
[image: image1.png]File Edit

chema
Name.

T

Pattern

[ovola 7object osaton

Expansion

focats 7abfctTocaton prcise ovaton
v s o vl s oaton
i i

Constraints

Temporal

Activties are © Parallel ® Sequential Otfier

Comments

P || Eorn

[concotean

I-X Process Panels – Quick Start Guide

Austin Tate, Jeff Dalton and Jussi Stader

Artificial Intelligence Applications Institute

Centre for Intelligent Systems and their Applications

Division of Informatics

The University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK

Web:
http://www.aiai.ed.ac.uk/project/ix/

E-mail:
ix@aiai.ed.ac.uk

Version 2.1a – 13th June 2002
1 Introduction to I-X and I-X Process Panels (I-P2)

1.1 I-X Research Programme

I-X is a research programme with a number of different aspects intended to create a well-founded approach to allow humans and computer systems to cooperate in the creation or modification of some product such as a plan, design or physical entity – i.e. it supports synthesis tasks. I-X may also be used to support more general collaborative activity.

The I-X research draws on earlier work on O-Plan (Tate et.al. 1998; 2000; 2002), <I-N-OVA> (Tate, 1996), the Enterprise Project (Fraser and Tate, 1995; Stader, 1996; Uschold, et.al., 1998) and the TBPM project (Stader, 2000) but seeks to make the framework generic and to clarify terminology, simplify the approach taken, and increase re-usability and applicability of the core ideas.

The I-X research programme includes the following threads or work areas:

1. I-Core, which is the core architecture, the underlying ontology of activity and processes termed <I-N-CA>, and the terminology used to describe applications, systems or agents built in the I-X framework.

2. I-PE, which is the I-X Process Editor, which is itself an I-X application but is also used to create and maintain the process models and activity specifications used elsewhere.

3. I-P2, which are I-X Process Panels used to support user tasks and cooperation.

4. I-Plan, which is the I-X Planning System. This is also used within I-P2 and other applications as it provides generic facilities for supporting planning, process refinement, dynamic response to changing needs, etc.

5. I-Views, which are viewers for processes and products, and which are employed in other applications of I-X. I-Views can be for a wide range of modalities and types of user.

6. I-Faces, which are underlying support utilities to allow for the creation of user interfaces (User I-Faces), inter-agent communications (Communications I-Faces) and repository access (Repository I-Faces).

7. I-X Applications of the above work areas in a variety of areas. These currently include:

a. Coalition Operations (CoAX)

b. Emergency and Unusual Procedure Assistance (I-Aid, I-Help, I-Rescue)

c. Support Desks (I-Support)

d. Multi-Perspective Knowledge Modelling and Management (I-AKT)

e. Medical Best Practice Procedures or Protocols (I-Medic)

f. Natural Language Presentations of Procedures and Plans (I-Tell)

g. Collaborative meeting and task support (I-Me, I-Room, I-World and I-Space)

8. I-X Student Projects, which are deepening and refining a number of aspects of the I-X research programme.

9. I-X Technology Transfer, including work on standards committees, especially for process, plan, activity and capability models.

1.2 I-X Process Panels (I-P2)

The aim of an I-X Process Panel (I-P2) is to act as a workflow, reporting and messaging “catch all” for its user. It can act in conjunction with other panels for other users if desired.

· Can take ANY requirement to:

· Handle an issue

· Perform an activity

· [later: Maintain a constraint]

· [later: Note an annotation]

· Deals with these via:

· Manual (user) activity

· Internal capabilities

· External capabilities (invoke or query)

· Reroute or delegate to other panels or agents (pass)

· Plan and execute a composite of these capabilities (expand)

· Receives reports and messages and, where possible, interprets them to:

· Understand current status of issues, activities, constraints and annotations

· Understand current world state, especially status of process products

· Help control the situation

· Copes with partial knowledge

Three example process panels are shown in the figure below. These panels are from a demonstration of agent systems within a military Coalition context – part of the Coalition Agents eXperiment – CoAX (Allsopp et.al. 2001, 2002).

