EXCALIBUR: A Program for Planning and
Reasoning with Processes

Brian Drabble *
Artificial Intelligence Applications Institute

University of Edinburgh
Edinburgh EH1 1HN

Revised February 1992

Abstract

This article describes research aimed at building a hierarchical par-
tial order planner which is capable of interacting with a constantly
changing world. The main aim is to verify a planning and execution
strategy based on Qualitative Process Theory which allows a greater
level of interaction between the planner and the real world than exists
within current planners. A variety of techniques are described which
allow the planner to create a model of the world in which plan failures
can be analysed and faulty plans repaired. These techniques also allow
the planner to react to changes in the world outside of the plan which
it has been told previously to avoid happening eg. an explosion.

1 Introduction

For knowledge based planners to be useful to industry the plans they gen-
erate must be robust as well as easily updated to reflect the constantly
changing requirements of any real world situations. At present knowledge
based planning systems are only capable of understanding a planning do-
main at a very superficial level and as such the plans they generate can only
be used as a guide to the people using the plan. This is because only a small
amount of knowledge about the domain is given to the planner usually in
the form of the action schemata. This lack of knowledge leads to the further
problem of plan failure as events occur in the world of which the planner
had no previous knowledge.

All planning systems adhere to a basic requirement of vital importance,
namely that the plan generated be reliable. In other words, the plan must
continue to function at all times. Reliability may be essential to avoid halts
in production and the subsequent loss in profit. However, for the command
and control of spacecraft a planning systems failure could mean the failure
of an entire mission or in some cases the loss of human life. This reliabil-
ity is not easy to achieve as the planner faces problems posed by differing
interactions and constraints on goals within a given plan, and with changes
which occur in the world as the plan is executed. In AI planning systems
research until recently, the main emphasis has been placed on the creation
of systems capable of producing correct plans free from interactions; dealing
with problems caused by changes in the world has taken second place.

As planning systems are developed to cope with more realistic appli-
cations, above that of the traditional block stacking type, the problem of
monitoring the plan as it is executed in the real world become of greater
importance. The inability to monitor the execution of a plan and to react
to any unforeseen changes are major deterrents to the integration of knowl-
edge based planning techniques into industry. The problems which industry
hopes to solve with planning techniques tend to have:

1. external events which occur in the real world over which the planner
has no direct control. i.e. a new delivery of widgets arrives which it
must remove from the loading bay.

2. complex interactions between the actions of the plan and the world.
For example “boil some water and make a cup of coffee with it” requires

the planner to realise that the boiling water is a resource which it can
create from executing certain actions in the real world.

3. complex resource reasoning in which resources change their at-
tributes, can be substituted or shared, etc.

4. continuous events which occur over many actions and may or may
not be due to the effects of actions executed within the plan. In a
chemical plant a vat of chemicals will cool if no steps are take steps to
avoid this.

This article describes a planning system EXCALIBUR [9, 6, 7] which can
create and execute plans capable of interacting with a continuously changing
world which is described using Qualitative Process Theory [11, 12, 13]. The
techniques used here have been used for plan execution monitoring but we
feel that they also have great potential in the areas of plan and schedule
generation as well as schedule monitoring.

2 Background

The aims of this section are to show the advantages of using a qualita-
tive representation scheme for plan execution and repair. The article first
describes those attributes which are present in most qualitative reasoning
schemes and then goes on to describe the scheme used in EXCALIBUR.

2.1 Motivation for using Qualitative Reasoning

The actions of a plan are executed to bring about a desired change in the
world so that a goal is achieved. Reasoning about change is thus at the centre
of plan execution monitoring. The process of reasoning about changes in
the world requires the ability to reason in an expert fashion about time and
processes. Reasoning about time is needed to deal with causality. Reasoning
about processes is needed since the direct effects of a plan action can be
completely specified when the plan is generated, but the indirect effects
cannot. For example, the action “open tap” leads with certainty to “tap
open” whereas whether there will be a fluid flow and how long it might last
is more difficult to predict. The majority of existing planners cannot handle
these kinds of reasoning, thus limiting their usefulness.

The impoverished semantics of the worlds used by these planners is not
their only problem. Many treat the world as a static one, in that noth-
ing changes without the planners either initiating it or knowing about the
change. This means the resulting plans are created using a world model
which is inherently a subset of the real world with some information missing
and other information being incorrect or out-of-date. As a result, the plan
cannot be “run” in the real world with any degree of certainty that it will
accomplish the task for which its was created. The reason for this stems
from the obvious fact that the world is not static, so facts about the world
change during the course of execution of a plan. As a result a plan of action
may no longer be capable of execution, resulting in an execution error. (For
a more detailed discussion of execution monitoring and error analysis, see
[8])-

One way of rectifying some of the problems in creating an internal world
model which more accurately reflects the external world would be to use
“qualitative reasoning”. Current research in qualitative reasoning allows
the behaviour of various physical systems to be predicted using partial de-
scriptions of the world ([4], [16], [11, 12, 13]). However, the physical systems
must be considered in isolation, as current systems do not allow intervention
by agents. For example, a state-of-the-art qualitative reasoning system can
predict the possible behaviours of a boiler, but cannot plan to intervene if
the boiler is about the explode. Just as qualitative reasoning systems need
to understand planning, so planners need to understand processes, since
plans very often involve them. As a simple example, planning to make a
cup of coffee requires some understanding of the process of boiling, if only
to know when to begin pouring the water into the cup.

Some research has been carried out in the area of integrating actions into
qualitative simulations. One notable system is a version of Ken Forbus’s QPE
which integrates actions into qualitative process theory envisionments [14].
The work is similar to that reported here, but EXCALIBUR differs in several
major ways:

1. Efficient Planning
The planning carried out by EXCALIBUR makes use of a partial order
network which the Forbus system cannot handle. That system assumes
a single sequential order of actions. EXCALIBUR has been tested on a
cooking domain first put forward in the SIPE system. This involves
cooking a meal using 6 saucepans but with only four gas rings. The

Forbus system would be incapable of reasoning about the inherent
parallelism available within the plan.

2. Realistic Models of Operators
The operator language (TF) used by EXCALIBUR allows the implicit
hierarchy present in the domain to be represented and reasoned with.
The language also allows time and resource information to be repre-
sented which is important when we consider execution monitoring and
plan repair.

3. Execution Monitoring
The plans generated by EXCALIBUR are executed and if necessary re-
paired should a problem occur. This was never attempted in the For-
bus system.

2.2 Qualitative Reasoning System used in EXCALIBUR

Qualitative reasoning systems are primarily interested in predicting the be-
haviour of physical systems in non-numeric terms, preserving all important
behavioural distinctions of the actual systems, given only a structural de-
scription of it. The qualitative representation used in EXCALIBUR [6] is
based on the qualitative process theory designed by Forbus ([12, 13]). The
behaviour of a system is specified in the form of the creation and termina-
tion of processes, (such as heatflow, fluid flow, boiling, motion, etc.) which
defines the changes they bring about in the world and the individuals ef-
fected. The structure of the domain is described using individuals ' and
their spatial relationships which can obviously change over time. Examples
of individuals are containers, tanks, pipes, heat sources, fluid sources, etc.
As qualitative reasoning systems are not interested in numbers they have
no meaning, but relationships of the form “A equal B”, “C equal Zero”, “A
greater than B” have as they will result in the termination or creation of
processes. For example, the fluid flow process can only exist while there is a
pressure difference across it, if the pressure becomes equal it stops. A boiling
process will become active if the temperature of the liquid becomes greater
than its boiling point. It is by analysing how processes are created and
destroyed and how processes effect each other that a qualitative reasoning
system can predict the behaviour of a physical system.

!The term individual is used to describe an object in qualitative process theory

2.3 Problems which Excalibur can solve

It is not only complex industrial planning problems which cause planners
difficulty, but even simple every day problems such as “making a cup of
coffee” are difficult to analyse. For example a plan to make a cup of coffee
requires that we obtain boiling water but no single action can assert this
effect. However, it can be achieved by a sub-plan to fill a kettle with water
and then to heat it. This however requires the planner to know how to fill a
kettle with water! The problems are compounded when the desired external
events have unknown start times and durations and other external events
occur which may interfere with the plan. For example, the time taken to boil
a kettle of water is only known at plan time and failures can occur such as the
gas being turned out or there being insufficient water in the kettle to make
the coffee. Some domains such as process control, contain undesired events
which the planner may be instructed to avoid, e.g. overflows, explosions,
etc. For example, a plan to close all the valves of a boiler may well cause
it to explode. This type of plan “failure” is more difficult to analyse than
simple precondition failures as it requires the planner to reason about the
causes of an undesired event and to modify an existing and correct plan.

EXCALIBUR has been designed to handle problems such as these which
involve:

e events and actions which have unknown durations
e external events and/or their effects which are required within a plan

e events occurring external to the plan which are undesired.

Apart from the two domains described above, problems such as these
can be found in areas such manufacturing, logistics, spacecraft command
and control, and assembly tasks.

The rest of the article will describe the structure of the EXCALIBUR plan-
ner as well as the operator schemata and world descriptions which it uses.
This article also describes in detail some problems which EXCALIBUR has
successfully solved, which previous planners have been unable to handle. A
fully detailed description of the EXCALIBUR system and the types of problem
which it can handle, can be found in [9, 6].

3 Introduction to the system

The architecture for a system able to handle planning with processes, that
is a complete Plan Management System (PMS), is presented in Figure 1.
A pwms differs from a mere planner in that as well as planning, it carries
out execution error monitoring and analysis and can manage plan patching
and replanning. The PMS is composed of three major modules: a traditional
planner; a system for plan co-ordination, monitoring and error analysis; and,
for the present, a simulation of effectors, sensors and the real world.

