
AIAI/158.3/Report/1.2, 21st December 2000

I-X – Example Configuration System

Author:

Prof. Austin Tate

Other Contributors:

Mr. Jeff Dalton and Dr. Robert Inder

Artificial Intelligence Applications Institute

Division of Informatics

The University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK

Prepared for:
Mike Kirton

DERA Malvern

A configuration system is to be designed in the I-X Framework. A very simple approach is taken which introduces just enough to illustrate most parts of the I-X architecture and the underlying <I-N-CA> constraint model for synthesised artefacts.

1 Task and Issues

The task of the system if to configure a computer to meet a number of fixed and optional requirements. The top-level task-initiating issue is to “configure-computer <computer-spec>”. The <computer-spec> is expressed as a set of constraints to be met in a compliant design. Part of the specification may be a limitation on the total cost of the system, and possibly a statement on whether expansion was required later (in the form of free slots).

The full description of the computer could be provided in the parameters to the configure computer issue, but for modularity, any one of a number of optional requirements can be stated as separate issues in the form “include-option <option-spec>”.

2 Principal Entities in the Domain

A computer consists of a computer chassis with a number of slots with varying facilities and constraints. There are 3 adjacent slots that can take long boards, and 3 adjacent slots that can take short boards. The central 2 long board slots and a single adjacent short board slot each have extra power and data connections, needed by some plug-in boards. Short boards may fit into short or long board slots.

The other principal entities in the domain are the boards themselves. Each meets different requirements and has specific constraints on how it can be fitted into the chassis.

	Board Description
	Capability
	Length
	Extra Power/Data
	Cost
	Adjacency

	Processor
	Processor
	Long
	Extra
	200
	None

	Disk Controller
	Disk I/O
	Long
	Normal
	50
	Next to Processor

	I/O
	Other I/O
	Short
	Normal
	50
	None

	Option 1
	Fast Graphics

	Long
	Extra
	100
	Next to Processor

	Option 2
	Fast Graphics Video-In
	Short
	Extra
	300
	None

	Option 3
	Sound
	Long
	Normal
	50
	Next to I/O

	Option 4
	Video-In
	Short
	Normal
	50
	Next to Disk Controller

You can see that there is an interesting choice for the fast graphics and video-in boards available. A long (old technology) fast graphics board that must be positioned next to the processor board would also require a separate (short) video-in board if both facilities were required. A computer built using this board, and also needing sound and video-in would have all slots filled. But a (newer technology) short board is available to meet both needs without the adjacency constraint. It would allow considerably more flexibility on where the boards are positioned and allow for unused slots for future expansion needs. Unfortunately, as is the way with these things, the newer short board costs considerably more.

A valid computer configuration is defined to include a chassis with connected processor, disk Controller and I/O boards, and any required options. The cost of the processor board includes the cost of the chassis. Note in particular, for this example, that if a computer with fast graphics, video-in and sound is needed that also allows for expansion by having free slots, then the cost will be above 500 units.

3 Domain Model

The domain model consists of a set of descriptions for each board available, in terms of the properties it has – which also can act as constraints on its inclusion in the design.

Board

Board-name=string
Board-capability=string
Board-length=Long or Short
Board-power-data-needs=Extra or Normal
Board-cost=number of units
Board-adjacency=another board name
There are also descriptions for each of the 6 slots available.

Slot

Slot-number=number 1…6
Slot-power-data=Extra or Normal
Slot-length=Long or Short
Other aspects of the Domain Model:

These are normally in the form of a set of global Domain Constraints that apply across all possible products that might be synthesised – i.e. apply to all computer configurations in this domain. However, in the particular formulation of the problem given, knowledge of many of the constraints in the domain is expressed in the board and slot descriptions already. The remainder is built into the Issue Handlers or Constraint Managers themselves.

The domain model and any product model can be expressed as a set of constraints of the following forms:

Static constraints – globally valid and applying to all possible product models:

Board-capability board-name capability

Board-length length-specification (long or short)

Board-power-data-needs power-data-needs-specification (normal or extra)

Board-cost number

Board-adjacency-requirement board-name necessary-adjacent-board-name

Dynamic constraints – applying only within some specific product model that is being configured by the I-X system:

Connection slot-number board-number

Total-cost number

4 Product Model

Nodes - Nodes of the product model in <I-N-CA> are the principal things we wish to include in the synthesised artefact. The selection of a suitable set of boards to meet the requirement is the principal way that the I-X configuration system will work. Hence, boards are selected as the “nodes” in the <I-N-CA> product model.

