Ontology Views for Collaborative Ontology Creation: The BioSphere Portal

Stuart Aitken¹and Jonathan Bard²
¹ Informatics, ²Biomedical Science
University of Edinburgh

The BioSphere Ontology Portal

BioSphere: A BBSRC tools and resources project developing tools for the end user

- Collaborative ontology development tools
- 1. Ontologies
 - Bio-ontology languages: OBO and tools
 - W3C standards: Web Ontology Language (OWL)
 - OBO => OWL
 - OWL syntax (RDF/XML) and OWL 2
- 2. Archiving XML data
 - Keys for XML
- 3. BioSphere Portal
 - GridSphere and OGSA-DAI

Bio-ontologies

Taxonomies of organisms (NCBI)

```
Cellular Organisms

Eukaryota ...

Rodentia ...

Mus musculus (house mouse)
```

- Anatomy ontologies
 - Mouse, fly, worm and plant anatomies used for indexing spatial and temporal gene expression data
 - Tissues and regions are named and given IDs
 - » IDs used in many databases
 - » Mapped to other ID schemes
 - » interoperability

Bio-ontologies

- Gene Ontology (GO)
 - Used for describing the molecular of gene products
 - Extensively adopted
 - Has enabled many new data mining and statistical analyses
 - The GO ontology representation is also used by the Open Biomedical Ontologies (OBO) community
 - » obofoundry.org
- Ontologies complement other standards initiatives
 - Standards for data formats and protocols

Bio-ontologies

Annotation

- PAX6 is linked to GO term camera-type eye development (GO:00430010) in the mouse MGI database
- PAX6 is detected in the mouse eye (or substructures)
 - » data also found in the mouse MGI database
- Mouse anatomy is hierarchically organised, by part-of and by stage
 - » lens is a substructure of eye
 - » eye and lens have EMAPA identifiers eye has ID <u>EMAPA:16192</u>
 - » Identifiers serve important roles in the databases
- A biologist can then look for genes in other organisms annotated to camera-type eye development

Bio-ontologies: Syntax

- GO flat file format
 - ASCII rendering of the hierarchy using % (isa) and < (part-of)
 - indentation indicates parent-child relationships
- OBO flat file format
 - uses a 'frame-like' representation, organising defining information about the class as a series of assertions, or 'stanza'
 - Overcomes some limitations of GO
 - » Allows new relationships to be created
 - Recent versions introduce intersection, union and restrictions
- XML versions of GO and OBO are defined but not as extensively used
- A Web Ontology Language encoding of OBO has been defined

Bio-ontologies: Semantics

- isa
 - Always used in the sub-class-of sense [GO/OBO]
- part-of
 - Initial ambiguities have been clarified
 - Still overloaded (functional vs component etc)
 - Links classes: Heart *part-of* Cardiovascular System
 - » Some Hearts? All Hearts? Some/All Cardiovascular Systems?
 - Comments apply both to GO and OBO
 - » needs clarification for translation to OWL
- Other relations treated in the same way as part-of
 - class-level relations in GO/OBO

Bio-ontologies: Annotations

Annotations to terms (classes)

- Definition
 - Textual definition (or description) of a term
 - Sometimes omitted leaving the name only
- Cross references 'DbXRef' e.g [TAIR:ki]

```
[Term]
id: CARO:0000063
name: portion of cell substance
def: "Portion of organism substance located within
a cell." [CARO:mah]
is_a: CARO:0000004 ! portion of organism substance
```


Bio-ontologies: Annotations

Annotations form nested structures:

- Definition: <text, DbXRef list>
- DbXRef: <name, accession, [description]>
 e.g. ISBN:0471245208
- Synonym: <{exact, broad, narrow, related}, text, DbXRef list,

[synonym-type]>

- e.g. CARO:0000048 gonochoristic organism has synonym: "monoecious organism" RELATED []
- Synomym-Type: <name, description, scope>
 e.g. synonymtypedef: UK_SPELLING "British spelling" EXACT

Web Ontology Language (OWL)

In parallel with the development of these biomedical ontologies, standards for a web-compatible ontology language emerged from the W3C:

- OWL is a general-purpose ontology language
 - Based on Description Logic
 - » With well-defined semantics
 - » Tractable reasoning algorithms
 - Web-compatible
 - » Concepts and relations referred to through URIs
 - » RDF/XML syntax
 - Compatible with other W3C standards
 - » RDF
 - » RDFS

Web Ontology Language (OWL)

Semantics

owl:subClassOf is the isa/subclass relation and holds between two classes (or class descriptions)

All other relationships in the ontology are used to construct class descriptions

-- differs considerably from the use of relations in bioontologies

Syntax

- RDF/XML has multiple syntaxes
- No guarantee that an OWL ontology will be written in the same way twice
 - » This does not matter in the construction of the RDF graph, the model is always the same