The motivation behind EXCALIBUR was to design a planning system
which could plan to interact with events in the real world and to use these
interactions within its plans. The term we use to describe this type of system
is a Model Based Planner.

Model based planning involves developing plans which can inter-
act with external events and whose effects may be required by
actions within the same plan. An execution time model of the
real world is created to check that these externally satisfied pre-
conditions will indeed come about. If any are endangered or any
undesirable events are detected they are resolved by modifying
the affected parts of the current plan.

In the current work the planner is represented by Tate’s Nonlin ([17])
which can be regarded as having two major parts: a set of schemata which
form a World Model, albeit a very limited one; and a Plan Generator. Non-
lin’s world model is limited in that it cannot model continuous events, make
use of events occurring external to the plan, model resources and their uses
during planning. The Plan Generator is responsible for proposing an effi-
cient, self-consistent plan to achieve a given goal, using knowledge from the
associated world model. The choice of Nonlin for the plan generation part of
EXCALIBUR was taken early in the project. At that time no planning system
other than Nonlin was available. Planners such as Deviser, SIPE and O-Plan
were not available as general release versions until much later. This work
was carried out at the University of Aston, long before the author moved to
ATAT at Edinburgh. O-Plan was therefore not an option available. However,
I have since found that by modifying the variable binding and matching rou-
tines of O-Plan to handle process requirements it would be easy to integrate
O-Plan into the EXCALIBUR framework.

At the core of the PMs, is a system called EXCALIBUR (Execution Analysis
LInkage By Uncertainty Reasoning). At the conceptual level, EXCALIBUR
has two major units: a Plan Co-ordinator and a Plan Monitor. The Co-
ordinator’s function is basically to interface the Planner (i.e Nonlin) and
the Monitor: it accepts a complete plan from the Planner and stores it. The
plan is complete in the sense that it achieves the higher level parts of the
problem which the planner is capable of handling. The lower level actions
which monitor for plan success or failure are handled by a separate execution
module which has passed to it a measure of the success of the plan fragment.

For example, a cup filling to a required level is a measure of success 2.

The filling of a cup as will be used as an example of the interaction
between the planner and the execution agent. The planner is capable of
constructing a sequence of actions which can bring about the preconditions
required for water to flow from a kettle into a cup 3. The planner checks
that the effect(s) required in the plan can be brought about from the pro-
cesses created by the effects of the actions, e.g. if the plan requires boiling
water and there is no heat flow process created the effect may prove a little
difficult to achieve! These preconditions can be found from the external
preconditions list defined within the fluid flow schema e.g. aligned kettle
cup. The low level actions necessary to monitor that these preconditions
as well as other derived (through the qualitative causal theory *) precondi-
tions remain true is the responsibility of the execution agent. For example,
moving the kettle to the cup will create two views, aligned kettle cup
and fluid-connection kettle cup. Each of these are used as precondi-
tions for the fluid flow process. It is the job of the execution monitor to
calculate the dependencies between actions and to pass them across to the
knowledge base. It is the function of the knowledge base to maintain these
dependencies and to report any problems to the execution monitor. Should
these problems cause plan failures then the execution monitor raises a re-
plan request which is dealt with by the planner, in this case Nonlin. Not all
dependency failures are in fact problems. For example, if the plan is to fill
a bath to a required level and this is achieved before the tap is closed then
this is not a plan failure and can be ignored even though it was flagged by

2This leads to a further problem concerning “degrees of success” i.e. is a half full cup
satisfactory? This problem will be dealt with in a later section.

3The sequence is generated using standard partial order planning techniques found
within Nonlin.

“The preconditions include the existence of the kettle and the cup, any contents they
may have and the path between the kettle and the cup.

the knowledge base.

Plan actions are then passed to the monitor for execution, one at a time.
The monitor asserts a block of actions in the knowledge base which is used
as a context should any replanning be necessary. In the present system a
window of 10 actions “downstream” of the one currently being executed is
held within the execution monitor. The only exception to this is when an
action has a precondition which will be satisfied by an effect brought about
by one or more actions of the same plan i.e. the start of ending of a process.
If the execution monitor has no information as to when this precondition
can be satisfied no further actions will be sent to the execution monitor until
the effect has been seen or a failure has been raised. The effect detection
and error recovery will be discussed in later sections.

The Monitor in turn can be divided, conceptually at least, into three
sections: a Plan Reasoner, a Process Reasoner and a Time Network Man-
agement System (TNMS).

3.1 The Process Reasoner

The Process Reasoner is needed to reason about individuals and changes in
processes occurring in the world which are brought about via plan actions
and other processes. The Process Reasoner has several functions which are:

e To take the description of a physical system along with the processes
active within it and to create a process tree to reflect the possible
behaviours of the system.

e To take information from sensors and user input about changes in
the real world and to synchronise the internal world model with this
information.

e To modify the process tree in the light of changes made by plan actions
which cause the behaviour of the system to differ from that which was
originally predicted.

e When a plan is suspended waiting for a process or a process effect, the
Process reasoner must check that the condition or process waiting will
at some point be achieved so as to avoid locking up the system.

Plan Management System schematic layout

+ New goals &
World Model Replanning
(Operator schemas) Plan Generator requests
The Planner v Plan actions
Plan Co-ordinator
A
Action Reply messages
Queries & Replanning requests
+ << Time Network
Plan Reasoner Management
Effectors Sensors > p| Sysem
Simulation of > Process <«
the World Reasoner Internal World
> Model
Plan Monitor

Figure 1: System Overview

10

e [fa wait condition cannot be satisfied within a plan eg. you are waiting
for a kettle to boil and the gas has gone out, then report to the Plan
Reasoner those effects which are required in the plan for the wait
condition to be valid.

In order to carry out the functions described above the process reasoner is
required to maintain the contexts used in reasoning about the different types
of change which can occur in the world. The contexts change dynamically as
the structural make up of the domain changes. For example, when making
a cup of coffee the kettle is moved around from one part of the kitchen to
another. For example:

1. Firstly it is placed under the tap for filling
2. Secondly the kettle is placed on the gas to be boiled

3. Thirdly the kettle is taken to a cup in order to fill the cup.

In each of these situations the kettle (and its contents) will interact with
other objects to be found in the vicinity. The changes which are brought
(new processes and views created, existing processes and views which are
terminated) are represented in a process tree, the structure of which will
be described later in this section. As plan actions change the relationships
between objects so new processes will be created and old processes destroyed.
For example, while the kettle is under the tap we are concerned with fluid
flows and water sources (as these are the processes and views instantiated)
but as soon as the kettle is moved to the gas processes such as heatflow and
boiling become of interest. The process reasoner creates contexts to break
up the world into qualitatively interesting pieces called contexts. A new
context is created under two different circumstances:

e Statically
when an object is moved to another user defined structural context e.g.
under tap-1 to on gas-1 where the sink and the oven are declared
as separate contexts.

e Dynamically
if the user does not wish to specify structural contexts, then the process
reasoner will construct its own contexts according to a simple set of
criterion:

11

1. Objects in the new location must not interact with any object in
the previous location.

2. The new location must not be a subset ° of the previous location.
For example, moving a kettle from gas-1 to gas-2 of the same
oven would not cause a new context to be generated.

If at any point information is derived or given to the process reasoner
that a process is active between objects in previously separate contexts, then
an instruction is sent to the knowledge base to collapse the contexts and to
generate a single process tree.

The process tree reflects the possible behaviours of a physical system
both in terms of changes brought about by processes and those brought
about by plan actions. A process tree is generated in response to a new
set of actions being passed to the monitor by the plan coordinator. The
process tree reflects how the plan should affect the world and the processes
and views which will be affected. It is this together with the dependency
information from the plan which helps guide the execution monitor as to
the success of a particular plan. The generation of the process tree is a two
stage process. The process reasoner first has to decide which qualitative
state reflects the state of the world at the point at which is it considering
further envisionments. For example, in the coffee making problem the initial
envisionment concerning pouring water from the tap to the kettle creates
two states:

e one in which the water is flowing from the tap to the kettle (state 1)

e and the state which would result from the amount of water in the tap
becoming zero ® (state 2).

Assuming the kettle is filled to the correct level then the tap will be
turned off and the plan coordinator having noted this fact will send a further
set of actions to the monitor. This block of actions will move the kettle from
the tap to the gas ring, light the gas and instruct the monitor to wait until the
kettle has boiled. These actions will instantiate amongst other things a heat

’The domain can be expressed using a simple parts hierarchy e.g. tap part-of sink,
gas-1 part-of oven-1
6possible if we have a very large kettle and a very small tank in the kitchen

12

flow process from the gas to the water via the kettle. The process reasoner
must now decide what could result from this heatflow. The current process
tree contains two states so the problem is to decide which one represents the
state of the real world. The reason for state 2 existing is that the amount of
water in the tap goes to zero and has the process reasoner has no knowledge
to that effect then this state is ruled out. State 1 is therefore chosen as the
point at which to start the envisionment. Providing there is at least one
possible path through the tree which results in the change to the process or
view required by the plan then no error is flagged by the process reasoner.
In this case the result of the heatflow is either luke warm water or the water
will be begin to boil as in required in the plan. The state in which the kettle
contains luke warm water is viewed as a failure state as there is no path
from it to a desired one. This allows the monitor to recognise a failure and
provides a context in which to replan. In this case provide more heat to the
kettle and a qualitative state from which to attach the resulting process.

