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Abstract 

 

Genetic networks help in identifying interactions between genes, and provide information about the 

function role of individual genes in the cellular system. In this thesis, we have employed a Bayesian 

framework to learn network structures from microarray data, and implemented an algorithm that 

uses dynamic programming to find the optimal gene network model for a small number of genes.  

 

To test its performance, we applied the method to two distinctive synthetic datasets. ROC graphs 

were used to evaluate the effects of noise and a small number of samples, features that are known to 

be characteristic of gene expression datasets. Results showed significant improvements when the 

numbers of samples in a dataset were increased. The effect of adding noise to the data gave 

unexpected results and requires further analysis.  The method was finally applied to a real 

microarray dataset, and led to biologically plausible results.  
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1 Introduction 

All of the genetic information in any living creature is stored in DNA 

(deoxyribonucleic acid). The double helix structured molecule is functionally divided 

into information units called genes that contain instructions to make proteins, which 

play a vital role in all cellular processes. The Human Genome Project, initiated in 

1990, aimed to sequence the entire human genome and catalogue all human genes. 

The draft human genome was published in 2000, and genomes of several other 

organisms, for example, E.coli, mouse, chicken, and yeast have also been completed. 

Due to the availability of this vast amount of sequencing information, the main focus 

of genomic research is switching from sequencing to using the genome sequences in 

order to understand how genomes function [Brazma & Vilo 2000]. 

 

To retrieve the information encoded in the gene, cells use the process of gene 

expression. According to the central ‘dogma of molecular biology’, this occurs in two 

steps. Genes are transcribed into messenger RNA (mRNA), which is then translated 

into proteins. A gene is expressed in a cell if its corresponding proteins are present in 

the cell. “Functioning of different cells or an organism as a whole, to a large extent is 

governed by the ‘selective’ expression of genes” [Fuente et al., 2002]. Although all 

cells in an organism contain more or less the same DNA, i.e. the same genetic 

material, we observe specialized behaviour from different cell types. For example, the 

function of a liver cell differs from that of a skin cell. This occurs due to differences 

in gene expression, that is, whether or not a product a gene codes for is produced, and 

how much is produced. For a cell to function properly, the proteins being synthesized 

must be controlled, the amount being produced changing as per the cell’s needs. 

Genetic regulation ensures this. Levels of gene products do change during 

development, cell differentiation, the onset of disease and in response to the 

environment [Hunter 1993].  

 

Gene expression levels are regulated in humans by control mechanisms at several 

levels in the steps between transcription and protein synthesis. Regulation at the 

transcriptional level is most important since it determines the amount of mRNA to be 

made. The process is controlled by regulatory proteins (transcription factors) that bind 

to cis-regulatory elements (promoters or enhancers) in special regions of the gene. 
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Since transcription factors are also products of transcription and translation, we reason 

that genes interact with and influence each other (induce or repress) by controlling 

each other’s expression levels. To gain a good level of understanding of how cells 

work, we need to therefore discover how specific genes are regulated, study gene – 

gene interactions and attempt to reconstruct an accurate model of the gene interaction 

network.  

 

This is a difficult task mainly because of the sheer number of interactions involved. 

Traditional biology approaches are unable to search through every possibility to 

identify the genes involved in a particular process. The number of experiments 

necessary to build a gene network model is a lot more than is possible in ‘wet’ labs 

[Dutilh & Hogeweg 1999]. Due to this, research focus has been on studying single 

genes, proteins or single reactions, looking at direct correlations between the genes 

and phenotypes to determine gene function. A full breadth of important roles for well-

known, highly characterized genes have been discovered in this manner, but a need 

for methods that could provide a wider experimental perspective on how genes 

interact was also recognized [Kim et al., 2000]. 

 

With the advent of high-throughput microarray technology, this has been made 

possible, and our ability to explore gene interactions has increased dramatically. Gene 

expression data is now available on a large (genome-wide) scale since it is possible to 

measure expression levels of all genes of a given organism, at a number of time 

points, or under various conditions. “The datasets provide snapshots of the molecular 

state of cell populations at the transcript level and are rich in information about gene 

networks. It seems logical that these data are the best to uncover gene networks, and 

indeed this strategy is presently the most widely adopted” [Brazhnik et al., 2002]. 

Researchers have proposed numerous computational methods for inferring gene 

regulatory networks from this huge amount of data. In this thesis, we concentrate on 

one particular method, and evaluate its performance on synthetic and real biological 

data. 
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1.1 Gene Networks 

Gene networks are models that display causal relationships between gene activities, 

usually at the mRNA level, and are commonly represented as directed graphs 

(Figure1a). A directed graph N  is defined as a tuple EV,  with V  being a set of 

vertices and E  a set of edges. A directed edge is a tuple ji,  of vertices, where i  is 

the head (child) and j  is the tail (parent) of the edge. The vertices/nodes correspond 

to genes and the edges denote interactions between the connected genes. More 

information about genes and their interactions can be shown, for instance, by labelling 

the edges with sign +, or – to indicate whether a gene i  is activated or inhibited by 

gene j .  

  

 

 

 

 

(a)                 (b) 
Figure 1: (a) Graph representation of a gene network. (b) Matrix representation of a gene 

network. 1 represents an interaction, while 0 represents no interaction. 
 

Gene networks can also be represented as matrices. Each column and row of the 

matrix represents one gene, while matrix elements represent relationships. The 

matrices can be qualitative, where positive interactions (activation) are denoted by 1, 

negative interactions (inhibition) with –1, and 0 for the case of no interactions 

between genes [Brazhnik et al., 2002]. In some cases, the elements only take on two 

values; 1 represents an interaction (positive or negative), and 0 represents no 

interaction (Figure 1b). Quantitative representations indicate the sign as well as the 

strength of the gene interaction by using real values in the matrix. 

 

Both of the above representations show which genes are interacting with the others in 

the network. How changes in expression of the ‘originating gene’ affect the ‘target 

gene’ in the network is still not explained. For this, some kind of function at each 

node in the network is used. The type of function depends on the network model. 

Bayesian networks, for example, use conditional probability distributions to explain 

gene interactions, while Boolean networks make use of Boolean logical rules. 

 A B C D 

A 0 1 1 0 

B 0 0 0 0 

C 0 1 0 0 

D 0 1 0 0 

C B 

A D 



Small Gene Networks: Finding Optimal Models 

   -5- 

Inferring the biological gene network from a large amount of experimental data, as 

obtained from microarrays is a difficult problem. There are a number of factors that 

complicate the modelling of gene networks.  