Node-Relatable Objects – besides the boards, there are other entities in the domain - the chassis and the slots. The chassis is only implicit in the domain model and need not be referred to at all in this formulation. The slots are referred to and can be considered as node-relatable objects.

Critical Constraints - A product is mostly constrained by the “connections” of one board to a particular slot. This is to be the shared constraint that will be common currency for describing restrictions on which slots can contain which boards throughout the configuration system.

Auxiliary Constraints - These will be used to allow separate constraint managers to look after their own constraints such as adjacency, power requirements, cost, etc – which will not be known to any components except the individual constraint managers that look after those aspects.

The design of an I-X system could proceed by selecting ways to manage each constraint, and then any constraint that is returned in a “maybe” answer from a constraint manager becomes (by definition in an I-X design) a critical constraint. However, in this case, this is an obvious I-X system design choice. Maybe answers from constraint managers list a set of constraints that must be added in order to make the Product Model valid. It can show what are the consequences of adding in a particular constraint. There can also be several ways to satisfy the maybe, leading to alternatives that can be considered by the system.

5 Issue Handlers

Handle Issue “Configure-Computer” - The main issue handler will handle the top-level “configure-computer” issue that specifies the main task. It will take the <computer-spec>, which might just contain a cost limit for example. It will post the constraints provided in the specification, say “cost =< 500 units”. It will then generate computer designs that meet the specification of a basic computer as having three boards – a computer, disk I/O and I/O board.

It is a design decision on how to find one, several or all possible solutions. Lets assume we want to be able to generate all legal solutions on need to ensure that we will find a solution if it exists, and to be able to say that no solution exists if all possible configurations are tried and none meet the requirement. To meet this specification, the main issue handler can set up alternative configurations as it seeks to select one that satisfies the whole requirement. It could consider all legitimate configurations if necessary, and therefore the Issue Handler would be designed to create alternative Product Models for every possible placement of boards into valid slots as it performs its search. It does this by asking the Model Manager to set up alternative product models as necessary for each option it considers.

One way to do this is to use a simple search procedure for example. Lets say that it tries this by attempting a very simple search to put boards in the configuration in a specific order from left to right. The order boards are added is as follows:

1. Computer Board

2. Disk Controller Board

3. I/O Board

The Issue Handler could go through each of the boards in turn and could place each in a chosen slot (starting at slot 1), then putting the next board in the first empty slot (again scanning for an empty slot from slot 1 upwards).

Each time a board is included the Issue Handler asks the model manager to try to see if the additional constraints for that board are valid in the current configuration – i.e. against all constraints already in the state of the configuration up to that point. If the answer is yes or maybe the board is added at the current slot, along with the “maybe” constraints that were returned – which themselves give other constraints which may or may not turn out to be maintainable in a valid configuration.

Handle Issue “Include-Option” – The second issue handler handles any optional requirement stated. It can take a single issue of this type and see if the requirement is already met. If so it simply reports success and returns without adding more boards (nodes) or constraints. If the requirement is not already met, it selects a suitable board to meet the requirement and generates alternatives (via the Model manager as described above for the main issue handler) for each legitimate location for that board in the current design. If the board cannot be added, the Issue Handler will return an answer to the Controller to say that the issue could not be handled in the current product Model. The Controller would then have the responsibility of seeking alternatives (if possible).

Note this is of course not ideal in a real system. It would be better to select boards to meet a whole series of requirements if those could be linked. But this is just an example.

Possible Refinement of the Design of the Configuration System’s Issue Handlers

Also, you will note that the facility to “add a board at all possible legitimate locations in the current configuration” is now emerging as a common function we wish to perform in the two issue handlers. This is a common feature of an I-X systems design, and this might mean that we refine the design to have the first two issue handlers just post sets of sub-issues to say “add <specific-board>” and have a third handler to process these by generating all the search options and adding all necessary constraints for the added board, dealing with the “maybe” constraints as necessary. In fact, on further analysis, we can see that if we can just establish which boards are to be added, then we could build a whole set of constraints on the board positions and possible slots. If we had a suitable constraint handling approach to solve these, we could continue posting constraints on slot assignments and leave solving this constraint problem to later. We would then move down the “search” which the issue handlers are currently doing in the initial design, to what might be a more effective constraint-solving engine in the model manager itself.