Web Ontology Language (OWL)

RDF Syntax

```
<rdf:Description rdf:about="http://www.example.org/index.html">
        <exterms:creation-date>August 16, 1999</exterms:creation-date>
        <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
</rdf:Description>
```


Web Ontology Language 1.1 and 2

- OWL 1.1 extended the expressivity of OWL
 - New cardinality constraints
 - Role composition
- OWL 2 has a new XML syntax, not based on RDF
 - XML Schema has been defined

```
<owl:Class rdf:about="http://purl.org/obo/owl/CARO#CARO 0000063">
    <rdfs:label xml:lang="en">portion of cell substance</rdfs:label>
    <rdfs:subClassOf
              rdf:resource="http://purl.org/obo/owl/CARO#CARO 0000004"/>
</owl:Class>
                                                                 RDF/XML
```

```
<EntityAnnotation>
   <OWLClass URI="&oboContent;CARO#CARO 0000063"/>
   <Annotation annotationURI="&rdfs;label">
        <Constant>portion of cell substance</Constant>
   </Annotation>
</EntityAnnotation>
                                                                OWL 2 XML
```


OBO into OWL: First steps to using OWL in Biomedical Ontologies

- Aims for converting OBO to OWL (NCBO/GO effort with Moreira, Mungall and Shah):
 - to translate OBO to OWL, and back,
 - staying within OWL-DL, and
 - round-trip files without error.
- IDs remain the primary index → local name in URL
 CARO: 0000063 → namespace#CARO 0000063
- Semantics
 - i. TermA isa TermB → TermA subClassOf TermB
 - ii. TermA relation TermB →

TermA subClassOf some.relation TermB

Therefore, terms with no isa parent will become direct subclasses of Thing

OBO into OWL: OWL 2

- OBO-In-OWL
 - Simple uniform procedure not involving any extended analysis of term meaning
 - Gives 'surprising' results for ontologies that are not isacomplete
- "OBO-In-OWL 2"
 - Achieved simply using the Manchester/Wonderweb Java API
 - Retains the advantage of the OWL 2 schema
- Can now consider working with ontologies at the XML document level
 - XML methods
 - First, look at ontology tools

```
<EntityAnnotation>
   <OWLClass URI="&oboContent;CARO#CARO_0000063"/>
   <Annotation annotationURI="&rdfs;label">
        <Constant>portion of cell substance</Constant>
   </Annotation>
</EntityAnnotation>
<EntityAnnotation>
   <OWLClass URI="&oboContent;CARO#CARO 0000065"/>
   <Annotation annotationURI="&rdfs;label">
        <Constant>basal lamina</Constant>
   </Annotation>
</EntityAnnotation>
<EntityAnnotation>
   <OWLClass URI="&oboContent;CARO#CARO 0000067"/>
   <Annotation annotationURI="&rdfs;label">
        <Constant>simple cuboidal epithelium</Constant>
   </Annotation>
</EntityAnnotation>
```


Tools: OBOEdit 2

Tools: Protégé 3

Protégé - viewing OBO OWL files

Tools: Protégé 3 + OBO-In-OWL Tabs

Tools: OBO Converter (Moreira and Musen, bioontology.org) OBO Explorer - both Protégé plugins

Archiving XML data

XML documents and XML keys

- XML documents, serving as databases, often contain unique keys (in the database sense)
- Top-level keys and secondary keys identify elements in hierarchically-structured databases [Buneman 01]
 - If name and course in <name>joe</name>course>maths-1
 - constitute a key, then all elements with this key must agree everywhere, define:
 - path expressions
 - value equality ⇒ node equality
 - Relative keys motivated by scientific databases

Archiving XML data

Versioning XML documents using timestamps

- Changes to scientific databases are accretive [Buneman 01]
 - Documents have a key structure
 - Additions/deletions are infrequent
 - diff-based approaches may be inefficient
- 'keys' can be used to merge versions of documents
 - Keys that are the same in two versions indicate that no change has taken place - supports merging
 - In fact, the element need only be stored once, along with a timestamp representing a time interval
 - The document structure can be exploited timestamps stored only at child nodes that are changed

BioSphere: An ontology portal

Now consider development efforts and the tools needed to support end users

- Sharing ontologies
 - For loosely-organised groups of ontology developers
- Version management
- Visualising user's view points
- Supporting discussion and collaboration

Why a portal?