1.1.1 Microarray Datasets 

Microarray analysis provides a global picture of gene expression for the genome by 

revealing which genes are expressed at a particular stage of the cell cycle or 

development cycle of an organism, or genes that respond to a given environment 

signal to the same extent. A large amount of experimental data is available at the 

mRNA level as a result. From a biological point of view, it would be preferable to use 

protein levels rather than mRNA levels to describe gene expression since proteins are 

the ultimate products of a gene, not mRNA. However, we know that transcription is 

the first step in gene regulation, so information from transcript levels will be useful 

for understanding gene networks. Furthermore, correlation studies between mRNA 

and protein abundance in a cell, such as done by Greenbaum et al. in 2003, imply that 

high levels of mRNA in a cell is likely to correspond to a large presence of the 

respective protein, and vice versa. Since it is much easier to measure mRNA levels, 

and on a much larger scale than measuring protein levels directly, gene expression 

data is currently being modelled using mRNA abundance level data. 

 

A microarray is a glass slide, onto which single-stranded DNA molecules are attached 

at fixed locations, called spots. Such a microarray may consist of thousands of spots, 

each representing genes, fragments of genes, or ESTs (Expressed Sequence Tags). 

The central principle of the microarray-technique is hybridization, the selective 

binding of complementary single-stranded nucleic acid sequences. There are several 

ways of using microarray technology. A popular method is to compare the mRNA 

levels from two different samples, for example a healthy and a tumour affected cell. 

mRNA from both samples are extracted and labelled with two different fluorescent 

labels, red for healthy sample and green for the tumour sample. They are then mixed 

and washed over the surface of the microarray, and allowed to hybridize to their 

complementary sequences in the spots [Kerr et al., 2001].  
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To quantify the hybridization level of each spot in the array, a laser is used to excite 

the fluorescent tags, and a photo detector measures the amount of light with the label 

specific wavelength that is emitted. If the mRNA from the tumour cell is in 

abundance, the spot will be green, if the healthy cell’s mRNA is in abundance, the 

spot will be red. If mRNA from both cells binds equally, the spot will be yellow, 

while if neither binds, there will be no fluorescence and the spot will be black (Figure 

2). Thus, by using this technique we are able to determine the relative levels of 

mRNA associated with a huge number of genes in a single experiment. 

 
Figure 2: A sample image obtained from a microarray experiment.  

The intensity and colour of each spot encode information on a specific gene from the tested 
sample. Figure taken from Gene-Chips [http://www.gene-chips.com/sample1.html] 

 

Measuring expression levels of genes in an organism under various conditions 

ultimately helps in building ‘gene expression profiles’ that characterize the dynamic 

functioning of each gene in an organism’s genome. The expression data can be 

represented using a ‘gene expression matrix’ with rows representing genes, columns 

representing samples, and each matrix cell containing a number characterizing the 

expression level of the particular gene in the particular sample. However, when 

analysing this gene expression matrix, we need to keep in mind that at each stage in 

the microarray process: sample extraction, fluorescence labeling, hybridization, and 

image processing of the two fluorescent light signals, a number of errors are 

introduced. Software is used to minimise the effect of the errors at each level but the 

resulting dataset is still very noisy, and may contain distorted gene expression levels.  

 

Furthermore, modelling of gene networks from microarray datasets is presented with 

another problem, namely the curse of dimensionality. The number of 

samples/measurements (usually dozens) made in microarray experiments is far less 
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than the number of genes (tens of thousands) whose expression levels have been 

measured. This basically means that there is not enough data to infer the complete 

underlying gene biological network. Ideally, we would need to collect as many 

measurements/samples as the number of genes. 

 

In a recent study, Husmeier [2003] tried to quantify experimentally exactly how much 

can be learned from the data in this unfavourable situation. Gene expression data was 

simulated from a realistic biological network, and interactions inferred using a 

Bayesian model, which are described in detail in Chapter 2. The simulation results 

were presented as receiver operator characteristics (ROC) curves, and demonstrated 

that increasing the training set i.e. the number of samples in the dataset resulted in an 

increase in the number of true interactions, and a decrease in the number of spurious 

interactions being inferred. 

1.1.2 Properties of Biological Networks 

Biological systems exhibit certain characteristics that need to be taken into account 

when one tries to reconstruct a genetic network model. Some of them are outlined 

below. 

 

Stochastic Nature 

Genes in some pathways evolve rapidly, while others do not; some processes are 

highly sensitive to mutations and external stimuli, while others vary little despite 

significant pressures; some individuals with mutations are affected with disease while 

others with the same mutation are healthy. Some of the above phenomena can be 

explained away by the complex and stochastic nature of gene network and biological 

systems in general.  

 

A stochastic process is one governed by a random process, and in a biological context 

this means that the system is subject to fluctuations. With respect to gene networks, 

“Stochasticity allows significant variations in the sequence of activation and 

inactivation of genes” explains Szallasi [1999]. In such a system, a given gene-

expression state can generate more than one successive gene-expression states, and 
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therefore, different cells of the same population may follow a different gene-

expression path from one state of gene-expression to another.  

 

Robustness 

Biological systems are dynamic, with gene interactions taking place at different points 

in space and time. The network is continuously evolving under effects of mutation, 

environmental effects and other perturbations. Robustness ensures that the gene 

network is able to cope with changes, adapt to them and restore stability. Some of the 

mechanisms that allow this are the existence of duplication in the genome 

(redundancy), feedback control (positive and negative) and degeneracy – the ability of 

different elements in the network to perform the same function or yield the same 

output. Gene network models should try and incorporate these features, trying to 

ensure that sensitivity to small variations in network parameters are reduced. 

 

Modularity 

Modularity is a highly characteristic feature of biological networks according to Alon 

[2003]. He describes modules as “set of nodes that have strong interactions and a 

common function. A module has defined input nodes and output nodes that control 

the interactions with the rest of the network. A module also has internal nodes that do 

not significantly interact with nodes outside the module”. Modular networks can 

change with time and adapt to new conditions, while a non-modular system, in which 

every component is optimally linked to every other component, is effectively frozen 

and cannot evolve to meet new optimisation conditions.  What this essentially implies 

is that the connections within a gene network are sparse – genes are unlikely to be 

linked with every other gene in the network. Sub networks consisting of small number 

of densely connected genes work on a local level to propagate changes through the 

network to yield a global response. In view of this, gene networks might be 

approached by first modelling parts of the network; fully derive complete connectivity 

within, and then look at interactions between the different sub networks. 

1.2 Gene Network Models 

There is absolutely no doubt that biological networks exhibit behaviour that is very 

complex. Existing methods try to somehow abstract this complexity, at least at some 
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levels, by introducing assumptions to simplify their models. It can be argued that even 

if we are unable to model all the parameters or variables involved in a realistic gene 

network, we could observe the average overall behaviour of our model, and predict, 

for instance how a network of genes would react to an external stimuli.  

 

This section aims to provide an overview of several ‘popular’ gene network models. 

Advantages and disadvantages of each model are discussed with respect to how well 

it contends with the noisy nature and dimensionality problem of microarray datasets, 

and the extent to which it is able to reflect the complexities of the underlying 

biological network. 