Should the process tree fail to contain a state in which the desired process
change occurs then the process reasoner flags an error to the Plan Reasoner.
The message indicates the type of failure (process/view to terminate or start)
and the process involved. It is then the function of the plan reasoner to
extract the required process and checks the preconditions which the planner
can achieve. For example, if a boiling process was required and none was
noted then the plan reasoner would check the plan schemas for ones which
generate a heatflow.

The process tree is generated using similar techniques to those in QPE.
As a result the process tree created is a partial attainable action augmented
envisionment. That is, it is an action augmented envisionment because it
contains state transitions due to actions as well as dynamics. The tree is
partial in the sense that only those states which are realisable are included.
However, the main difference over the original QPE system is that the process
tree also contains states which are inserted to accommodate changes brought
about by actions which bring about qualitative states not represented by the
dynamics of the domain. For example, in the coffee making example the plan
contains steps to turn out the gas once the water has boiled. However, the
process tree created by dealing only with the dynamics contains only one
terminal state, namely the water in the kettle boiling away. To overcome
this a new state is added to the boiling state to reflect the state in the
world once the gas has been turned out. The state is tagged with both
the dynamic reason for its existence i.e. temperature gas < temperature

13

water as well as an action tag stating it was created to accommodate an
action inspired change.

The states of the process tree represent generic qualitative states rather
than episodes. This is because repeated actions are represented by cycles
in the tree and not by repeated subsequences. In this representation the
elements are viewed as qualitative states whose repeated occurrence define
a history.

During the subsequent execution of the plan, the plan reasoner receives
via simulated sensor input, from the knowledge base or from the user, infor-
mation about the real world. As the real world changes the system moves
from one qualitative state to the next providing the transition is valid. How-
ever, if information is input which either:

1. Counter to that which is expected.

For example, (temperature (contents kettle) decreasing)’ when
the temperature is expected to increase at this point, then the process
reasoner flags a possible error to the plan reasoner. The condition to-
gether with the process(es) which could be at fault i.e. in this case the
loss of a heatflow process are passed across. If the loss of the process
was under planner control i.e. it turned out the gas then it is ignored.
However, if the failure is not of the planners’ making the plan reasoner
will at present enquire of the user if the preconditions are still present
8. Once the failure(s) has been identified the plan reasoner sets about
its task.

2. Consistent with the next state but the transition condition has not
been met.
For example, the user inputs (contents kettle boiling) before the
system has noted that the temperature has reached 100 degree Celsius
(assuming water). The process reasoner then moves to the next state
and asserts the “missing” information in the knowledge base necessary
for the process to occur or to be destroyed. The new information allows
the process is then instantiated as its occurrence is reported to both
the process reasoner and the plan reasoner.

TEXCALIBUR has a simple set of input routines which allow this type of input
8t is hoped in future to have a more elaborate physical system which EXCALIBUR can
interrogate

14

3. Takes the process tree into a failure state.
These are states (usually leaf nodes) marked by the process reasoner
during the construction of the tree from which no path exists to a
desirable state. The reason for failure and the process involved is
passed to the plan reasoner for it to reason over.

Another function of the process reasoner is to report on states which
contain process changes it has been told to avoid e.g. explosion, overflow,
etc. If one of these processes is detected then a message is passed to the
plan reasoner together with information as to how to stop it occurring.
For example, an explosion occurs when (pressure contents container
> burst-pressure container). Any process which is causing an increase
in the pressure of the contents is a candidate for termination as are any
processes which can be started so as to remove the problem e.g. in this case
a gas-flow. In the current system the plan reasoner prefers to terminate
current processes rather than to start counter-active ones.

3.1.1 Data Structures and Algorithms

The data structures used by the Process Reasoner use a method of context
layering similar to that used by Nonlin and O-Plan [1] for its variables and
values. This allows variables such as quantities (actual numeric values) and
quantity spaces to be stored and retrieved efficient from their respective
states. The states of the process tree are held within a cyclic graph to
accommodate loops within the envisionment. Each of the states within the
process tree holds:

1. The individuals taking part in processes active in that state

2. The processes active within the state

3. The influences both direct and indirect which each process adds to the
state

4. The dynamic tag for the states existence and possibly an action tag to
indicate the state was created to accommodate and actions execution.

New individuals which are created during an envisionment are labelled
as individual<n> to distinguish them from named individuals. This makes

15

the cycle detection slightly more complicated in that the matching function
in the cycle detector must take into account that an individuals created in
the same state will have different names. The planner must also describe
the effects of actions in a way in which the monitor can use. For example,
the planner has no idea of the name which the process reasoner will give to
a new individual. As a result it must describe it in terms such as (contents
kettle) which have meaning to the process reasoner.

The techniques used in the process reasoner allow failed plans to be anal-
ysed that could not normally be tested by classical planners which require
all possible interactions with an action to be mentioned within the plan e.g.
there is insufficient water in a kettle when making a cup of coffee. The
process tree can also be used to detect errors outside of the plan itself, by
detecting failures represented as a state within the tree. The detection is
via reasoning about the requirements of the process itself, rather than sim-
ple problems arising with the preconditions as in classical planners. The
execution monitor can therefore modify a plan to stop undesirable events
occurring in the world. e.g. an explosion, overflow, etc. These undesirable
events may occur as the side-effect of a plan or because of a change in the
world not initiated by the planner.

3.2 The Time Network Mangement System

The EXCALIBUR world model (TNMS) is partitioned by the use of “contexts”
- sets of facts, actions and processes which are inter-related by causal influ-
ences, where no such influences operate across contexts. The contexts are
derived from the spatial and temporal bounds which can be placed on the
individuals in the target domain. For example the context to reason about
a sink is spatially isolated from a gas oven in the same room as these have
no influence over each other. Changes in the world may cause contexts to
require collapsing e.g. a new influence is asserted as occurring between pre-
viously isolated objects or dividing if sets of influences can be partitioned
into subsets. Each fact within a particular context of the TNMS has associ-
ated with it an interval defined by two time points. Each of the time points
has a range specified as a maximum and a minimum pair.

The basic representation of objects of the domain within the TNMS is
as follows. An object within QPE has associated with it one or more views
which define the “state” of the object. These views can be anything from “A

16

is a piece of stuftf”, “A is a contained gas”, “kettle is a container”, etc. All
of the views associated with a particular object are built into an hierarchy,
e.g. “A is a piece of stuff”, “A is a liquid” and “A is a contained liquid”.
Associated with each view are a number of attributes, e.g. pressure, volume,
temperature, amount-of, etc. A fact associated with each of the attributes
is asserted in the TNMS together with the basic description of the object.

(stuff-1 a piece-of-stuff) (has-quantity amount-of stuff-1)
(has-quantity temperature stuff-1) (has-quantity pressure stuff-1)

The attributes will have and end time of pos-inf indicating they exist for
an unknown time into the future. Should the object disappear for example,
the water drain completely from a tank, then all of the attribute facts will
be clipped back to the time at which the object ceased to exist.

If any numerical information is asserted about a particular attribute
then it is stored with the attribute of the object and an interval asserted
within the TNMS. In the example below the attribute amount-of is originally
specified as being of an undefined size and having and undefined change
of direction (positive, negative, 0). Information was later added that from
pt3 to pt4 the size was 12 units and it was increasing at a rate of 2 units.

(id-number stuff-1 a piece-of-stuff
(amount-of ((ptl pt2 undef undef) (pt3 ptd 12 2)))
(temperature ((pt5 pt6 undef undef)))

(1ink-field (id-number ptl6 ptl7)
(id-number pt202 pt203)))

(id-number stuff-1 a liquid
(link-field (id-number pt26 pt27)

(id-number stuff-1 a contained-liquid
(level ((pt12 pt13 undef -)))
(container ((pt43 pté44 kettle))))

17

The hierarchy uses inheritance to reduce the amount of information
stored at each level. For example, the attributes of a liquid are no dif-
ferent from those of a piece of stuff, but there are two extra attributes of a
contained liquid i.e. level and container (i.e. the object which contains it).
If during the plan A becomes a solid then a new link will be added to the
“A is a piece of stuff” view to point at the “A is a solid view”. The clipping
mechanism of the TNMS will truncate the end time of the previous view e.g.
“A is a liquid” to the start time of the new view. The links in this hierarchy
have associated with them time intervals during which the TNMS and process
reasoner may transverse them. The interval is associated with the parent
view. For example, the link from “A is a liquid” to “A is a contained liquid”
can only be transversed while “A is a liquid”. This avoids information being
processed which has no bearing on the current problem. For example if A is
now a solid then there is no point in retrieving information about the level
of A when it was a contained liquid. Thus each level maintains a history
of the changes it has been through and the times as which they took place.
This allows the TNMS to retrieve and update information quickly in order
to maintain the integrity of the knowledge base.

