Weasels leading a group of bombers might  suffice to convince Red not to turn  on his SAM radars
at all, thus effectively lowering their lethality as well. 

Let  us  assume  that  Blue  can  indeed  manipulate  the  lethality  of  Red  weapons  and  concern  ourselves with  the
following question: How much down has  Blue to drive the Red's lethality �R  in order to keep his losses below a
given  threshold  li ?  Once  the  MPTC  suggests  the  needed  lethality  reduction,  the  Task  Commander  uses  his
military expertise to interpret  it in terms of particular  defensive options and suggest package defenses which are
best suited for the task at hand.  Mathematically,  the solution is obtained by modifying the optimization problem
(4) so that the minimization  is carried out not only over the original set ��k� , but also over the lethalities of Red
weapons, which are now added to the Blue's decision variables.

Consider an  example, in  which Blue is tasked to destroy a bridge deep in  the Red territory.  Blue knows that  on
their  way to the target,  his bombers are likely to be intercepted by LR  Red fighters whose lethality �R � 0.5. The
task  specifies that  his  loss  of bombers must  not  exceed 5  airplanes.   How much  must  he  lower �R  to conform
with  the order? Figure  6 shows the results  of the minimum  effective force calculations for the  acceptable maxi-
mum  loss values ranging  from 0  (the  curve on  the  left closely following the  y axis)  to 9  (the  last  curve on  the
right,  which is the lower envelope of the family). The thick  curve provides the desired answer for maxLoss = 5.
The  example nicely demonstrates  that  our  optimization  problem does not  have a  unique  solution as the  needed
number, nLB, of Blue bombers depends on their protection level that Blue is willing to provide. Any point of the
thick  curve meets the task objective, but offers a  different offense-to-defense ratio  for the package. Another  fact
worth pointing out is that  trading  off offense for defense has its limits.  Even an unlimited  number of bombers in
the  package  cannot  guarantee  that  their  loss  will  not  exceed 5  airplanes  unless  Blue defends  them  enough  to
drive the Red lethality (= pLR) down from 0.5 to about 0.38.
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Figure 6. Many minimum effective force calculations offer multiple solutions. Any point of the thick curve meets
the task objective, but offers a different offense-to-defense ratio.

8 Resource Allocation and Task Scheduling

Managing  a  set  of  tasks,  which  compete  for  shared  resources,  brings  up  new  problems.  The  Model  Predictive
Resource Allocator (MPRA) proposed in [Tierno 2000] aims to achieve, whenever possible, the desired probabil-
ity of success for all  given tasks,  while  minimizing  combat exposure of assets. It  uses the  market  oriented  pro-
gramming  to reconcile the competing demands.  This  is trivial  as long as there  is enough resources to satisfy all
of the  tasks'  demands.  It  becomes a  very difficult problem at  the  moment  when the  demands  are  irreconcilable
and the MPRA is expected to provide some meaningful  advice to the Task Group commander  as to which tasks
would be hurt  the least if deprived of some of their resources, what effect such step would have on their probabil-
ity of success, losses, etc.  The  MPRA may also be asked to advise  which  tasks  can  be redefined down without
causing much harm or dropped altogether.

An  appealing  feature of this  approach  is  the  "currency" that  bidders use in  their  attempts  to acquire  resources,
which  is  based on the  probability of success computed for  each  task  by its  MPTC.  This  injects some degree of
objectivity into the way the algorithm works and makes its behavior easier to control and understand.

Mathematically,  resource allocation  is a  packing  problem. Such problems are  notoriously hard  to solve numeri-
cally.  In  real  world  applications,  the  Task  Group  commander  has  to  handle  tens  or  even  hundreds  of  tasks
simultaneously.  This  eliminates  many potential  algorithms,  which  simply cannot  scale up  to this  problem size.
For those reasons, work reported on in [Deshpande et al.  2001] investigated the use of greedy search and genetic
algorithms to find only approximate solutions but in times more likely to be considered "real". 

The  above work concerned resource allocation done in  a fixed time instant.  There  is no notion of  the future in
the resource allocation algorithms that were studied. Although the minimum effective force of each task offers an
glimpse into its likely future, this information was ignored.

So far our team has not addressed the task scheduling problem at all. In their breakdown into individual,  sequen-
tially executed missions tasks do involve the notion of time, but this is only the "mission", not physical time. The
job of scheduling is to map this mission time onto the physical time axis, and stack up the missions there so that
they can be actually executed in the real world. We are addressing those issues in our current project.
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