1.2.1 Weight Matrices 

A weight matrix model considers the interactions between all combinations of genes, 

by using a weight matrix, W, where each row of the matrix represents all the inputs 

for one gene. The effect of gene i  on gene j  is simply the expression level of i  

multiplied by its influence on j , the weight ijW . The total influence exerted on a 

specific gene j  can then be calculated by summing the influences of all genes in the 

system, and then normalizing to produce an expression value between 0 and 1.  

 

The model is advantageous in the sense that each gene can have multiple inputs, both 

positive and negative, with varying strengths. It allows us to study many different 

kinds of interactions, as found in real biological systems. Weaver et al. [1999] for 

example, investigated the effects of various environmental variables on the network 

model, and observed various alterations in gene expression patterns, one of which was 

the classic transition of periodic gene expression to a stable gene expression pattern. 

They state many advantages of the model, but also discuss several limitations. “These 

models make assumptions about the behaviour of regulatory systems that are known 

to be untrue. For example, the assumption that all genetic interactions can be treated 

as independent events is contradicted by known transcriptional regulators that have 

different activities depending on their protein partners”. 
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1.2.2 Boolean Networks 

A Boolean network considers each node representing a gene as a binary variable, 

which can either be expressed or repressed (node has state 1 or 0, respectively). The 

dynamics of the network are determined by a list of n  Boolean functions which each 

receive input from k  specified nodes. Every node has its own specific function, which 

can determine its next state from the current states of all the input nodes. A sequence 

of states connected by transitions forms a trajectory of the system, with all initial 

states eventually reaching a steady state (point attractor) or a state cycle (dynamic 

attractor) [D’Haeseleer et al., 1999a]. 

 

“Boolean networks allow large gene networks to be analysed in an efficient way, by 

making strong simplifying assumptions on the structure and dynamics of a genetic 

regulatory system” says De Jong [2002]. While nodes in a Boolean model take binary 

values (genes are considered either ‘on’ or ‘off’), which are updated synchronously, 

quantities of gene expressions in real networks are not binary and change 

continuously with time [Akutsu et al., 1999]. Furthermore, for computational reasons, 

most Boolean model networks are designed such that all genes can be controlled by 

k , a fixed maximum number of other genes in the network. This does not truly reflect 

the complexities of gene networks, where there is a great degree of variation in the 

number of genes controlling a specific gene. Some genes are known to have many 

regulatory inputs while others have but a few interactions.  

 

Despite their simplicity, Boolean network models have been used extensively in the 

past as conceptual tools for investigating the principles of a gene network – its 

structure, organisation and dynamics. Studies on attractor states and trajectories, for 

instance, have confirmed biological network characteristics such as stability and 

robustness. Constraints in the number of inputs and outputs per gene, input and output 

sharing among genes evolved within a gene family or pathway, and restrictions on 

rule types (thresholding, no "exclusive or" rules etc) have also been discovered 

through simulations of Boolean nets [D’Haeseleer et al. 1999b]. Ultimately, these 

models serve as good starting points for investigation of gene networks. For a more 

realistic approach however, better methods are required. 
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1.2.3 Differential Equations 

Differential equation methods have been used widely to model gene networks [Chen 

et al., 1999b; De Hoon et al., 2002; 2003]. Gene interactions and regulation are based 

on rate equations, which express the rate of production of a component as a function 

of the concentration of other components in the system [De Jong 2002]. The models 

allow gene regulation to be described in great detail to the level of individual reaction 

steps. Hartemink et al. [2001] remark, “While such low-level dynamics are critical to 

a complete understanding of regulatory networks, they require detailed specifications 

of both the relationship between the interacting agents as well as the parameters of the 

biochemical reaction, like reaction rates, diffusion constants, etc.”.  

 

Finding appropriate parameter values that fit the data is very difficult, and is the 

model’s greatest drawback. The approach is therefore restricted to very small systems. 

Chen et al. [1999b] proposed a differential equation model for gene expression, and 

constructed their model using temporal expression data. Both transcription and 

translation processes by kinetic equations with feedback loops from translation 

products to transcription were modelled, and the parameters solved using linear 

algebra. The model was specific to time expression data, and was unable to work on 

mRNA expression level data alone. It required knowledge of protein levels at 

different time steps also. Linearity in the model allowed parameters to be found 

efficiently, but was unable to model important non-linear gene interactions. To tackle 

this weakness, non-linear rate equations have also been used to model gene 

regulation. Although the models are more realistic, they are computationally very 

expensive, and require a larger number of parameters to be approximated than linear 

models [Szallasi 2001]. Another approach worth mentioning is of models that 

incorporate stochasticity into their methods. As we know, gene regulatory interactions 

are best described as stochastic processes. Models that use stochastic differential 

equations are thus better than those that make assumptions of concentrations of 

substances varying continuously and deterministically [De Jong 2002]. Again 

however, these stochastic models are too computationally expensive in terms of 

approximating parameters and fitting them to data. 
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Problems regarding the measurements of the numerous kinetic parameters can be to 

some extent solved with the growing availability of gene expression data obtained 

through microarray technology. However, one would need to solve the dimensionality 

problem (See 1.1.1) since for reliable estimation, we would need the number of 

measurements or data points to exceed the number of parameters. Two methods have 

tried to solve the problem. One method clusters genes with similar expression 

profiles, so as to reduce the number of parameters in the model, while the other tries 

to increase the number of measurements by interpolating data points [D’Haeseleer et 

al., 1999a]. Both approaches make strong assumptions that can lead to mistaken 

conclusions. It is thus wise to use differential equation methods once we have enough 

knowledge, and appropriate data. 

1.2.4 Clustering 

Clustering works by partitioning genes and/or samples into groups by applying some 

kind of similarity measure on gene expression data. Euclidean distance, linear 

correlation, rank correlation and mutual information are most popular. Clusters are 

formed such that there is high correlation among elements within a cluster, and low 

correlation between elements from different clusters. Szallasi [2001] explains that a 

high correlation between two genes i.e. both exhibiting similar expression profiles 

most probably signifies that they are part of the same regulatory process and are 

functionally related.  

 

According to D’Haeseleer et al. [1999b], clustering is potentially useful in at least 

three areas. Functions of unknown genes may be inferred by studying genes with 

known function in the same cluster. Secondly, instead of grouping genes, we could 

search for clusters of microarray samples/experiments that are highly correlated over 

a subset of genes. This would help in classification of different cell types. For 

instance, Golub et al. [1999] performed clustering on gene expression data obtained 

from human leukaemia patients. They were able to discover new tumour classes, and 

predict the cancer type of incoming leukaemia patients from the clusters found. 