[image: image2.png]

[image: image3.jpg]

[image: image4.png]

An I-X Process Panel supports a user or collaborative users in selecting and carrying out "processes" and creating or modifying "process products". Both processes and process products are abstractly considered to be made up on "Nodes" (activities in a process, or parts of a process product) which may have parts called sub-nodes making up a hierarchical description of the process or product. The nodes are related by a set of detailed "Constraints" of various kinds. A set of "Issues" is associated with the processes or process products to represent unsatisfied requirements, problems raised as a result of analysis or critiquing, etc.

Processes and process products in I-X are represented in the <I-N-CA> (Issues - Nodes - Critical/Auxiliary) Constraints Model of Synthesised Artifacts.

1.3 I-X Process Editor (I-PE)

The process descriptions used by I-X Process Panels are kept in a domain library. This can be loaded when a panel is started, and can be added to dynamically by a user of a panel.

[image: image5.png]

Simple View - the process panels contain a simple, form-based domain and process editor (right). This simple editor allows simple task breakdown structures to be specified along with a temporal constraint that the sub-steps should all be sequentially ordered or all kept in parallel.

[image: image6.png]File Edit

chema
Name.

T

Pattern

[ovola 7object osaton

Expansion

focats 7abfctTocaton prcise ovaton
v s o vl s oaton
i i

Constraints

Temporal

Activties are © Parallel ® Sequential Otfier

Comments

P || Eorn

[concotean

Advanced View - a more powerful domain and process editor allows for multiple perspectives and views to be used to create rich process models beyond those that can be created with the simple view editor. This can be reached by selecting advanced view from the simple domain/process editor. It is also available as a stand-alone application to maintain a set of domain and process libraries.

The advanced editor consists of a form-based structure editor (not shown), which looks similar to the simple editor but allows the user to specify more complex temporal constraints. Other constraints, like spatial ones or constraints on resources, can also be specified using the advanced view.

The graphical editor provides an alternative view to the form-based editor. The graphical editor illustrates precedence relationships between the sub-steps of a process. This editor can also be used to specify task breakdown structures via the expansion of nodes in the graph. Full details of the process and its sub-steps can be accessed via the properties of nodes.

Use of XML and Text Editors - the process and domain models are maintained in XML. You can also modify them using an XML Editing Tool - such as the freely available Microsoft XML Notepad (see http://msdn.microsoft.com/xml/notepad/intro.asp) or a text editor.
2 Quick Start Guide

To quickly get started using the I-X Process Panels and run the demonstrations follow the following procedure. This is specifically for Microsoft Windows platforms – but a similar procedure can be used on Unix also.

1. Ensure that you have a working Java Development Kit environment with the necessary Java programs on your current path, i.e. you should be able to run a command “java” from any location. You will need to alter the scripts provided to set the path explicitly if this is not the case.

2. Obtain and uncompress the I-X system distribution. This will create a single directory with all necessary files. It can be placed anywhere.

3. An example for using the I-X Process Panels is available in apps\isample. You can start up a demonstration by executing (e.g. by double clicking on) 3 of the batch script files in this sub-directory called: scripts\win\nameserver-itest.bat (run first to provide a simple name/address lookup service to the other process panels), isample-supervisor.bat and isample-operator.bat. A process panel customised to have a name based on your system user name and machine domain name is available by running i-me.bat. Similar scripts are available for Unix systems in scripts\unix.

4. You can then test the panels by sending sample issues between panels – one way to do that is to use the Test menu on I-Test to send sample issues, activities, reports or chat-style messages to other panels.

5. To use communications strategies other than simple inbuilt ones (which are available immediately), it is necessary to edit some scripts to set the location of the relevant code on your computer. Edit the script files in comms*\scripts*. In some releases (e.g. for the CoABS Grid Extension Release) this has been done in advance of distribution.

3 [image: image7.png]Tools Help

Name Pattern
)
3 [avoid_location | [avoid 2object ?location
New Node]pelete Node| |Layou
[ronacicaphoeno]
—
Load graph
Properties

New Expansion

alter_plan_to_avoid :precise-location

kdeconflict_plans
3

Using an I-X Process Panel

An I-X Process Panel (I-P2) contains a number of sub-panels that describe:

· A set of “issues” to be “handled”.