- The architecture is ideal for managing data resources centrally
- Details of formats, plug-ins etc can be hidden
 - But off-line working needs to be supported

Portal and Grid Technologies

The BioSphere portal integrates several existing technologies:

- GridSphere
 - A environment for accessing portlets
 - » Java enterprise-style designs
 - » GridSphere and portlets are deployed in tomcat
 - Provides user account management
 - Integration with Grid security where needed
- OGSA-DAI / DAIX
 - Middleware providing read and read/write/update access to data resources
 - DAIX version is designed to operate with XML databases
- eXist XML database

Portal and Grid Technologies

In addition to GridSphere:

- Spring Framework
 - Portal event handling
- Dojo JavaScript toolkit
 - Provides a drag-and-drop tree library
 - Plus other GUI components

Version Control for OWL 2 Ontologies

Relying on OWL ontologies conforming to the OWL2 Schema:

- New metadata elements are introduced into the OWL 2 XML document to represent the duration during which an assertion is believed by a named user
 - Durations are indicated by a begin and end version number, or
 - by a constant denoting a future version

```
<br/><begin-user-ID=Version-I end-user-ID=Version-J>
```


<begin-user-ID=Version-K end-user-ID=FUTURE>

New attributes added to <Assert/> elements in OWL 2 logic definitions, or

To existing <Constant> elements in OWL 2 annotations

 The objective is to capture changes for the group, for each user and each version, e.g. user 1 rejects an assertion:

<Assert begin-group=Version-0 end-group=FUTURE> add new:

<Assert begin-user-1=Version-0 end-user-1=Version-2>

Version Control for OWL 2 Ontologies

Collaborative editing model

Users inherit the group view
Users make edits / notes / act on assigned tasks
User edits are copied to the group when agreement is established

Version Control for OWL 2 Ontologies

Objectives:

- To efficiently retrieve (sub)sections of the ontology document within the BioSphere portal
 - Design of OWL 2 schema modifications
 - Design of Xpath/Xupdate queries + Java to get/set version information
 - Export to pure OWL 2 syntax, to OWL RDF/XML and OBO
- To package as a stand-alone OGSA-DAI workflow
 - assuming the user and version database files are suitably initiated:
 - Provide generic version management functions
 getOWL2Ontology(user, version, document-name, collection,...)
 updateOWL2Ontology(user, version,...)

Uses of Ontology Version Metadata

The version and user metadata can provide important information, including:

- How a user has constructed their ontology over time
- Where a user agrees with, and differs from, the group
- Where a user agrees with and differs from, other users
 But to be useful, this information must be easily understood
- A good visualisation method that allows ontologies to be compared and contrasted is needed
 - A tree is the traditional visualisation of the ontology graph
 [bearing in mind this may not be ideal]
 - A simple approaches are to colour nodes according to user/version & to present post-it notes for discussion
- A good technique would have other uses too

Gridsphere provides the user with login and layout customisation

BioSphere 0.5			
Ontology Editor Form			
Class URI and Name Assertion 🥤			
Class URI:	Name:		
SubClass - SuperClass Assertion C			
SubClass URI:	SuperClass URI:		
User and Version IDs for Action			
User ID: 2	Version ID: 3		
Action: Assert © Retract ©			
Enter			
CODSoleteClass	© ObsoleteClass a form for entering information; and		
© SynonymType © anatomical cluster © anatomical entity © immaterial anatomical entity (CARO_0000007) © material anatomical entity (CARO_0000006) © anatomical structure (CARO_0000003)			

BioSphere 0.5			
Ontology Editor Form			
SubClass - SuperClass Assertion 🙃			
SubClass URI: CARO_000011	SuperClass URI: CARO_0000054		
Class URI and Name Assertion C			
Class URI:	Name:		
User and Version IDs for Action			
User ID: 2	Version ID: 3		
Action: Assert ⊙ Retract ⊂			
Enter			

User interaction is currently via a form, but this will be replaced by drag-and-drop operations where possible

Ontology Portals

The NCBO has a bio-portal that allows OBO ontologies to be browsed

Ontology Versioning and Collaboration

- KAON ontology management [Gabel 04]
- SemVersion [Volkel 06]
- Protégé
 - Prompt change tracking [Noy 04]
 - Collaborative Protégé [Tudorache 07]
- Ontology views
 - Sub-ontology extraction [Bhatt 04]
 - Segmentation [Seidenberg 06]
 - Views [Noy 04] [Volz 03]

Future Work

- Completing the coverage of the OWL 2 schema
 - Define the modified schema
 - Complete a set of test cases
- Address performance issues in querying / rendering large amounts of data
 - Construct the visualisation incrementally
- Allow the upload/download of ontology versions
 - Support format conversion
- Visualisation
 - Compare user/group/version views of an ontology
 - » Changes to logic
 - » Changes to annotations
 - Compare classified and asserted ontologies

BBSRC grant BB/F015976/1