Finally, by combining clustering methods with sequence analysis, studies such as that 

of Brazma et al [1998] have been able to determine common regulatory factors for a 

set of co-regulated (highly – correlated) genes.  
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Despite their many advantages, clustering techniques are limited. A gene is allocated 

to a single cluster that is associated with performing one biological function. This is 

inappropriate since we know that a gene can perform multiple functions, and is 

controlled by several genes through a variety of regulatory elements. Thus, methods 

should allow genes to belong to more than one cluster. Moreover, similarity is 

quantified using a ‘global’ correlation measure, which may cause relations that only 

exist over a subset of the data to remain unidentified.  

 

Most importantly, clustering can only go far as identifying which genes are co-

regulated. It does not lead to a fine resolution of the interaction processes. I like to 

regard clustering as a useful pre-processing step for inferring gene regulatory 

networks. Once we are able to determine a group of genes that most probably, share a 

biological function, we can perform further analysis to elucidate finer structure and 

relations between the genes within. We can hope to answer questions such as, is the 

effect of one gene on another direct, or mediated by other genes? Which genes 

mediate the interactions within a cluster of genes or between clusters? What is the 

nature of the interaction between genes? [Pe’er et al., 2001] 

1.2.5 Bayesian Networks 

A Bayesian network is a probabilistic graph model, which describes the multivariate 

probability distribution for a set of variables [Pearl 1988; Heckerman 1998]. When 

applied to our problem of genetic networks, the expression level of each gene is 

treated as a random variable, and regulatory interactions as probabilistic 

dependencies. The joint distribution over the set of all genes then reflects the 

distribution of cell ‘states’ and how these affect expression levels [Pe’er et al., 2001]. 

Bayesian learning techniques try to estimate and understand the network structure that 

best describes this distribution with respect to the data. They are able to capture 

complex relationships between genes by extracting information about their 

(conditional) dependencies and independencies encoded in the high-dimensional 

microarray datasets.  

 

The work of Friedman et al. [2000] was the first to use Bayesian networks for 

analysing gene expression data. They discovered that the models took advantage of 
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the modularity characteristic in biological networks (See 1.1.2) i.e. they were 

particularly useful for describing processes composed of locally interacting 

components. Their method demonstrated that genes could be modelled as discrete or 

continuous variables but was limited to detecting linear interactions between the 

genes. Imoto et al. [2002, 2003a] extended the above work, and constructed a genetic 

network from expression data by using a nonparametric regression strategy in 

conjunction with a Bayesian network framework. Their method was successful in 

capturing even nonlinear relationships between the genes. Another extension by 

Hartemink et al. [2001] incorporated hidden variables in the Bayesian framework to 

capture unobserved factors in the data, and was able to describe gene interactions at 

varying levels of refinement. 

 

There are a number of reasons why Bayesian networks are becoming increasingly 

popular as methods to infer genetic networks. First of all, the models are used to 

capture causal relationships within the data, leading us to make conclusions that are 

biologically meaningful. Secondly, the statistical framework of Bayesian learning is 

designed for domains with a large number of variables [Dejori 2002], and is therefore 

ideal for modelling interactions of the huge number of genes found in any biological 

network. The probabilistic nature of Bayesian models are able to deal with the 

stochastic aspects of gene expression and noisy measurements in a natural way [De 

Jong 2002], and allow the confidence in the inferred network structures to be 

estimated objectively [Husmeier 2003]. Since they discover dependencies among all 

variables, the models are even able to handle incomplete datasets.  

 

Another advantage of the Bayesian approach, as mentioned by Heckerman [1998] in 

his tutorial on Bayesian Networks, is the ability to combine prior knowledge with the 

information extracted from data. Prior or domain knowledge is crucially important if 

one performs a real-world analysis, he says, in particular, when data is inadequate or 

expensive. Studies by Hartemink et al. [2002] and Segal et al. [2002] used binding 

site information as priors to improve their Bayesian models. Imoto et al. [2003b] went 

further and used a large range of biological knowledge, such as protein – protein 

interactions, protein – DNA interactions, binding site information, existing literature 

etc with their microarray data. They showed that their Bayesian network model was 
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successful in extracting more information from the data and estimated the gene 

network more accurately.  

 

As with all models, even Bayesian networks have limitations. For instance, circular 

dependencies present in biological networks cannot be modelled. De Jong [2002] 

comments “Although Bayesian networks are intuitive representations of genetic 

networks, they have the disadvantage of leaving dynamical aspects of gene regulation 

implicit”. He also states that the problem can be overcome by using dynamic 

Bayesian networks to model dynamic processes, such as feedback mechanisms. 

1.3 Aim and Structure of This Report 

This project aims to develop and evaluate an algorithm that infers the structure of a 

gene network for a relatively small number of genes using Bayesian Networks and 

dynamic programming. 

 

Chapter two provides a detailed description of Bayesian Networks, and goes on to 

discuss the task of inferring the network from biological data. Scoring functions and 

search algorithms are reviewed.  

 

Chapter three aims to provide the reader with an understanding of the optimal search 

algorithm. We present the basic concepts and then go on to discuss the 

implementation, providing rationale behind any choices that had to be made.  

 

Chapter four is a detailed analysis of the algorithm. Receiver operating characteristic 

(ROC) graphs have been employed to assess the performance of the technique. 

Results from both synthetic and real datasets are shown and discussed. Effects of 

increasing sample size and noise in the data are also investigated. 

 

Chapter five concludes with a brief summary of the project, its achievements and 

limitations and includes ideas for further work. 
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2 Bayesian Networks 

A Bayesian Network B  for a set of random variables X { }pXX ,...,1=  is the pair 

Θ,N  that uniquely specifies the joint probability distribution BP  for X . The 

network structure N  is a directed acyclic graph (DAG), consisting of a set of nodes 

corresponding to random variables { }pXX ,...,1  and a set of directed edges that 

represent dependencies between the variables. The parameter Θ  is the set of 

conditional probability distributions that describe the conditional probability 

( )ii PaXP |  of a variable iX  given its parents iPa  in the graph.  

 

A conditional independency ( )ZYXi i |;  expresses the fact that iX  is independent of 

Y  given Z , where Y  and Z  denote sets of variables. The graph N  encodes 

conditional independence assumptions (Markov independencies), which state that 

each variable iX  is independent of its non-descendants, given its parents in N . Thus, 

for each variable, we have ( ) ( )( )iii PaXantsnondescendXi |;  [De Jong 2002]. The 

joint distribution BP  of a network B  that satisfies the above independence statements 

can be decomposed into product form as 

    ( ) ( )∏
=

==
n

i
iinB PaXPXXPP

1
1 |,..., ,               (1) 

where iPa  is the set of parents of iX  in N  [Pearl 1988].  

 

 

 

 

 

 

 

 

Figure 3: A direct acyclic graph: conditional probabilities for each variable are specified. 
 