· A set of “activities” to be “performed”.

· Current state information reflecting the current set of “constraints” to be “respected”. This includes the status of a range of “process products” being created or manipulated by the processes

The panel supports it’s user in handling issues, deciding on a course of action and performing activities, and maintaining awareness of the current state, constraints, process products, etc.

[image: image8.png]CToolMemBa
— Tool Pasele)
Activitis Pae]

Cunent State Pazel
Constraints &

Produt St Panel [y MomaBar

Logo Parel 3 Help Window

Entries on panels can be expanded using information provided in the process library used by a panel, or the entries can be passed between panels.

Right click on a line to get a context sensitive menu that describes operations you can perform on the entry. This includes where relevant the ability to pop-up a window with more details of the entry (say an activity or an issue), or to expand or contract the display of some levels of hierarchically specified activities, etc.

A “tools” menu is available to make accessible the following:

· A domain or process library editor to view, edit or add to the list of process descriptions which may be used to “expand” entries on the process panel.

An instant messaging or “chat” tool to communicate in free format or the encouraged structured (“augmented messaging”) forms with other I-X Process Panels and other systems.

4 Creating your own I-X Process Panel

A single process panel or a small cluster of panels in superior, peer or subordinate relationships to one another can be quickly adapted to a new application. We will later support more dynamic and adaptable combinations of multiple panels in more complex organisational structures (which we called I-Spaces), but much of the necessary support for this is not yet sufficiently generic to provide in an easily altered form.

An example I-P2 application is provided in the apps\isample directory, which can be copied and adapted as follows:

· Copy the whole Isample directory to become a new directory with a name of your choice (e.g. apps\app-name).

· In the directory config alter the property file names and contents of those files as you wish to tailor display names and labels used on the process panels.

· In the directory images add in any logo or logos for panels as you wish. Replacing the logo images\isample-logo.gif will mean the default logo is amended without further changes.

· The main tailoring to a new application is usually in providing a suitable “domain model” that describes ways in which activities can be refinement into more detailed sub-activities. Domain models in I-P2 are stored in XML format and in the I-Sample Process Panel are in the domain-library directory. A domain editor (see below) is provided to create or amend domain models, and domain models can be augmented while a Process Panel is running.

You can further tailor an I-X Process Panel to a specific application by renaming and amending the I-Sample Process Panel code as follows:

· You can rename the java\isample directory to be java\appname and, in that directory, rename Isample.java to be AppName.java or whatever you wish. Delete the compiled class files included there.

· Edit this renamed file to change the package name from isample to appname.

· Change the class name Isample to AppName where it occurs.

· Change any strings that refer to I-Sample to App-Name as you wish.

· You can add in appropriate “test menu” entries (see below) or modify the ways in which the panel “actions” are set up.

· In the directory scripts\win (and unix) alter the script names and script contents as necessary to refer to the new name rather than Isample.

· Recompile the AppName.java code with the compile script provided.

A wide range of parameters can be specified to simply customise a range of things about each panel. A property file for a panel can specify most of these and can be set using, e.g.,

isample.Isample -load config/isample-supervisor.props

For example, the file config/isample-supervisor.props contains such things as:

symbol-name=Supervisor

display-name=Supervisor I-X Process Panel

logo-line-1=Supervisor I-X Process Panel

logo-line-2=Based on I-X Technology

logo-image=images/isample-logo.gif

domain=isample-supervisor.xml

subordinates=Operator
You can also set one property individually when the process panel program is started using a command-line argument, such as

 "-display-name=App-Name Whatever"
The domain model including process descriptions available to the panel can be preloaded from a domain library file (e.g. as in the case above which loads the isample-supervisor.xml file describing sample processes that the panel is made aware of and can use to “expand” entries put onto the panel.

The I-X Process Panels can have a number of “issue handlers” which can handle issues in specific ways. One type of handling is to reroute the issue to other users or panels. At present the issue handlers are defined using information supplied in the “I-Space” description for a process panel which is currently done by specifying the superiors, peers, subordinates and contacts parameters (whether via the command line or via the property file provided on panel start up.