6 Constraint Managers

We will define separate constraint managers as far as possible to separate the reasoning about constraints into easily managed modular parts.

For this problem the constraint managers are as follows:

Connection Constraint Manager – This is a constraint manager that can return Yes/No/Maybe answers. It is possibly the most important constraint manager in the system. It is triggered by constraints of form connection slot-number board-name. It provides three main checks:

· Power/Data Constraint Check – checks a board/slot combination and reports yes or no depending on whether the power/data requirements of that board are satisfied. In this example this is a Boolean check, but you can imagine that this might require very sophisticated modelling of the power levels, and timing delays across the back plane of the chassis.

· Length Constraint Check – checks that a board can fit into the slot provided. It reports yes for any short board assignment to any slot, and yes for long boards in long slots, but no for long boards which we attempt to connect to a short slot.

· Adjacency Constraint Manager - checks if the adjacency requirements for each board are satisfied. This can return yes or no, where the answer is definitive, but can also report a maybe answer where the slot assignment is potentially valid so long as the placement of other boards meets these requirements. It has to report its maybe answer in terms that can be understood outside of the constraint manager – i.e. it cannot use the “adjacency” terminology, which is unknown outside of this constraint manager. However, it can use connection slot-number board-name constraints as a common Interlingua, i.e., in terms of the “Critical Constraints”, which by definition can be understood across relevant components of an I-X system. The relevant Issue Handler can understand these, as can any of the other constraint managers that need to reflect the additional constraints into their own reasoning (just the other one in this example). So, a maybe answer that required an option board to be adjacent to a board currently in slot 3 might say “maybe so long as either option board 2 is in slot 2 or slot 4”.

Cost Constraint Manager – This is a constraint manager that can return Yes/No answers only. It also is triggered by each connection slot-number board-name constraint as it is added. It uses the domain model to retrieve cost of each board added. It keeps a running total of these to maintain a current total minimum cost of the configuration. It compares this to any task specified constraints on the total cost of the computer - such as Total-cost =< 500 units - and reports yes or no accordingly.

7 I/O Handlers and User Interface

In a real configuration system, a user interface would provide a suitable way to enter the requirements and options, to view partial results and alternatives being generated by the configuration system, and to allow for the user to fix some parts of the design, while asking for further exploration of other parts. A “task assignment” interface could be built to support this. I-X Viewers and the I/O handlers would support such functionality.

In this simple system, we will just take a single requirement specified in advance and ask the system to generate a single result that meets this requirement and output it.

8 Example Problem to Illustrate I-X Processing

In this section, we will step through a sample problem in the I-X configuration system. The user asks for a computer costing 500 units that has 3 options: Fast Graphics, Video-in and Sound. Note that if the user also asked for expansion capabilities, the I-X configuration system would, after searching all possibilities, say that no solution exists that meets the specification and constraints given.

The specification comes in via an I/O Handler and is converted by it into the main issue

configure-computer “total-cost =< 500”

and a set of include option issues:

include-option “fast-graphics”

include-option “video-in”

include-option “sound”

These issues are passed to the Controller, which calls the Model Manager to create an initial “Product Model” and posts the set of issues into this. So, the initial Product Model is composed entirely of the set of user specified issues. I.e. it is a specification for the product in its first form.

The job of the controller is to process any outstanding issues that it can in any Product Model available in the Model Manager. There can also be issues that are not specific to any single Product Model – (I-X system or agent issues), but none occur in this application. In certain I-X applications, there could be sophisticated prioritisation of which issues to work on in which alternative product models, but, in this simple system, we can assume that the Controller just takes the first available Product Model, and processes the main issue (configure-computer) first and then any outstanding option issues (include-option). This is not necessarily a smart way to proceed of course.