The above figure shows an example of a graph consisting of the set of variables 

X { }EDCBA ,,,,= . The joint probability distribution, ( )EDCBAP ,,,,  can be 

calculated from the product of the conditional probability distributions for each 

( )BDP |  

   A    B 

   C 

   E 

   D 

( )AP  ( )BP  

( )BACP ,|  

( )CEP |  
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variable, and is given by ( )AP ( )BP ( )BACP ,| ( )BDP | ( )CEP | . Additional 

conditional independencies found in the graph are: ( )DBAi ,; , ( )ABi ; , ( )BADCi ,|; , 

( )BECADi |,,;  and ( )CDBAEi |,,; . 

 

More than one direct acyclic graph (DAG) can imply the same set of independencies. 

For example, let us examine the three graph structures (a), (b), and (c) in Figure 4 

below. The decomposed joint probability distributions respectively are: 

 
( ) ( ) ( ) ( )CBpACpApCBApa ||,, = , 

( ) ( ) ( ) ( )CApBCpBpCBApb ||,, = , 

( ) ( ) ( ) ( )CBpCApCpCBApc ||,, = . 

 
The laws of conditional probability show that the three graphs represent the same 

probability distribution, and therefore denote the same set of independencies. The 

graphs are said to be equivalent to each other and belong to the same equivalence 

class. 

 

   

 

 

Figure 4: The three graphs (a), (b) and (c) belong to the same equivalence class,  
and can thus be uniquely represented by the PDAG structure. 

 

Chickering [1995] shows that equivalent graphs have the same underlying undirected 

graph but can differ on the direction of some edges. Furthermore, his work 

demonstrated that an equivalence class of network structures can be uniquely 

represented by a partially directed graph (PDAG), where a directed edge YX →  

compels all members of the equivalence class to contain the edge YX → , while an 

undirected edge YX − allows members to contain an edge in either one of directions 

YX → , and XY → . 

 

The above notion of equivalence is important and especially relevant to our problem 

of learning structures from data. Graphs belonging to the same equivalence class 

cannot be distinguished from observing data alone. Additional criteria or knowledge 

is required [Buntine 1996]. Hence, in the absence of prior information, search strategy 

PDAG (a) (b) (c) 

≡ 

A A A A B B B B 

C C C C 
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should be to find an equivalence class of networks that best matches the data rather 

than trying to find a single network. 

2.1 Learning Bayesian Networks from Expression Data 

The process of establishing relationships between genes on the basis of observed 

expression levels is referred to as ‘reverse engineering’ [Brazhnik et al., 2002]. This 

gene network inference task can be regarded as an unsupervised learning problem. 

We define our microarray expression dataset of p genes and n samples/experiments as 

a training set { }nxxxD ,...,, 21=  of independent observations, where each data point 

ix  is an p-dimensional vector { }i
p

iii xxxx ,...,, 21= . We need to find a network 

B= Θ,N , or more precisely an equivalence class of networks that best matches this 

dataset D ; both a biologically meaningful network structure and parameters 

(conditional probability distributions) need to be found. 

2.1.1 Scoring Mechanism 

Learning network structures from data can be termed as a model selection problem in 

the sense that each network corresponds to a distinct model and one is to be selected 

based on the data [Buntine 1996]. When searching for the best network over the space 

of possible networks, a criterion that measures the degree to which a network 

structure (equivalence class) fits the prior knowledge and data is required. A 

statistically motivated scoring function that assigns a score ( )BS  to each network 

structure B  is generally used to rank models based on their ‘goodness of fit’ to the 

data. Moreover, the difference between the scores for any two models leads to a direct 

significance measure for determining how strongly one should be preferred over the 

other Hartemink et al. [2001].  

 

A number of scoring functions are used in research; all of them exhibiting two 

important characteristics – namely decomposability and structural equivalence. 

 

Decomposability 

A scoring function can be decomposed in the presence of full data. When the dataset 

D  is complete i.e. it contains neither missing or hidden values, the score for a 
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network structure ( )BS  can be expressed as a summation of terms that corresponds to 

individual nodes in the network. Just as the joint probability distribution of a Bayesian 

network is specified as the product of the conditional probability distributions of each 

of its variables (Equation 1), the scoring function factorises into terms related to the 

individual variable dependent only on its parents [Dejori 2002], allowing us to make 

efficient computations. 

 

Given a network B  consisting of a set of genes G { }pgg ,...,1= , the function 

→× GGs 2: ℜ assigns a score to a gene Gg ∈  and a set of parent genes GA ⊆ . The 

score of the whole network is defined as  

 
     ( ) ( )∑

∈

=
Gg

B
gPagsBS , ,                                            (2) 

 
where B

gPa denotes the set of parent genes of gene g  in the network B  (Figure 5).  

 

 

 

 

 

 

 

 
Figure 5: Score of a network is calculated as the sum of scores for each variable in the network. 

 

The contribution of each gene g  to the total score thus depends only on its own value 

and the values of its parents in the datasetD .  

 

Structural Equivalence 

In the beginning of this chapter, equivalence among graphs, and the concept of an 

equivalence class of network structures were introduced. Structures belonging to the 

same equivalence class contain the same set of independencies, and thus have equal 

sample likelihoods. For this reason, two graphs that are structurally equivalent will be 

given the same score value by a scoring function. This is called score equivalence. 

 

{ }( ) { }( )absas ,, +=  

{ }( ) { }( )
{ }( )ces
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The following sections provide the details for three popular scoring mechanisms that 

have been used to infer gene networks from microarray datasets. 

2.1.1.1 Bayesian Score (BDe) 

 

One of the ways to learn a network from data D  produced by microarray experiments 

would be to compute the posterior probability ( )DBP |  i.e. the probability of the 

model B  being correct given the observed data. The task would then be to find a 

model network ⊗B  that maximises this probability, and parameters ⊗Θ  that 

maximise ( )⊗Θ BDP ,| . The Bayesian score is derived from Bayesian statistical 

methods and is proportional to the posterior probability. 

 

According to Bayes rule, the posterior probability can be computed as: 

 

                                                 ( ) ( ) ( )
( )DP

BPBDP
DBP

|
| =                                            (3) 

 
The term ( )BP  is the prior probability of the network structure, while ( )DP  is a 

normalisation constant that does not depend on the choice of model structure and can 

be ignored. The term ( )BDP |  is the marginal likelihood for network structure B  and 

represents the likelihood or probability of the data D  given that the network structure 

is B  and has parameters Θ [Friedman et al., 2000].  