It can be convenient to provide some example issues, activities or other entries that can be added to a panel, which could have come from other systems or panels. It can also be comvenient to provide messages that could be sent to other panels and agents. This allows simple demonstrations and testing to occur. The contents of the "Test" menu can be set using an XML file describing the entries, and informing the panel about this file using the –test-menu=<pathname> parameter – the appendix for details of all parameters. An example test menu file follows. “me” for the “to-name” means the message is sent to the current panel rather than externally. The menu textis what actually appears as an entry in the Test menu. The $to item in the menu-text string (if present) is substituted by the “to-name” of the panel or agent to which then message is sent.

<?xml version="1.0" encoding="UTF-8"?>

<list>

 <test-item

 menu-text="Send $to a request for transport"

 to-name="Supervisor">

 <contents>

 <activity priority="high"

 report-back="yes">

 <pattern>

 <list>

 <symbol>transport_by_helicopter</symbol>

 <item-var>?wounded</item-var>

 <symbol>field_hospital_a</symbol>

 </list>

 </pattern>

 </activity>

 </contents>

 </test-item>

 ...

</list>

5 Creating your own I-X Domain/Process Library

Each I-X Process Panel can make use of a domain model or process library which describes ways in which issues can be handled or high level activities can be broken down into more detailed activities which may be performed. A panel can operate without such process descriptions, but becomes more useful and helpful if it has such knowledge. A process library can be loaded when a panel is started up, and additional process descriptions can be provided while it is running, and indeed they can be saved at any stage to amend the stored version for later preloading.

You can create the process descriptions with the I-X Domain and Process Editor provided. It can be run on its own or can be called from within a Process Panel from the Tools menu. Since the process descriptions are actually stored in a simple XML format, it is also possible to use any XML editor to change the descriptions if you wish. The format of the XML is as follows:

domain ::=

 <domain>

 <name>string</name>

 <refinements><list>refinement...</list></refinements>

 </domain>

refinement ::=

 <refinement>

 <name>string</name>

 <pattern><list>...</list></pattern>

 <issues><list>issue...</list></issues>

 <nodes><list>node-spec...</list></nodes>

 <constraints><list>constraint...</list></constraints>

 <orderings><list>ordering...</list></orderings>

 <comments>string</comments>

 </refinement>

issue ::=

 <issue

 status="status"

 priority="priority"

 sender-id="name"

 ref="name"

 report-back="yes-no">

 <pattern><list>pattern-element...</list></pattern>

 </issue>

node-spec ::=

 <node-spec id="name">

 <pattern><list>pattern-element...</list></pattern>

 </node-spec>

constraint ::=

 <constraint

 type="name">

 <parameters><list>pattern-element...</list></parameters>

 </constraint>

ordering ::=

 <ordering>

 <from>node-end-ref</from>

 <to>node-end-ref</to>

 </ordering>

node-end-ref ::=

 <node-end-ref

 end="end"

 node="name">

 </node-end-ref>

end ::= begin | end

status ::= blank | complete | executing | possible | impossible | n/a

priority ::= lowest | low | normal | high | highest

yes-no ::= yes | no

pattern-element ::=
 <symbol>name</symbol> |

 <string>text</string> |

 <item-var>?name</item-var> |

 <integer>digits</integer> |

 <list>pattern-element...</list> |

 other pattern-elements are possible

Example domain models and refinements can be found in the apps\isample\domain-library directory. Variables begin with “?” and can be used anywhere. Unbound variables appear in the process panel and can be bound by the user of the panel (and in later versions by external query capabilities). The representation used is based on the <I-N-OVA> constraint representation of activity (Tate, 1996).

6 Adding your own Communications Strategy

I-X Process Panels can also be used with any of a number of “Communications Strategies”. Example strategies are provided for the DARPA CoABS Grid (“grid”), the University of West Florida Institute of Human and Machine Cognition (UWF/IHMC) KAoS (“kaos”), and the UK EPSRC-sponsored Advanced Knowledge Technologies AKT Bus (“akt”). Also provided is an adaptor for a simple direct link between panels possibly supported by a simple name server (referred to as the “simple” or “xml” communications strategy).