The controller looks for issue handlers for the issue it wants to process next. This could be selected very simply in his application by selecting the issue handler that states that it deals with issues of form “configure-computer” or the issue handler that deals with “include-option”. This is common in I-X systems, and a lot can be done with simple selection using the first word (verb) that describes the issue. The Controller asks the Model Manager to remove the issue to be handled from a specific Product Model, and then passes a reference to the specific Product Model and the issue to be handled to the Issue Handler. In general multiple product models and/or issues can be handled at once by some sophisticated controller/issue handler interactions, but not in this simple example.

The Issue Handler for configure-computer could work by having hardwired knowledge that a basic computer includes one each of a processor, disk controller and I/O board. It would use the Model Manager to look up domain knowledge from the Domain Model that describes each board (and possibly retrieve alternatives if there were any – which there are not for the basic boards in this example). The Issue Handler might work by setting up a simple search space to generate alternative product models (which it does via the model manager) that are copies of the initial product model with variations for each search alternative. In each alternative it would add a specific connection constraint between one of the boards and one of the free slots. It would use the board specification information from the domain model (retrieved via the Model manager) to post the various constraints that are in the board description into the specific Product Model. These could all just be added and the Model Manager asked if they were valid in the current Product Model. It could do this systematically so that it was responsible for providing a complete set of alternatives for all legitimate connections of the 3 boards to the slots on the chassis. In reality, there are many ways to address this problem without such simple search approaches, and even when search is used it is possible to only partially generate the search space until earlier alternatives are found to be unsuitable.

When the controller chooses to process one of the issues related to including options in the Product Model, then the appropriate include-option Issue handler would be called. Its function could be to initially check if earlier boards that had been included already met the optional requirement. If so the Issue Handler would simply return reporting success. No change to the Product Model would have been made, except that now the option requirement has been removed. If the optional requirements were not met, the Issue Handler would add a new board that met the optional requirement and add a connection constraint into a specific slot. If there were several such boards (as indicated by the retrieval from the Domain Model via the Model Manager) or several alternative open slots, then the Issue Handler would create alternative Product Models based on the current Product Model it was give as input by the controller, and would add the different boards and specific connection slots for them into each alternative.

Each time a constraint is added into a specific Product Model, the Model Manager has the responsibility of checking that the constraint is still valid with respect to the current state of the Product Model and the Domain Model that this sits within. It does this by calling all relevant Constraint Managers. The mechanism for knowing which Constraint Managers to call can be hardwired or itself be very flexible and allow for plug-in Constraint Managers where the application demands it – not needed in this simple example.

If all constraint managers return a yes or any one returns a no answer this is simply reported to the Issue handler that was adding the constraint to the particular Product Model. The much more interesting case is when a constraint manager reports a maybe answer. This can contain valuable information to allow a more directed search though just those alternatives that would allow a successful solution to be found. Such answers are provided back by the Model manager to the Issue Handler. The Issue Handler is then in a position to use the maybe result constraints to further constrain the overall Product Model. In some cases there can be multiple possible maybe answers and then the Issue Handler can set up specific alternatives (again via the Model Manager) in each of which one of the proposed alternatives in the maybe answer is used. This can be preferable to a simple blind search.

When the Issue Handler terminates it can do by returning to the Controller with:

· No answer. I.e. all alternatives it considered to handle the issue it was given in a specific base Product Model are invalid configurations given the computer-spec and options to be included.

· A single answer. The Product Model may have been modified to address the issue and may therefore contain further constraints, nodes (included boards) or sub-issues.

· More than one answer. This would indicate that there are several alternative Product Models in each of which different configuration design decisions had been taken.

The Controller then has the responsibility of deciding on which of the alternative Product Models to develop further, and which outstanding issues to address in the one(s) chosen. The I-X processing cycle then repeats.

Any Product Models in which an issue could not be handled (i.e., for which the Issue Handler reported no possible solutions), the Controller would reject the relevant Product Model as a basis for an answer to the user. The Controller would proceed until it found a Product Model that had no outstanding issues. I.e. the main requirement was met, and each option had been included. The first product Model meeting this requirement could be returned to the user – via the I/O Handlers.

An example solution that meets the requirements and costs exactly 500 units assigns the following boards to the slot-numbers indicated:

1. Fast Graphics

2. Processor

3. Disk Controller

4. Video-in

5. Sound

6. I/O

There are a few alternative solutions with the I/O and Sound card being in differently numbered slots. A system that could return multiple or all solutions would be able to generate such alternatives if required.

1