 

The Bayesian score is defined as the logarithm of the posterior probability 

( )DBP |log  and can therefore be computed as ( ) ( )BPBDP +|log . To evaluate the 

marginal likelihood ( )BDP |  we must consider all possible parameter assignments to 

B . Thus,  

 

     ( ) ( ) ( )∫ ΘΘΘ= dBPBDPBDP |,|| ,                               (4) 

 
where ( )Θ,| BDP  is defined as the joint distribution of the variables in network 

(Equation 1), and ( )BP |Θ  is the prior density over parameter assignments to B  

[Friedman & Goldszmidt 1998]. The particular choice of priors ( )BP  and ( )BP |Θ  

determines the exact Bayesian score. 
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The work of Cooper & Herskovits [1992] introduced a set of BDe priors to be used in 

conjunction with the Bayesian score to evaluate the ‘goodness’ of a network. The 

BDe criterion evaluates a Bayesian network based on the multinomial distribution, 

and therefore needs data to be discretised. Additionally it makes assumptions of 

complete data, parameter independence, and parameter modularity. It requires the 

prior over parameters ( )BP |Θ  to have Dirichlet prior distributions and the structure 

prior ( )BP  to be uniform.  All of the above restraints cause the marginal likelihood 

term ( )BDP |  to be rewritten. Heckerman [1998] explains the set of assumptions and 

shows that they justify the decomposition of the integral in Equation 4 making it 

analytically tractable.  

 

The assumption of parameter independency states that the parameter values 

associated with a given variable is independent of the parameter values associated 

with another variable. This permits us to construct the priors for the parameters for 

each variable iX  separately. Parameter modularity implies that the distributions for 

parameters Θ depend only on the structure of the network that is local to variable iX  

- namely iX  and its parents iPa . Finally, a complete dataset indicates that there are 

no hidden or missing values in the dataset. Friedman & Goldszmidt [1998] used the 

BDe criterion for model selection and demonstrated that it was suitable for inferring 

the true network. 

2.1.1.2 Minimum Description Length (MDL) 

 

The MDL scoring function is based on coding theory: given the data and a class of 

network models, select the model which achieves the shortest codelength for the data 

and the model. Codelength, also termed description length refers to the number of bits 

used in encoding.  

 

In the context of learning Bayesian networks from expression data, we have networks 

B  that describe a probability distribution BP  over the n samples of p genes appearing 

in dataset D . The MDL score for a network is defined as the total description length, 

which is the sum of the length of the encoded data, and the length of the description of 

the model network.  
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To describe the network model B = Θ,N , we need to encode both the graph N  and 

its parameters Θ . The description of the DAG N  depends on the number of parents 

each variable has in the network. If a variable iX  has k parents, then  k

p
 is the 

number of possible combinations of parents iX  could have from a set of p variables. 

The description length for the graph structure is therefore given by: 

 

                                     ( ) ∑  +=
p

i i
graph Pa

p
pNMDL loglog ,                                (5) 

 
where the first term encodes the number of parents iPa  while the second term 

encodes the index of the set of parents for the variable [Friedman & Goldszmidt 

1998]. 

 

Next, to describe the network parameters Θ , we store the conditional probability 

distributions for each variable in tabular form. We assume that the dataset is 

discretised so that each variable iX  takes values from a finite domain. The encoding 

length of a variable’s conditional probability table is given by: 

 

                                  ( ) ( )( ) nPaXPaXMDL
k

iiiitable log1
2

1
, −= ,                           (6) 

 

where ( )( )k

ii XX 1−  are the dimensions for each variable’s table, with  iX  

denoting the number of values taken by the variable. nlog2/1  is the number of bits 

used to store each numeric parameter with n being the number of samples in the 

dataset. The above encoding term is also referred as the penalty term since it penalises 

the complexity of the network structure. For example, a simple network with fewer 

edges is preferred over a network containing more edges. 

 

To encode the training data, the probability distribution BP  defined by the network B  

is used to build an encoding scheme that assigns shorter codelengths to instances that 

occur in the dataset with high probability. In effect, we encode the data D  using 

network B  by calculating the marginal likelihood ( )BDP | . The representation 

length for encoding the marginal likelihood can be decomposed as a sum of terms that 
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are local to each variable’s conditional probability distribution. For a multinomial 

distribution, we get 

                              ( ) ∑∑∑
===

−=
ii v

l ij

ijl
ijl

r

j

p

i
data N

N
NBDMDL

111

log| .                          (7) 

 
The equation above works out the number of bits necessary to encode each value of 

iX  given that we know the value of the variable’s parents. iv  is the set of values 

which variable iX  can take while ir  denotes the set of values that the parents of  iX  

can take on. The term ijlN  denotes the number of instances found in the dataset where 

variable iX  takes on value l and its parents take on value j.  

 

Finally, the MDL score for network structure B  is the total description length and is 

given by: 

                 ( ) ( ) ( ) ( )BDMDLPaXMDLNMDLBMDL dataii

p

i
tablegraph |, ++= ∑             (8) 

 
The optimal model is the one that minimises the score. The MDL approach seeks a 

class of network models that describe the data as accurately as possible, but also 

considers the complexity of the models as a penalising factor, striving to strike a 

balance between the two modeling aspects [Tabus & Astola 2001]. As the number of 

samples in the dataset increase, the criterion has been shown to converge to the BDe 

criterion described in section 2.1.1.1. Moreover, minimising MDL is equivalent to 

maximizing another scoring function known as the Bayesian information criterion 

(BIC) [Heckerman 1998].  

2.1.1.3 BNRC 

 

Both of the scoring mechanisms reviewed so far (Bayesian score with BDe priors and 

MDL) require data to be discretised and assume multinomial distributions. Friedman 

et al. [2000] reason that the number of discrete values allowed in the model, and the 

thresholds used in discretization of the continuous data are unknown parameters 

which have to be estimated from the data. Unsuitable parameters may therefore lead 

to wrong results. For this reason Imoto et al. [2002] propose a scoring mechanism 
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called BNRC (Bayesian Network and Nonparametric Regression Criterion) that deals 

with continuous variables. 

 

As with the BDe score in section 2.1.1.1, the BNRC criterion is also derived from 

Bayesian statistical methods. As before, the posterior probability of the network i.e. 

the probability of the model B  being correct given the observed data can be written 

as: 

                        ( ) ( ) ( )
( ) ( ) ( ) ( )∫ ΘΘΘ== dBPBDPBP
DP

BPBDP
DBP |,|

|
|               (9) 

 

Instead of using a multinomial distribution, the joint probability distribution 

( )Θ,| BDP  of the variables (Equation 1) is captured using nonparametric regression 

models that are able to identify linear as well as non-linear dependencies between the 

variables. Laplace approximations are then used to compute the integration. The 

criterion is shown to be decomposable; the BNRC score for the network can be 

computed as the sum of the local scores of each variable in the network. Finally, the 

network that minimises the score is chosen to be the best model. 