Others can be provided by writing a suitable Communications Strategy, placing it in the appropriately named location in the comms directory, and providing a suitable comms-setvar.bat script within the relevant directory. It is possible to add in new adaptors and indeed the architecture potentially supports the dynamic addition of these on-the-fly.

7 I-X Process Panel Input and Output Messages

An I-X Process Panel can be sent a number of XML format messages from other agents or systems to give it issues to address, activities to perform and reports to note. A Test agent (called I-Test) is provided to give a simple way to try this out. The format of these messages is as follows:

issue ::=

 <issue

 status="status"

 priority="priority"

 sender-id="name"

 ref="name"

 report-back="yes-no">

 <pattern><list>pattern-element...</list></pattern>

 </issue>

activity ::=

 <activity

 status="status"

 priority="priority"

 sender-id="name"

 ref="name"

 report-back="yes-no">

 <pattern>pattern-element...</pattern>

 </activity>

constraint ::=

 <constraint

 type="name"

 relation="name">

 <parameters>

 <list>

 <pattern-assignment>

 <pattern>pattern element...</pattern>

 <value>pattern element...</value>

 </pattern-assignment>

 </list>

 </parameters>

 </constraint>

constraint types allowed at present are “world-state” and the relations for this are “condition” and “effect”. The value must be given, but a default “value” can be set to “true”.

report ::=

 <report

 report-type="report-type"

 priority="priority"

 sender-id="name"

 ref="name">

 <text>string</text>

 </report>

chat-message ::=

 <chat-message

 sender-id="name">

 <text>string</text>

 </chat-message>

pattern-element ::=
 <symbol>name</symbol> |

 <string>text</string> |

 <item-var>?name</item-var> |

 <integer>digits</integer> |

 <list>pattern-element...</list> |

 other pattern-elements are possible

report-type ::= success | failure | progress

priority ::= lowest | low | normal | high | highest

yes-no ::= yes | no

status ::= blank | complete | executing | possible | impossible | n/a
Notes

Strings and symbols that contain some special symbols need to have these encoded. Use "&" for ampersands and "<" for less-than. It is best to also use ">" for greater-than.

In attribute values, double quote should be encoded as """.

8 References

Allsopp, D., Beautement, P., Bradshaw, J.M., Carson, J., Kirton, M., Suri, N. and Tate, A. (2001) “Software Agents as Facilitators of Coherent Coalition Operations”, 6th International Command and Control Research and Technology Symposium, US Naval Academy, Annapolis, Maryland, USA, 19-21 June 2001.

Allsopp, D., Beautement, P., Bradshaw, J.M., Durfee, E.H., Kirton, M., Knoblock, C.A., Suri, N., Tate, A. and Thompson, C.W. (2002) "Coalition Agents Experiment: Multi-Agent Co-operation in an International Coalition Setting", Special Issue on Knowledge Systems for Coalition Operations (KSCO), IEEE Intelligent Systems, June 2002.
Fraser, J. and Tate, A. (1995) "The Enterprise Tool Set -- An Open Enterprise Architecture", Proceedings of the Workshop on Intelligent Manufacturing Systems, International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August 1995.
Stader J., Moore J., Chung P., McBriar I., Ravinranathan M., Macintosh A.. (2000) "Applying Intelligent Workflow Management in the Chemicals Industries"; in “The Workflow Handbook 2001”, L. Fisher (ed), Published in association with the Workflow Management Coalition (WfMC), pp 161-181, Oct 2000.

Stader J. (1996) “Results of the Enterprise Project”, in Proceedings of Expert Systems '96, the 16th Annual Conference of the British Computer Society Specialist Group on Expert Systems, Cambridge, UK, December 1996.

Tate, A. (1996) "The <I-N-OVA> Constraint Model of Plans", Proceedings of the Third International Conference on Artificial Intelligence Planning Systems, (ed. Drabble, B.), pp. 221-228, Edinburgh, UK, May 1996, AAAI Press.

Tate, A. (1998) “Roots of SPAR”, in "Special Issue on Ontologies", Knowledge Engineering Review, Vol.13 (1), March 1998, Cambridge University Press.