Maintenance of these contexts requires extensive use of qualitative rea-
soning and a truth maintenance mechanism based on Doyle’s system [5].
These have been modified to handle qualitative processes and views. The
TNMS is similar to Dean’s TMM [3], but has been modified to handle both
processes and execution occurring over time. The functions of the TNMS are
as follows:

e The TNMS must maintain the integrity of the temporal network con-
tained in the world model in that no two tokens asserting contradictory
information are allowed to overlap. This becomes quite complicated
when dealing with facts such as “A is a liquid” “A is decreasing”,
etc. At present the system uses list of negatives for matching against.
For example, the opposites of decreasing are increasing and steady
and the opposites of liquid are gas and solid. The clipping is done
in accordance with the methods outlined in Dean’s TMM though the
justifications for doing so have been extended. The justification for a
process or view can be in terms of:

1. actual numerical values which allow a relationship to be derived
for example, (a > b)

18

2. a relationship which is asserted between two quantities, for ex-
ample (A greater than B)

If new numerical information is asserted it is added to the table de-
scribed above and a new interval generated which clips the previously
generated numeric interval. A check is then made for any processes or
views which are reliant on this quantity. For example, a fluid flow can
only exist for as long as the source pressure is greater than the desti-
nation pressure. These processes are then passed to a checking routine
(described below) for further analysis. A further check is made for re-
lationship predicates which may now assert contradictory information
to the new numerical data. This is involves retrieving the predicates
which are tagged to the numerical field and checking these against the
relationships. Any which are now invalid are clipped to the required
point.

In the case of a relationship being asserted the numerical information
is checked and the numerical values aligned according to the direction
of change. For example, if the relationship asserted is (a = b) and the
direction of change is A is decreasing and B increasing then a value
is calculated from the previous information, and the time difference
until now. The relationship is then asserted in the TNMS as a fact. As
in the above cases processes which are reliant on one or more of these
quantities are checked for consistency. It is assumed the relationship
has already been validated by the process reasoner as described in the
previous section.

Using these two techniques a justification for a process can be built
up out of temporal “pieces” of numerical information and the relation-
ships between quantities in the domain rather than the signal interval
which was the case in the TMM. The idea is similar to the idea of con-
cise intervals which used in the system developed Williams [19]. His
ideas have been extended to allows intervals to be made up of both
relationship information and actual numerical information when it is
available.

When a change is made to a set of facts or new information asserted in
the TNMS it must ensure that no action or process is believed beyond
the range of the facts used to justify it. This done by checking the
start and end points of the action or process against the end or start
points of the preconditions respectively. In the case of an action this

19

may result in it being unable to execute due to the interval becoming
smaller than that which is needed. At the point the TNMS sends back
a message to the module making the change indicating the action and
precondition which is at fault. In the case of a process any change
in the duration is reported to both the plan reasoner and process
reasoner. The process may be a current one which is terminated by an
action (as was described in the process reasoner) or a future one upon
which part of the plan depends. It is then up to the reasoning module
to decide whether the change in the process was required and if so to
initiate the required replanning to restore it to its required value.

The TNMS must also check in the case of a process that its effects must
be only be believed while the process is active. This means the TNMS
must ensure the end points of the process are coincident with the end
points of all of its effects. A minor change to this policy has to be used
when any new objects in the domain are created. For example, if we
boil water in a sealed container then we create an new object namely
steam. If the boiling process stops then the steam should persist and
not suddenly disappear. The TNMS does not truncate such new objects
or their effects. In the case of an action the effects persist after the
end of the action unlike a process.

e It must be able to respond to queries from the process reasoner,
plan reasoner and plan coordinator concerning temporal relationships
among facts and actions so that other information may be asserted
in the knowledge base. When asserting the actions of a plan in the
TNMS or checking is a process could be active, intervals need to be
found of the required duration during which the preconditions hold.
By using the context mechanism of the TNMS this search process does
not become an excessive overhead.

Each process, action or fact asserted in the knowledge base has associated
with it a token type. The classification of the tokens is as follows:

e Events represent change and events can be actions or processes. An
action event is an event caused by an agent and has a known duration.
A process event is self sustaining and may be infinite in duration. For
example, “open the valve” is an action event; “water flows” is a process
event.

20

e A fact describes the results or preconditions of an event. For example
“the door is open” is a fact whereas “open the door” is an event.

This token definition allows the TNMS to discern between token types
and to represent clearly the distinctions between events and the changes
they bring about. For example, the action “open door” leads to the process
“in motion door” which leads to the fact “door open”.

However, this scheme on its own is too simple to work on real world
situations. For example, an action to lift a block may have the precondi-
tions “block held” and “block on table”. As soon as we execute the action
the precondition “on table” is no longer true but the action still continues.
However, if the precondition “holding block” were to fail then so would the
action. This justification scheme is incapable of discerning the difference
between preconditions required to maintain an action’s execution and those
merely required to initiate it. The TNMS solves this problem by checking a
precondition failure against the process tree created by the process reasoner.
In this example, the failure of the precondition “block on table” would not
cause the failure of the motion process created as a side effect of the action.
As the effect of the action is to move the object from one place to another
and the motion process is unaffected the failure can be ignored. However, if
the precondition “holding block” were to fail, then so would the motion pro-
cess thus indicating that the plan has failed and needs to be repaired. This
means that the plan generation phase does not need to deal with complex
precondition structures to identify the different types of precondition.

3.3 The Plan Reasoner

The function of the plan reasoner is deal with changes to the plan during
its execution. When the plan coordinator is given a plan fragment to deal
with its asserts the action in the TNMS with proposed start times. During
the execution of the plan this proposed schedule may require altering for a
variety of reasons.

1. Actions are rescheduled to begin later or earlier than was expected in
the original schedule. An action can start later due to a preceding
action taking longer than was expected or new plan fragment was in-
tegrated into the plan thus requiring the rest of the plan to be resched-

21

uled. An action can be begin earlier than expected due to sections of
the plan not being required due to fortuitous circumstances.

. A process or external event with which the plan is required to interact
with could occur at a different time thus requiring the plan to be
rescheduled and or patched.

. An external event which the planner was instructed to avoid such as
an overflow, explosion, etc may be predicted and hence a new plan
fragment is required in order to stop it occurring.

The plan reasoner has several tactics available to it and these include:

. re-execution of a single action in the plan should its preconditions be
true at the point of failure.

. suggesting plan patches to overcome precondition failures in plan ac-
tions as well as processes should the above strategy fail. The plan
patches are generated by using the existing plan and refitting parts of
is for use as a repair plan. This is a two stage process as follows:

(a) To edit the Nonlin Task Formalism TF schemata to only achieve
those actions which are required in a patch plan by modifying
when necessary the precondition satisfaction and sequencing in-
formation of the TF schemata. This is described in more detail in
below. The plan schemas and the goals of the patch are then sent
to the plan coordinator which requests a plan from the planner,
in this case Nonlin. Once a plan has been generated is it passed
back to the plan coordinator.

(b) To accept a patch plan from the Co-ordinator and to integrate it
into an existing plan without causing any further errors.

The failure of a plan may be caused by a variety of different reasons. For

example, an action may not provide its required effect, an action may have
an unknown side effect, a resource may not be available, etc. To overcome
this EXCALIBUR uses a variety of different strategies from simply re-executing
a failed action to dynamically creating its own operator schemata, tailored
to the specific failure context from which repair plans can be generated. The

22

operators of the EXCALIBUR are defined using the Task Formalism (TF) de-
scription language ([17]). The new schemata are created using a technique
called Dynamic Schema Generation (DSG), which allows the planner to take
the operator schemata defined by the user and to edit them to create new
schemata capable of solving the problem with which it is faced. The plan
reasoner can only make check that all of the effects of the actions in the
required plan have some way of being achieved. It is the job of the planner
to generate a plan which is then sent to the plan reasoner for further consid-
eration. This can be achieved quite easily by using the internal information
found within schemata. This provides information on:

e The sub-actions into which a schema can be decomposed.
e The explicit ordering of the sub-actions within the schema.

e The methods to be used to satisfy the preconditions of the sub-actions
of the schema.

The new schemata take into account those actions which have already
been executed and those preconditions which need to be satisfied by an al-
ternative method. For example, in the plan to make cup of coffee a failure
may occur in which there is insufficient water in the kettle and this is dis-
covered when it is poured into the cup. The repair plan to take the kettle
and fill it should not include the steps to pick up the kettle as the agent
must already have done that in order to have tried to pour the water in the
cup. However all actions which pick up the kettle should not be removed
from the schemas as there would then be know way of moving the kettle
from the sink to the gas ring!

The plan reasoner sorts this problem out by using the dependency in-
formation embedded within the original plan. If an action requiring a step
which is already true is in the plan and a step which negates it is still in
then the action must stay.

The condition achievement process used by Nonlin allows the user to
embed domain information in the schemas as to how a particular condition
should be tied up. For example two commonly used types are:

1. Supervised: informs the planner that a condition on a particular action

can be achieved from an affect asserted by an action in the same
schema

23

2. Unsupervised: informs the planner that a particular condition will
have to be tied up from an effect asserted by a action outside of this
schema.

Information can further be provided to the planner in the form of “initial
conditions, i.e. those effects which are present in the real world at the start
of planning. The process for generating a new set of plan schemas can be
defined as follows:

1. the point of failure becomes the context in which the replanning will
take place. Working from the start of the plan and moving towards
the action which failed remove any action whose affects are the same
as the point of failure.

2. remove any effect from the failure context which is negated by the
effect of an action on the path back.

3. once the actions required have been identified modify the sequence
information to reflect the actions which have been removed.

4. modify the condition typing information in accordance with the actions
removed. For example, an action which was kept as part of the repair
plan which required a SUPERVISED precondition in the original plan
and that action has been removed should now have a UNSUPERVISED
precondition

These new schemas are sent to the plan coordinator which in turn sends
it to the planner (i.e. Nonlin) which generates the repair plan. This is then
passed back the plan reasoner via the plan coordinator. The actions of the
repair plan are renumbered so as to reflect they are part of the original plan.
The plan reasoner then integrates the new plan fragment into the TNMS and
has it checked by the process reasoner. Any new plan problems which occur
are dealt with in the same way and as a result several plan repairs may be
necessary for the original problem to be overcome.