 

Imoto et al. [2002; 2003a; 2003b] apply their score on microarray expression data and 

obtain promising results. Furthermore they show that the score can incorporate a 

number of different types of biological knowledge into the prior probability ( )BP  of 

the network. They conclude, “The balance between microarray information and 

biological knowledge is optimised by the proposed criterion”. Nariai et al. [2004] 

also use the BNRC score criterion on expression data in combination with protein - 

protein interaction data, and attain accurate results that are comparable with earlier 

studies. 

2.2 Finding the Optimal Model: Search Strategies 

As defined earlier, learning structures from data involves finding a network or an 

equivalence class of networks that best fits the available data. To accomplish this, we 

utilise a score based search algorithm that identifies high scoring networks over the 

space of possible networks.  
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Finding the optimal gene network is a difficult task for two reasons. First, the number 

of samples contained in gene expression datasets is relatively small compared to the 

number of genes (Section 1.1.1). With a large number of samples, learning the ‘true’ 

network model is possible with high probability. The data that is currently available to 

us is not informative enough to determine a single optimal model. Searching will 

result in several different networks that equally fit the data reasonably well thereby 

introducing uncertainty into model selection [Buntine 1996]. From a Bayesian 

viewpoint, this means that the posterior probability over the search space is spread 

and not dominated by a single network model. Friedman et al. [2000] deal with this 

dimensionality problem by focusing on features such as pairwise relations that are 

common to high scoring networks instead of looking for a single network or a single 

equivalence class of networks. Pe’er et al. [2001] extend their work and consider 

additional features, like activation, inhibition and mediation relations between the 

variables. 

 

Secondly, the number of possible Bayesian networks increases super exponentially 

with the number of variables in the network (Table 1). The problem is NP-hard, 

making computation intractable for networks containing a large number of variables. 

Ott et al. [2004] remark, “Even for a gene network of 9 genes (search space roughly 

1.21x1015), a brute force approach would take years of computation time even on a 

supercomputer”. 

 
Number of variables 

 In network 
Number of possible DAG 

structures 
1 1 
2 3 
3 25 
4 543 
5 2.9 x 104 
6 3.7 x 106 
7 1.1 x 109 
8 7.8 x 1011 
9 1.2 x 1015 
10 4.2 x 1018 
20 2.3 x 1072 

 
Table 1: The search space of possible Bayesian networks increases super exponentially 

with the number of variables in the network. 
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2.2.1 Heuristic Methods 

To deal with the large number of gene variables found in microarray datasets, 

researchers have so far used local heuristic searches to learn Bayesian Networks from 

the data. Local searches work by making successive edge changes to the network, 

taking advantage of the decomposability property of scoring functions (Section 2.1.1) 

to evaluate the gain made by each change. Changes made at each step could be 

adding, removing or reversing the direction of a single edge. All changes ensure that 

the resulting network structure does not contain directed cycles. Popular heuristic 

search algorithms are greedy-hill climbing, greedy random search, simulated 

annealing, and Monte-Carlo methods. 

 

The simplest heuristic method is the greedy hill-climbing search, and has been 

adopted by Pe’er et al. [2001] for learning gene networks. The method starts with an 

initial network structure B , which could be an empty graph, a random graph, or a 

domain specific prior network. Local search proceeds through the set of eligible 

changes 'B  that can be made to the graph, and keeps the change ''B  for which the 

gain in score is largest. The algorithm is terminated when the structure cannot be 

improved further i.e. there is no structure with a better score (Figure 6). 

  
 
 
 
 
 
 
 
 
 

 
Figure 6: Pseudo-code for greedy hill-climbing search algorithm. 

 

Although greedy hill-climbing search has been commonly used for learning network 

purposes, it encounters several problems. Firstly, local search might find a set of edge 

changes that have the same high score. Which edge change does the method pick to 

improve the structure? Secondly, the method can get stuck in local optima, meaning 

that there might be another network structure with a higher score that hasn’t been 

discovered by the search algorithm.  

Choose initial network B 
FOR each change B i  in B’ 

Compute S(B i )  
END 
 
B” = argmax Bi  S(B i ) 
IF S(B”) > S(B) THEN 

B:= B”  
ELSE return  B  
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To avoid the above problems, Imoto et al. [2003a] use greedy random search for 

inferring gene networks. They apply the greedy hill-climbing method until it hits a 

local maximum. Then, they randomly perturb the network structure by permuting the 

computational order of the genes and repeat the greedy search for a number of 

iterations. Hartemink et al. [2002] try to prevent local maxima by using a search 

algorithm called simulated annealing.  

 

Simulated annealing starts with an initial network structure B  and picks an edge 

change e from the set of eligible graph changes 'B  at random. The change e is 

accepted as an improvement to network B  if it obtains a higher score. If it obtains a 

lower score, it is accepted with probability ( ) ( )( )0/exp TBSeSp −=  where 0T  is a 

temperature parameter. We repeat the process, and lower the value of the temperature 

parameter gradually after a select number of iterations (Figure 7). Initially, when the 

temperature is high, a lot of edge changes are accepted. The method explores a lot of 

search space, and hence has a higher chance of finding the global optimal network. As 

the temperature decreases, few edge changes are accepted and a stable network is 

obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Pseudo-code for the simulated annealing method. 
 

The results from heuristic methods vary depending on the network used at 

initialisation and the order in which computations are made. Despite the 

improvements made by simulated annealing or random greedy hill-climbing searches, 

we cannot be confident about the accuracy of the approach.    

Initialise T 0 
Choose initial network B 
WHILE T 0 < T  
FOR x = 1 to N  
  Pick random change B i  from B’ 
  Compute S(B i ) 
  Change = S(B i )-S(B) 
  IF Change>0 OR exp(Change/T 0)>random 
  THEN  

B:= B i   
END FOR 
Reduce T 0 

END WHILE 
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2.2.2 Ott’s Approach 

Avoiding heuristic methods, Ott et al. [2004] propose an algorithm that uses dynamic 

programming to search through the super exponential space of possible networks, 

obtaining the optimal model in exponential time. The authors focus on real-valued 

continuous gene expression data and utilise the BNRC scoring criterion (Section 

2.1.1.3) for learning the network structure. They apply their method on microarray 

datasets that studied the response of yeast to various stress conditions, and obtain 

biologically plausible results. 

 

The method has a sound theoretical basis, and can be made to work with different 

scoring functions, and any kind of gene expression measurements. The method is 

feasible for studying only small gene networks of up to 30 genes, although techniques 

such as limiting the number of parents for each gene can increase the scalability of the 

approach. Biological information such as protein-protein interaction data, binding site 

information can also be incorporated into the method as prior information.  