Tate, A., Dalton, J. and Levine, J. (1998) "Generation of Multiple Qualitatively Different Plan Options", Fourth International Conference on AI Planning Systems (AIPS-98), Pittsburgh, PA, USA, June 1998.

Tate, A., Dalton, J. and Levine, J. (2000) “O-Plan: a Web-based AI Planning Agent”, AAAI-2000 Intelligent Systems Demonstrator, in Proceedings of the National Conference of the American Association of Artificial Intelligence (AAAI-2000), Austin, Texas, USA, August 2000.

Tate, A., Levine, J., Dalton, J. and Nixon, A. (2002) “Task Achieving Agents on the World Wide Web”, in “Creating the Semantic Web”, Fensel, D., Hendler, J., Liebermann, H. and Wahlster, W. (eds.), MIT Press, 2001.

Uschold, M., King, M., Moralee, S. and Zorgios, Y. (1998) "The Enterprise Ontology", in "Special Issue on Ontologies", Knowledge Engineering Review, Vol.13(1), March, 1998, Cambridge University Press.

Appendix: I-P2 Parameters

IPC
 -ipc=strategyName

 -ipc=class

 -ipc-name=name

Note that ipc-name is only available for special uses. It is recommended that symbol-name is used generally to name agents, and this will by default be used for the ipc-name. Wherever agent names are required, the ipc-name is used.

strategyName can be none, simple or xml using built in support. With suitable communications strategy add-ons other strategies can be specified such as: grid, kaos or akt.

See the javadoc for IPC.getCommunicationStrategy(String strategyName)
Default and XML communication strategies

 -port=number

Tells the agent to use a specific port number rather than to ask the underlying operating system to allocate a free one. This is especially useful in environments with a firewall.

 -host=hostname

Used to tell the agent what to call the machine it is running on when the default name will be incorrect. The default is the name returned by

 InetAddress.getLocalHost().getHostName()

 -run-name-server

Tells the agent to run a name-server.

 -name-server

 -name-server=servername:port

 -no name-server

Tells the agent whether to use a name-server to look up the addresses of other agents, and if so what host and port to connect to. The name-server servername:port defaults to localhost:5555

IXAgent

 -debug=boolean

Get more detailed diagnostics in the Java console window.

 -classic=Boolean

Use alternative (simpler) interface for table views and other user interface elements.

 -domain-editor-class=classname

Possible values are currently:

ix.iview.DomainEditor (default)

ix.iview.SimpleDomainEditor

Select domain editor to use.

IP2 Visual Appearance

 -domain-library=pathname (URL syntax)

 -domain=filename

 -symbol-name=symbol

Note that symbol-name, by default also becomes the ipc-name. If not provided, the default is set to “IX-<user-name>@<machine-name>”.

 -display-name=text

Note that display-name is set to “<symbol-name> Process Panel” by default.

 -logo-line-1=text

 -logo-line-2=text

 -logo-image=pathname (URL syntax)

 -metal-theme-secondary-3=colour

IXAgent I-Space

 -superiors=namelist

 -subordinates=namelist

 -peers=namelist

 -contacts=namelist

 -external-capabilities=name:verb,...

Note that name and namelist are the names of agents. A list is comma separated, and the list cannot contain spaces.

Test Menu

 -test-menu=pathname (URL syntax)

An XML file can be provided to set the Test menu entries that appear in the top right corner of a process panel, and which can be convenient for testing and demonstrations.

General Notes

1. The "-" is not part of the parameter name; it is just syntax.

2. -load is not a parameter. It is syntax that tells it to load name=value lines from a file. More than one -load may be specified.

3. -no and -not can negate the following parameter (which is written without the initial "-"). It is equivalent to giving the parameter the value "false" but can be used in cases where it would seem odd to explicitly say "=false".

� EMBED MSPhotoEd.3 ���

1

[image: image9.png]LP? Icons.

b Unfold
< Fold

© Click for Detalls
@ Clizk to Cancel
© Click to Axchive

~ High
> Hormal

< Low

Action Status

Mot Ready

_1066641461.bin