Using this scheme means only those actions which are required are re-
executed in the repair plan. The method must also be sensitive to the
processes and views which it will create as a side effect and also to any
processes which may be required in the repair plan. A simple example of
this is the problem in which we attempt to make a cup of coffee and there

24

is insufficient water in the kettle. EXCALIBUR can solve this problem by
obtaining more of the resource i.e. water. However, if the plan does not
contain the actions to boil the water then the plan will fail. This is noted by
EXCALIBUR and the repair plan is amended to include the actions necessary
to boil the water before it is placed in the cup. (For a more complete
description of this problem refer to Section 6.) A simple example of this is
the “tea bag” problem in which we try to obtain a cup of tea. On entering
the kitchen we have a plan to make a cup of tea, but we find a cup of tea
already on the work surface which only requires some milk to be added.
Alternatively we may find the water in the kettle is boiling so all we have
to do is add a tea bag to the cup, pour in the water and add the milk. This
shows that plans in general need to be restarted from various points to take
advantage of changes in the real world.

4 Benefits and limitations of the PMS

The following section aims to show the benefits and limitations which a PMS
such as EXCALIBUR has.

4.1 Reasoning about action and effects

This architecture gives EXCALIBUR the ability to deal with types of problems
outlined earlier which can be found in most industrial domains. Events and
changes can occur in the world which are not initiated by the planner, but
to which the planner can re-act. This allows the planner to reason about
the side effects of its actions and to note any which may cause interactions
with the plan. Suppose a plan calls for the action “open valve-la”. This
action has the direct consequence of changing the state of the valve: if it
were closed before (a precondition of the action), it will be open afterwards.
However if the valve is connected to a container holding liquid, then opening
the valve may cause other indirect changes in the world, e.g. the amount
of liquid in the container may change. In either case there are qualitatively
understandable influences between objects which are adjacent in some sense
[2]: physical force applied to the valve causes a movement in its parts;
a liquid which is in contact with the opening in the container will flow
out of it. For example suppose the PMS has the goal of completely filling
container2 with water. Container2 is currently empty, but is connected by

25

a pipe to containerl, which does contain water. There is a valve in the pipe,
currently closed. The simple plan generated involves opening the valve. The
process which occurs can easily be described in purely qualitative terms,
i.e. the level of the water in containerl should decrease and the level of
container2 should increase. Based on the appropriate qualitative description
schemata the system can reason about what changes will take place within
this process, e.g. while the pressure of containerl > pressure of container2
the process will be active, but at the boundary condition where the pressures
are the same there will be a change in the process, i.e. it will stop. It is
the changes in influences and the reaching of boundary conditions which
the system must monitor in order to synchronise its internal world model
(the predicted futures) with the actual world. Furthermore the ability to
reason in this way enables error analysis to be performed. If the water stops
flowing before container2 is completely full, so that the goal has not been
achieved, the system will be able to reason about the possible reasons: the
valve may have been closed, perhaps by another agent; there was insufficient
water in containerl; or the level of the water may have equalised before
container2 was full because there was insufficient water in containerl. Such
error analysis can be used as the basis of re-planning.

4.2 Resource Reasoning

The use of qualitative reasoning provides a greater level of resource descrip-
tion than has been incorporated into previous planning systems. Resources
can be reasoned about at their view ? level which allows a common represen-
tation of resources which can either be fixed, shared or substitutable. The
resource reasoning within EXCALIBUR also allows the definition of a new type
of resource namely transformable. This is a resource which can be created
from another resource or can be created by changing the attributes of an
already existing resource. For example, we can create a new resource by
transferring part of an existing resource to a new location, e.g. pump water
into an empty container. Alternatively we can take a resource and changes
its attributes by means of a process, e.g. water can be heated creating a
new resource “boiling water”. The planner can thus create new resources
and transform known resources for use within its own plans.

%A view is a qualitative description of the state of an object, e.g. a liquid, a contained
liquid, etc.

26

[process Fluid_flow
[[*src a contained liquid] [*dst a contained liquid]
[*path a fluid path] [fluid_connection *src *dst *path]]
[[aligned *path]]
[[pressure *src > pressure *dst]]
[[flow_rate a quantity]
[flow_rate Q+ [pressure *src - pressure *dst]]]
[[I + amount_of *dst flow_rate *src]
[I - amount_of *src flow_rate #*src]]
[fluid_flow *src *dst *path]
]

Figure 2: Process Schema

5 Operators and Schemata

5.1 Schemata

The description of the world which the Plan Management System (PMS)
uses is provided by a set of process and view schema definitions. Processes
which were defined earlier describe changes in the world and views describe
the characteristics of an object which can change over time. For example, an
object may be defined as a liquid if its temperature is between certain values
and a contained liquid if it is then placed inside a container. If the water
were to freeze then the object would change its characteristics and become
a contained solid. The schemata are used to find active processes and views
in the knowledge base by instantiating its preconditions with tokens found
there and by the Process Reasoner when investigating the behaviour of a
physical system. An example of a process schema is outlined in Figure 2.

5.2 Operators

An operator defines an action which the planner can perform and the direct
effects which it can bring about. As described in the introduction an action
may also have indirect effects as in the make coffee example. This example
clearly shows that in any realistic domain, actions may be required to bring

27

about an event external to the plan, one of whose effects is required by
another action of the same plan. In the make coffee example there is no
action which has the direct effect “water boiling” but this is required in the
plan and can be brought about in the real world by executing a certain set of
actions. The Nonlin TF description language has been modified so that the
plan can handle interactions with external events. This is achieved by the
use of three synchronising primitives, Waitfor, Waitbegin and Waitend.

Waitfor This indicates to the Plan Co-ordinator that it should wait un-
til a condition is true. For example: Waitfor level Con_1 = level
Con_2

Waitbegin This indicates to the Co-ordinator that it should wait until a
certain process or view has begun. For example: Waitbegin fluid_flow
Con_1 Con_2 Pipe_1

Waitend This indicates to the Co-ordinator that it should wait until a
certain process or view has finished. For example: Waitend boiling
stuff_1

These directives are declared as primitives, with the effects achieve condition,
achieve start process and achieve end process respectively, and then
used as supervised preconditions ' by the actions which follow them in the
schema and which require the directives’ outcome as preconditions. The ac-
tual effects of the process are not posted in the plan, as they are not directly
required. The only slight problem which occurs is when the individuals in-
volved in a process or condition cannot be specified at plan time because
they do not exist. For example, when making a cup of coffee, we boil “the
water in the kettle”. However, if pouring the water in to the kettle is part of
the plan, the name the TNMS will give the new individual (i.e. the water
in the kettle) will be unknown until execution time. To solve this problem,
the individuals can be expressed in terms of their relationship with other
individuals, For example, Waitfor boiling contents kettle can be used
in the plan and the Plan Co-ordinator will substitute the actual name of
the individual when it is known. This can be extended to any number of in-
dividuals, for example, Waitbegin heat_flow contents con_1 contents
con_2 pipe_1 next_to box_4. An example of the use of such primitives to
make a cup of coffee is outlined in Figure 3 and Figure 4

10 A supervised precondition in Nonlin is achieved by an action within the same schema,
whereas an unsupervised action is achieved by an action in another schema

28

Actschema make_coffee
pattern {make a cup of coffee @*con @*cup}
expansion action {go to the kitchen}

action {grasp @xcon}

action {pick up @*con}

action {take @*con to tap_1}

action {put @*con under tap_1}

action {turn on gas_1}

action {waitbegin {boiling contents @*con}}

action {turn off gas_1}

action {place coffee in @*cup}
10 action {take @xcup to @*con}
11 action {fill *Qcon}
12 action {fill @*cup from Q@xcon}

orderings sequence 1 to 10

conditions supervised {in the kitchen} at 2 from 1
supervised {holding @*con} at 3 from 2
supervised {@*con held} at 4 from 3
supervised {@*con at tap_1} at 5 from 4
supervised {under tap_1l @xcon} at 6 from 5
supervised {gas_1 alight} at 7 from 6
supervised {achieve start process} at 8 from 7
supervised not {gas alight} at 9 from 8
supervised {coffee in @*cup} at 10 from 9

vars con undef
cup undef;

© 0 N O O W N -

end;

Figure 3: Top level schema

29

Actschema fill kettle

pattern {fill @xcon}

expansion 1 action {grasp tap_1}
2 action {turn on tap_1}
3 action {waitfor {level contents @*con =

fill_level @*con}}

4 action {turn off tap_1}
5 action {ungrasp tap_1}
6 action {take @*con to gas_1}
7 action {put down @*con on gas_1}

orderings sequence 1 to 7

conditions unsupervised {under tap_1 @xcon} at 1
supervised {holding tap_1} at 2 from 1
supervised {@*con held} at 3 from 2
supervised {achieve condition} at 4 from 3
supervised not {tap_1 on} at 5 from 4
supervised not {holding tap_1} at 6 from 5
supervised {@*con on gas_1} at 7 from 6

vars con <:non tap_1:>

end;

Actschema fill cup
pattern {£fill @*cup from @*con}
expansion 1 action {grasp @con}

2 action {pickup @xcon}
3 action {pour contents of @xcon into @*cup}
4 action {waitfor {level contents Qxcup =
£fill_level @*cupl}}
5 action {put back @*con on gas_1}
orderings sequence 1 to 5
conditions unsupervised {under Q@*con @*cup} at 1
supervised {holding @*con} at 2 from 1
supervised {@*con held} at 3 from 2
supervised {pouring contents of @*con into @*cupl}
at 4 from 3
supervised {achieve condition} at 5 from 4
vars con <:non tap_1:>
cup undef
end;

Figure 4: Schemata t80fill the kettle and cup

6 Examples of the use of Excalibur

The following section aims to show how the EXCALIBUR system is capable of
carrying out planning and execution monitoring using a qualitative process
model of the real world. During this paper the example of making a cup
of coffee has been used to demonstrate that even a simple problem such
as this requires complex reasoning for it to succeed. This will serve as an
example, but the system has also been tested on other domains such as
house building and simple process control problems.

In the making coffee example the basic plan is to:

e take a kettle which can be found in the kitchen and fill it to a required
level with water from a tap.

e boil the water placed inside the kettle, and finally

e pour the water, once it has begun to boil into a cup which has previ-
ously had coffee granules put into it.

The plan contains actions to move the kettle to the tap, and then to the gas
and finally to the cup and to wait for various processes and effects.

e The water reaching the required level in the kettle.
e The water to begin boiling.

e The water to reach the required level in the cup.

As the actions of the plan change the spatial relations between objects,
the histories which describe various episodes will be created and destroyed.
As described earlier it is the function of the process reasoner to analyse
the process tree it has created in the light of changes made by the planner.
This may mean augmenting the process tree with new states or creating a
completely new process tree.

The kitchen in which the agent is placed consists of a set of objects as
follows: a kettle, a cup, sink with taps, a tank of water connected to the
taps, a jar of coffee granules and a gas oven with four rings. For each of the
objects in the domain a set of qualitative attributes is defined. In the case
of the tank of water the contents of which have been named stuff-1 in this
example the attributes are as follows:

31

(id-number stuff-1 a piece-of-stuff
(amount-of ((ptl pt2 undef undef)))
(temperature ((pt3 pt4 undef undef)))
(pressure ((pt5 pt6 undef undef)))
(heat ((pt7 pt8 undef undef)))
(container ((pt9 ptl0 tankl)))
(link-field ()))

In the case of kettle the following has been defined:

(id-number kettle an object
(volume ((ptl pt2 undef undef)))
(temperature ((pt3 pt4 undef undef)))
(pressure ((pt5 pt6 undef undef)))
(heat ((pt7 pt8 undef undef)))
(contents ((pt9 ptl0 none)))
(link-field ()))

A schema for each of the objects is defined and a fact asserted in the
TNMS for each numerical interval and for each attribute which the object
possesses. Other information which the agent has include:

1. a set of process schemas which define events such as boiling, heating,
flowing, cooling and motion

2. a set of views which define liquid, gas, contained-liquid, fluid-aligned
and heat-aligned.

Each of these schemas contains the direct and indirect influences which are
present while it is active.

From this information the TNMS can instantiate various views from the
objects in the world. These include that the kettle is a container, stuff-1
is a liquid and from that it is a contained-liquid, taps are sources of water,
gas rings are sources of heat, etc. These are entered in the table described
above and further facts are asserted in the TNMS. Each of the views has
associated with it a set of justifications which only allow it to be believed
over a certain interval.

32

A schedule for the actions of the plan is created by the plan coordinator
which asserts the actions in the TNMS. This process stops when the plan
coordinator is unable to decide the duration of the process waitfor level
contents kettle = fill level kettle required to fill the kettle . At
this point the plan is suspended and the process reasoner called to check that
that required waitfor level contents kettle = fill level kettle is
valid. The process reasoner creates a process tree which predicts a fluid
flow from the tap to the kettle which has only one future state in which the
water in the tap can drain away. The suspension is allowed by the process
reasoner because the fluid flow will create a contained liquid in the kettle
whose amount will increase as it is the destination of the fluid flow. As the
level of a contained liquid is proportional to its amount, the level of the
water in the kettle will thus rise.

The actions of the plan are then executed in the order of the schedule.
The plan will eventually reach the stage of waiting for the water in the kettle
to reach the required level. Once the fluid flow has reached the required
level a message is sent to the process reasoner. This information allows
the process reasoner to unsuspend the plan and it sends a message to the
plan coordinator to inform it that it can assert further actions in the TNMS.
This is does but again has to suspend the plan when the time to boil the
kettle cannot be calculated. The effects of the further actions causes the
justifications of certain views and processes such as the fluid-aligned and
fluid-flow to fail. The fluid-aligned view fails because the token in the TNMS
asserting “under kettle tap” is clipped from pos-inf to the point at which
the move action which takes the kettle from the sink to the oven is executed.
In turn this view was used in the justification of the fluid-flow along with
the facts“tap open” and “contains tap stuff-1”7. As a result the fluid-flow is
clipped to the point at which the fluid-alignment fails. These failures are
reported to the process reasoner for analysis. The termination of the process
is not a plan failure as the condition it was required to bring about has been
met, so the loss of the process can be ignored.

The next part of the plan involves creating the conditions necessary to
boil the water which is now inside the kettle. The effects of the actions
asserted allow the TNMS to discover a heat-aligned view and a heat-flow
process. These are reported to the process reasoner and checked against

"this is due to it having no information concerning the size of the kettle or the flow
rate

33

its process tree. The process tree for this section of the plan has to be
anchored in a particular state. This process was described in the Section
3.1. concerning the process reasoner. As the process tree created contains a
state in which the water in the kettle is boiling the Waitbegin is allowed to
proceed. The process tree also contains states which if reached would cause
the plan to fail. For example the temperature of the source may not be high
enough for the water to boil or the water may boil away before the system
has chance to pour it into the cup. If either of these states is reached then
the system knows to replan to achieve the boiling process again. When the
water begins to boil, the system will be informed of this via sensors so that
the process reasoner can update the process tree to reflect the change in the
world. In this way the internal world model can track changes going on in
the external world.

The final part of the problem is to analyse the fluid flow once the action
to pour the coffee into the cup has begun which has a similar structure to
the process tree constructed for the fluid flow from the tap to the kettle.
The process tree which is constructed for this entire problem is described
in Figure 5. The fields marked PS, IS and LH indicate the processes ac-
tive, the individuals they act upon and the change which brings the “state”
about respectively. The individual “Fpath” refers to a fluid path through
which a liquid can flow, in this case the space between the kettle and the
cup. (Various views such as “aligned kettle cup” are created and monitored
by EXCALIBUR to maintain the existence of this path). The individuals
such as “Individuall”, “Individual2”, etc are created by EXCALIBUR when
new entities are created in the world. For example the water in the kettle
(Individuall) or the water in the cup (Individual?).

7 Replanning and Error Analysis

The process tree can be used to analyse plan failures not specifically tested
for in the preconditions of the plan actions. For example, if someone were to
turn out the gas while we are waiting for the kettle to boil then this would
be recognised as a plan failure both in terms of a precondition failure i.e. the
justification for the action has a precondition finishing before the end of the
action and by the modification made to the process tree which now excludes
the possibility that the water will boil. This failure would cause a patch
to be generated and integrated into the plan. In the current system this

34

The Process Tree for the coffee making example

PS: heat flow
IS: Gas_1Individual Kettle 1

3 LH : Temperature Gas 1 < Temperature Individual 1 LH : Boil point Individuall = Temperature Individual 1
IS: Gas 1 Individuall Kettle 1 IS: Gas 1 Individuall Kettle 1
PS{} PS { heat flow boiling}

LH : Temperature Gas_1 < Temperature Individual 1 @ LH : Amount of Individuall < ZERO
IS: Individual 1 Individual 7 Fpath IS: Gas_1 Individual1 Fpath
PS{fluid flow} PS:{}

LH : Amount of Individuall < ZERO
IS: Individuall Individual7 Fpath
PS:{}

Figure 5: Process Tree for the make coffee example

35

involves re-executing the same action sequence to turn on the gas as before.
However the representation system does allow other action sequences to be
executed which repair the plan and do not exclude the possibility of the
kettle boiling.

However the process tree is more useful when detecting errors outside
of the plan. For example, when pouring the water from the kettle into the
cup there is the possibility that the kettle may not contain enough water.
During the execution of the plan the amount-of field of the individual was
set to zero which caused the justification of the liquid view to fail. As a
result the contained-liquid view failed and as a result the fluid-flow process
failed. As a result the process reasoner reported to the plan reasoner that
the plan had now failed as the wait condition could not be satisfied. This
type of failure can be dealt with by the system since the loss of the water
is represented as a state within the process tree. Reasoning about this type
of failure involves reasoning about the requirements of the processes and
views rather than as a problem with a precondition justification. In this
case the plan requires to increase the amount-of water in the kettle to do
this requires it to be the destination of a fluid flow. The water must then be
boiled and moved across to the cup. The original plan is reused to provide
a patch to solve these particular problems taking care not to re-execute and
actions which are not required. The method to used to generate the patch
is described in Section 3.3.

This second example shows how EXCALIBUR is capable of making use of
the process tree to avoid failure situations it has been instructed to avoid,
e.g. an explosion or overflow. The system can monitor for these types of
event and if a qualitative state which contains one of them is predicted in
the next step in the process tree can patch an existing plan thus avoiding
the situation. This was tested on a simple process control application in
which the plan consisted of opening and closing valves in a set sequence to
allow water to flow into a boiler, which was then heated and the resulting
steam used to drive a turbine Figure 6. The basic plan is to

e allow water flow from con-1 into con-2 and to wait until the water
pressures have equalised.

e The water within con-2 is then heated to form steam which is held
within con-2 until a specified pressure value is reached.

e When the specified value is reached the steam is released and is allowed

36

Con 1 Con 2 Gas F O.W Turbine 1

— —_—
Pipe 2
Turbine_inlet —
Reservoir_inlet
Stuff 1 Pipe 1 Stuff 2 Hect 1
— | eat flow
P N
Fluid Flow
Gas inlet
Gas 1

Figure 6: Process Plant Diagram

to flow into the turbine.

The schemata which were used to generate the process plan are outlined
in Figure 7 and Figure 8. In this particular problem the plan generated is
linear but other problems have been tested using non-linear, partial orders.

As in the coffee making example the plan reasoner and process reasoner
work together to solve the problem. In this example an explosion is predicted
i.e. when the plan is waiting for the pressure in con-2 to reach 100 but the
process reasoner makes no request to the plan reasoner to stop it as the plan
contains actions which will stop the explosion from happening. The process
reasoner identifies which plan dependent effects are required to instantiate
the processes and views which will cause the explosion. In this case its the
facts that all of the valves are closed and thus the boiler is viewed as a sealed
container. The heatflow and boiling processes give rise to a new individual,
namely the steam which causes the pressure to rise. The process reasoner
then searchs the plan form the current point to the end for an action(s) which
have effects that are opposite to those required for the processes causing the
problems. In this case it finds the open turbine-inlet actions which change
the view of the boiler from a sealed-container to an open-container. As such

37

actschema generate_power
pattern {generate power}
expansion 1 action {open reservoir_inlet}
2 action {waitfor {pressure contents con_1 = pressure
contents con_2}}

action {close reservoir_inlet}

action {open gas_inlet}

action {turn on gas_1}

action {waitbegin {boiling contents con_2}}

action {waitfor {pressure contents con_2 = 100}}

action {open turbine_inlet}

action {waitfor {1000 sec}}
10 action {turn off gas_1}
11 action {close gas_inlet}
12 action {close turbine_inlet}

orderings sequence 1 to 12

conditions supervised {achieve condition} at 3 from 2
supervised {gas_1 alight} at 6 from 5
supervised {achieve process} at 7 from 6
supervised {achieve condition} at 8 from 9
supervised {achieve condition} at 10 from 9
supervised not {gas_1 alight} at 11 from 10

© 00 N O O W

unsupervised {reservoir_inlet open} at 2
unsupervised not {reservoir_inlet open} at 4
unsupervised {gas_inlet open} at 5
unsupervised {turbine_inlet open} at 9
unsupervised not {gas_inlet open} at 12

end;

Figure 7: Top level schema for the generate power problem

38

actschema open_valve
pattern {open @*valve}
expansion 1 action {go to @xvalvel}
action {grasp @xvalve}
action {turn @*valve to open}
action {waitend {motion @*valvel}}
action {waitfor {@*valve open}}
action {ungrasp @*valve}
orderings sequence 1 to 6
conditions supervised {at @*valve} at 2 from 1
supervised {holding @*valve} at 3 from 2
supervised {@+valve open} at 4 from 3
supervised {achieve process} at 5 from 4
supervised {achieve condition} at 6 from 5
vars valve undef;

Ok N

end;

actschema close_valve
pattern {close @*valve}
expansion 1 action {go to @xvalvel}
action {grasp @xvalve}
action {turn @*valve to closed}
action {waitend {motion @*valvel}}
action {waitfor {@*valve closed}}
action {ungrasp @*valve}
orderings sequence 1 to 6
conditions supervised {at @*valve} at 2 from 1
supervised {holding @*valve} at 3 from 2
supervised not {@+valve open} at 4 from 3
supervised {achieve process} at 5 from 4
supervised {achieve condition} at 6 from 5
vars valve undef;
end;

D Ok WwN

Figure 8: Process Plan Schemata

39

the planner should take no action as the plan already contains the correct
steps.

This simple scenario allows us to test a variety of other failure conditions
where plan patching is required. Examples of failures are:

1. insufficient resources such as the water in con-2, the heat of the flame,
etc

2. the valves failing to reach the desired position. The movement of the
valves can be represented as motion process which allows the con-
tinuous nature of a valve state change to be represented. Both the
schemata used to represent valves opening and closing have a process
check that process has finished and that the valve has reached it re-
quired position. Failure in either of these checks allows the process
reasoner to request a patch plan from the plan reasoner.

Apart from failures involving the preconditions of plan actions EXCAL-
IBUR is capable of patching plans to avoid undesirable changes occurring in
the world. To test EXCALIBUR’S ability to detect and avoid an explosion
the following scenario was used. Once the steam in con-2 had reached the
required pressure and was flowing into the turbine the process reasoner was
informed that all the valves of the boiler were closed:

{turbine-inlet closed start {19:10.00}
finish {19:10.30 19:10.32}}

{reservoir-inlet closed start {19:10.00}
finish {19:10.30 19:10.32}}

This causes the justification for the Con-2 being an open-container to fail
and be clipped. A new view of Con-2 as a sealed-container is instantiated by
the TNMS and a message is sent ot the process reasoner. The process reasoner
then modifies the process tree by adding the new influences of the view to
the current state of the process tree. An new process tree is generated which
contains the possibility of an explosion amongst its outcomes in Figure 9.!2

12The diagram shows the process tree after the water in Con-2 has started to be heated
and missing states 1 and 3 represent the fluid flow and the possibility of Con-1 emptying
respectively.

40

This time the process reasoner can find no action(s) which will stop this
explosion occurring. When the process reasoner receives a message from
the user that the pressure in the boiler has begun to rise, the likelihood
of the explosion increases. The sealed-container view (of Con-2) relies on
the external preconditions turbine-inlet closed and reservoir-inlet
closed. The process reasoner adds the opposite of each of preconditions to
the TNMS and checks the resulting outcome. In the case of reservoir-inlet
open the explosion is negated but there is also a loss of the boiling process
and with it the increase in pressure. With the opening of the turbine-inlet
the explosion is negated and no other harmful effects are noted.

The process reasoner then sends a message to the plan reasoner indicat-
ing the type of problem (unrequired event), the process/views which must
be removed i.e. the view of Con-2 as a sealed container and the plan effect(s)
which must be brought about i.e. turbine-inlet open. The plan reasoner
then re-uses the required part of the existing plan to create a schema for
opening the correct valve. This is then passed back in the usual way via the
plan coordinator to Nonlin. A plan is then generated to open the turbine-
inlet valve and allow the steam to escape thus causing the pressure to be
released. The plan fragment is then integrated into the existing plan without
causing further failures.

8 Further work

This section aims to put forward further topics and areas which could be
investigated using these techniques. They basically fall into two main ar-
eas: those involves new domains and those involving the integration of new
techniques.

8.1 Testing in other domains

The present EXCALIBUR system has been tested on problems involving pro-
cess control, house building and coffee making. These have provided good
domains in which the ideas behind EXCALIBUR could be tested. The re-
sults which have been produced have shown the possible uses for this type
of system in dealing with complex industrial problems. In order to pursue
this further it is hoped within the near future to test EXCALIBUR on more

41

AL_OE
LH: (A [temperature (WATER)] = A [temperature (SOURCE)] /
IS {CAN WATER}

. IS: {CAN,WATER,STEAM}
U 4] PS: ?%-:os. boiling} [5]

LH: A [temperature(WATER)] = A [t-boil (WATER)]

LH: A [amount-of(WATER)] = ZERO
IS: {CAN, STEAM}

PS: {heat-flow} H

LH: A [temperature(STEAM)] = A [temperature(SOURCE)]

v
IS: {CAN, STEAM} o
Ps {} |10] LH: A [temperature{WATER)] <A [t-boil(WATER)]
LH: Al SCAN)] IS: {CAN, STEAM, WATER]
. A[pressur
= A [p-burst(CAN)] PS: {heat-flow} H
IS: {CAN, STEAM}
PS: {Explosion} H
LH: A [temperature(WATER)] = A [temperature(SOURCE)]
IS: {CAN, WATER, STEAM}
Ps: {} [6] LH: A [pressure(CAN)] = A [p-burst(CAN)]

IS: {CAN, WATER, STEAM)
PS: {Explosion} _M_

Figure 9: Process tree after an explosion has been predicted

complex problems other than the ones reported here. These involve plan-
ning tasks for a steel pipe manufacturing system and in continuous process
manufacturing.

The present EXCALIBUR system uses only simple scheduling techniques
to decide which actions within a partial order should be executed next. It
is hoped to use some of the techniques outlined here to provide guidance in
schedule generation and execution as well. The scheduling problem involves
allocating resources to the actions of the plan. This is a very difficult task
as there are usually many possible allocations which can be made. It is
hoped to provide extra constraints to the scheduling process by the use of a
qualitative model.

8.2 Plan Generation

Plan generation is a very large and complex search problem in which many
choices have to be made. Many heuristics have been developed to prune
parts of this search space but at the same time maintaining the complete-
ness of the search. Such techniques have included typed preconditions, [1]
where the user provides information on how to satisfy the preconditions of
an action, and temporal coherence (TC), [10] which attempts to categorise
the integrity rules of the domain to check for inconsistent states. In TC in a
blocks world domain the rules would consist of “a block cannot be clear and
under something at the same time”, “a block cannot be on itself”, etc. TC
has been successful in defining rules at a very shallow level but most domains
have far more complicated causal rules which TC is unable to capture. For
example, such techniques allow the difference between precondition types
to be identified, i.e. those required to initiate the action and those which
must be maintained for the duration of the action. An example of this
would be the action “pick up block” which has two preconditions “block on
table” and “holding block”. As soon as the block is moved the precondi-
tion “block on table” fails, but the action is still maintained, whereas if the
precondition “holding block” were to fail then so would the action. Other
planners such as DEVISER [18] have tried to use different precondition con-
structs to capture this. However, using the modelling techniques outlined
here the same construct can be used for all preconditions and their types
can be detected by modelling the changes which they bring about. In the
last example the movement of the block would be modelled using a motion
process whose preconditions would be capable of detecting the difference

43

between the precondition types. Using such techniques would allow the user
to write TF task descriptions without worrying about the precondition types
and would allow the dependency recording mechanism and goal structure '3
to more accurately reflect the real world changes the plan is designed to
bring about.

However by far the greatest advantage in reducing the search space would
be achieved through reasoning about resources and time constraints. Time
constraints are used in planners such as DEVISER, [18] O-PLAN [1] to prune
parts of the search space when no feasible solution can be found in a par-
ticular branch. The use of qualitative reasoning and in particular order
of magnitude reasoning would allow far more complex time constraints to
be handled. Order of magnitude reasoning allows comparison of quantities
whose exact numerical values may not be known but whose relative size
can be specified fairly accurately. For example, heated steel destined for a
rolling mill will cool in a matter of minutes so there is no point in heating
it a few hours beforehand as the plan would be unusable, not to mention
silly. This would allow plans to take into account time constraints which are
independent of the schemata and whose format is domain independent.

In the present EXCALIBUR system a plan can be generated to interact
with a resource which should be generated at execution time. However,
in the present system no check is made that the resource will actually be
generated when the plan is created. This means EXCALIBUR will have to
immediately patch the plan to achieve the resource which is required. This
can easily be achieved by checking during plan generation that the resource
will indeed come about. If not, then alternative paths through the search
space would be transversed until hopefully a method to achieve the resource
was found.

Many of the ideas put forward in this section will be integrated into a new
planning system which is currently being designed and implemented here at
the AT Applications Institute. The new system aims to close the planning
and execution loop within a single control structure and it is intended that
the system will make heavy use of qualitative reasoning techniques both in
plan generation and execution monitoring. The system is intended to be
domain independent with its first target domain being satellite command
and control. The main aims of the research are to investigate distributed
planning with plans being generated by one agent for execution by another

13A Nonlin term - also often referred to as the teleology of the plan

44

possibly intelligent agent. Within such a system, plan repair becomes more
complex as the execution agent needs to follow a plan which it does not
necessarily know how to generate, and thus repair. Alternatively a failure
may occur in a plan which was generated by the execution agent in response
to a loosely defined goal passed to it by the plan generation agent. It is
hoped to use model based reasoning techniques to:

e increase the expressive power of a plan’s goal structure, i.e. the reason
why actions are placed at certain points in the plan.

e provide attachment points within plans to which repair plans can be
integrated.

e investigate their use for the modelling of data and power flow within
a satellite and to provide a realistic set of scenarios on which to test
the systems’ capability.

9 Conclusions

The planning system reported here has been implemented successfully in
POP11l on a VAX 8650 mainframe machine. The system can handle a
wide variety of plans involving processes and certain execution errors which
might arise. The system has been applied to domains other than the make
coffee example and the process example described here. EXCALIBUR has
been applied to problems involving block stacking, cooking and house
building.

The intentions of the project were to devise and verify an execution mon-
itoring and error analysis philosophy based on Qualitative Process Theory.
To this extent it was successful. Also, a by-product has been that a fast and
efficient temporal knowledge base has been produced which could easily be
used in other applications such as for natural language processing.

It is interesting to contrast the approach taken here with that of Vere’s
system DEVISER [18]. The approaches differ in two respects. First, EXCAL-
IBUR allows the plan to be suspended for varying lengths of time awaiting
an external precondition. Second, the events the plan has to interact with
do not have to be specified as occurring at a specific time as they were is
DEVISER.

45

It is also interesting to note that Hogge [15], a colleague of Forbus - the
inventor of the Qualitative Process Theory ideas , has tried to implement a
planning system capable of handling processes and the changes they bring
about. His system integrated quantity preconditions as part of the plan
schema, preconditions, and thus goals of the type “increase the level of water
in tank2” could be achieved. However his system did not allow the plan to
interact with the world or use changes in the world as part of the plan.
Also the plans were never executed in the real world and thus the system
had no execution monitoring or replan capability. The system he developed
used Nonlin-type TF schema definitions and with only minor modifications
could be easily integrated as the planning component within the EXCALIBUR
system.

EXCALIBUR has been successfully applied to a range of problems from
“making a cup of coffee” and “block stacking”, to more complicated plans
involving “steam generation process control” and “house building”. This
work brings in an added level of control knowledge, not previously exploited,
for controlling the execution of plans. In achieving this it has shown useful,
and potentially important, use of qualitative process theory in another area
of A1 application. This work greatly extends the “knowledge rich” paradigm
of A1 planning which is all important to flexible use of plan structures.

Based on the work described in this article, it is possible to put for-
ward several advantages for an execution monitoring systems based on this
architecture:

1. Changes which the plan should bring about in the real world can be
defined within the plan without the need for large precondition lists.
These events are then monitored for by the process reasoner that will
indeed come about.

2. Changes can occur in the world without the planner having to initiate
them, so that actions can cause quite complicated side effects.

3. The system reacts in a conditional way to changes in the world as it
plans both to avoid and to create situations which it requires.

4. The representation scheme allows a clear definition of token types and
the tokens themselves can have varying (possibly infinite) durations.

5. The plan reasoner can monitor a suspended plan which is waiting for

46

an external event, but will under most circumstances never allow the
plan to wait for an event which will never come about.

6. The system has the ability to react to situations by creating new plan
patches to overcome problems caused by failures of plan preconditions
and more importantly failures caused by processes not bringing about
the required effects.

7. The process reasoner has the ability to reason about unwanted sit-
uations (as in the explosion example) and to carry out the analysis
necessary to create a plan to avoid it. From this analysis a patch plan
is generated and integrated into the original plan.

10 Acknowledgements

First and foremost I would like to thank Dr Peter Coxhead, my supervisor.
The fact he guided me through all the important stages in this project,
whilst still allowing me to conduct the research in my own way is greatly
appreciated. I should also like to thank Roberto Desimone, Ken Currie and
Austin Tate for their comments and suggestions on earlier drafts of this
article. Finally T would like to acknowledge the financial support of the
Science and Enginering Research Council of Great Britain.

References

[1] K.W. Currie and A Tate. O-Plan: the Open Planning Architecture.
Artificial Intelligence, 51(1), Autumn 1991. Also available as AIAI-TR-
67.

[2] R. Davis. Diagnostic Reasoning based on Structure and Behaviour.
Artificial Intelligence, 24:347-410, 1983.

[3] T.L. Dean and D.V. McDermott. Temporal database management.
Artificial Intelligence, 33:1-58, 1987.

[4] J. DeKleer and J. Brown. A qualitative physics based on confluences.
Artificial Intelligence, 24:7-83, 1984.

47

[5]

[6]

[9]

[11]

[12]

[13]

[14]

J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231—
272, 1979.

B. Drabble. Intelligent Execution Monitoring and Error Analysis in
Planning Involving Processes. PhD thesis, University of Aston in Birm-
ingham, July 1988.

B. Drabble. Planning and reasoning with processes. In The FEighth
Workshop of the Alvey Planning Special Interest Group, pages 25—40,
Savoy Hotel, Nottingham, November 1988. Institute of Electrical Engi-
neers.

B. Drabble and P. Coxhead. Error detection and recovery in an uncer-
tain environment. In Proceedings of the IASTED International Sym-
posium. on FEzxpert Systems, pages 201-206, Anaheim, June 1987. Acta
Press.

B. Drabble and P. Coxhead. Qualitative reasoning in planning involving
processes. In Qualitative Modelling in Diagnosis and Control, pages
3/1-3/4, Savoy Place, London, January 1988. Institute of Electrical
Engineers.

M. Drummond and K. Currie. Exploiting temporal coherence in nonlin-
ear plan construction. Technical Report ATAI-TR-23, AI Applications
Institute, Edinburgh, 1987. A revised version to appear in Computa-
tional Intelligence Journal.

K.D. Forbus. Qualitative reasoning about physical systems. In Pro-
ceedings of the Seventh International Joint Conference on Artificial In-
telligence, pages 642645, Los Altos California, August 1981. William
Kaufman Inc.

K.D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85—
168, 1984.

K.D. Forbus. The qualitative process engine. Technical Report
UTUCDCS-R-86-1288, Department of Computer Science, University of
Illinois, 1986.

K.D. Forbus. Introducing actions into qualitative simulation. In N.S.
Shridharan, editor, Proceedings of the FEleventh International Joint
Conference on Artificial Intelligence, pages 1273-1278, Loas Altos, Cal-
ifornia, 1989. Morgan Kaufmann.

48

[15]

[16]

[17]

[18]

[19]

J.C. Hogge. Compiling plan operators form domains expressed in qual-
itative process theory. In Proceedings of the Sizth National Conference
on Artificial Intelligence, pages 229-233, Los Altos California, 1987.
William Kaufman Inc.

B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338,
1986.

A. Tate. Generating project networks. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages 888—
893, Los Altos California, 1977. William Kaufmann Inc.

S. Vere. Planning in time: Windows and durations for activities and
goals. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 5:246-267, 1983.

B. Williams. Doing time: Putting qualitative reasoning on firmer
ground. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 105-112, Loas Altos, California, 1986. Morgan Kaufmann.

49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