 

In this thesis, we implement the above method but concentrate on using discretised 

data, searching for networks using the MDL score (Section 2.1.1.1). We evaluate the 

algorithm’s performance on both synthetic and real microarray datasets, and 

investigate the effects of increasing sample size, and noise in the dataset on the 

method’s accuracy. The next chapter gives a description of how the algorithm works 

and discusses implementation. 
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3 Optimal Search Model 

Inferring a gene network using a Bayesian framework involves finding a set of parent 

genes for each gene in the network such that the resulting network is acyclic and that 

the score of the network is minimal. The naïve approach for finding the best model is 

to search through the whole search space of possible networks, and return the network 

or equivalence class of networks that gives the minimal score. As explained in Section 

2.2, this is computationally infeasible. Additionally, a lot of time would be wasted on 

investigating networks that relate very poorly with the given data. The optimal search 

algorithm by Ott et al. [2004] finds the optimal gene network model for a set of genes 

using a dynamic programming strategy.  

 

Dynamic programming is applied to our gene network inference problem since it 

helps us to effectively prune the huge search space. Information gained from 

searching aids in making decisions about which subspace needs to be searched next, 

that is we are able to avoid or eliminate poor network models from being investigated. 

The idea is to find the subspace within the super-exponential search space that 

contains the optimal network. Once we know the subspace, we can exhaustively 

search and determine the network. 

3.1 Formal Definition 

The method uses the concept of π -linearity and ordering of the variables in the graph 

to define network subspaces. In a network B  consisting of a set of genes 

G { }pgg ,...,1=  we can define an ordering of a set GA ⊆  as a permutation 

{ }→A,...,1:π A. We would like a network to have an ordering such that all edges in 

its acyclic graph are oriented in the direction of the ordering. In other words, the each 

gene g  in the network should be positioned earlier on in the ordering than its parents. 

Such an ordering would result in a network that is π -linear. 

 

Definition 1: π - linearity 

Let GA ⊆  and A∏∈π  where A∏  is the set of all permutations of A. Let AAB ×⊆  

be a network. B  is π -linear iff for all ( ) Bhg ∈, ( ) ( )hg 11 −− < ππ  holds. 



Small Gene Networks: Finding Optimal Models 

   -30- 

Given a fixed ordering or permutation π  of a network, we can define a subspace as 

the set of all networks that comply with the given ordering i.e. the set of all networks 

that are π -linear. Two functions, namely F and QA have been defined that search 

through the space of π -linear networks given a permutation π  and calculate the score 

of each network.  

 

Definition 2: F 

ℜ→× GGF 2: , where ( ) ( )BgsAgF ABdef ,min, ⊆=  for all Gg ∈  and GA ⊆ . 

 

The function F returns the optimal choice of parents for a gene g when parents have to 

be selected for it from the subset A. It works by scoring each set of possible parents in 

A with gene g using some kind of scoring criterion, be it MDL, BNRC, BDe or indeed 

any score mechanism that can be decomposed (Section 2.1.1). The optimal parent set 

is the one that returns the minimal score. 

 

Definition 3: QA 

Let GA ⊆ . For all A∏∈π , ℜ→∏ AAQ :  can be defined as: 

( ) ( ) ( ){ }( )∑
∈

−− <∈=
Ag

def
A ghAhgFQ 11|, πππ  

 
Given a permutation π  on a set of genes A, function QA calculates the score of each 

π -linear network by summing the score of each gene g, and its optimal parents using 

the information obtained from the F function. The best π -linear network is the one 

that returns the minimal score. The authors Ott et al. [2004] argue that if they are able 

to find the best π -linear network for a given permutation π , then in order to find the 

optimal network, all that needs to be done is to find the optimal permutation π . This 

is defined by function M. 

 

Definition 4: M 

For all GA ⊆ , we define U
GA

AGM
⊆

∏→2:  as: 

( ) ( )ππ
A

def QAM A∏∈
= minarg  

 
The above function returns the optimal permutation for a set of genes A by selecting 

the permutation π  that returns the minimal Q value.  
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3.2 The Algorithm 

The goal of the optimal search model is to find ( )( )GMQG  i.e. we want to know the 

optimal permutation for all genes G  in the network, and build the optimal network 

according to this permutation. Since both Q and M functions require values of F, we 

compute ( )AgF ,  for all g and all A, and also ( )AM  for all A. In other words, for each 

gene g and each set A, we compute the optimal selection of parents for g from A, and 

for each set A, we compute the optimal permutation for π - linear networks on A.  

 

Dynamic programming allows us to divide the task into stages and calculate the F, Q 

and M functions for a set of genes recursively.   

 

 

Compute
F(g,A)

|A| = m

Compute
Q(A)

|A| = m + 1

Remove F(g,A)

|A|=m

m = |G|
Yes

No

Optimal
 Parents of g

m=m+1

for each g in G

m=0

Recover
Gene Matrix

    g*

 

 
Figure 8: The Optimal Search Algorithm 

 

The above figure shows how the algorithm functions. For each gene g in the set of 

genes G, we start by computing the F score, with A being the empty set ( 0=A ), i.e. 

we calculate the score for each gene assuming that it has no parents. This allows us to 

compute the scores for all possible π - linear networks containing only one gene, i.e. 

we compute ( )AQ  for 1=A . The remaining F and Q scores are calculated recursively 

by increasing the cardinality of set A. At each stage, the Q score for a subset GA ⊆  

of cardinality mA =  will require the ( )AgF ,  score values of each gene g and all 

subsets A of cardinality 1−= mA . We stop recursion once A reaches the set of all 

genes G, i.e. when GA = .  
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The remainder of this section describes how we implement the algorithm to obtain an 

optimal gene network model. The program was written in C++, and the full code 

listing can be seen in Appendix B. 

3.2.1 Input 

The program receives as input a set of discrete valued data that has been generated 

from a network of a number of genes. For any given data, we need to specify three 

parameters, the number of genes in the network (nvar), the number of samples present 

in the dataset (ns), and the number of values that each variable in the network can 

have (cs). For binary data, this value would be 2, whereas for ternary data containing 

for instance the gene expression values -1, 0 and +1, the value would be 3.  

 

Our program uses the Standard Template Library in C++, and uses sets as the basic 

data structures. We use the function generate ( ) that takes as parameters an integer k 

and the number of variables nvar, and creates subsets of cardinality k from a set of 

nvar integers.  

3.2.2 Computing F-scores 

The function ( )AgF ,  that takes as input a gene g and a set of parents A of cardinality 

m is computed as follows: 

         ( ) ( ) { }( ){ }aAgFAgsAgF Aa −= ∈ ,min,,min,                         (10) 

 
It basically computes the score of gene g, and parents A and compares it to previously 

stored score values of gene g with the number of parents being one less than those 

contained in set A. The optimal parent set for gene g is the set with the minimal score. 

As mentioned before, the formula is recursive. F scores for gene g and set A of 

cardinality m need to lookup F scores for gene g and the set of parents A of cardinality 

m – 1. To store the score values and the set of optimal parents, a class named Fset was 

created. To speed lookups of the score values and optimal parents, each Fset was 

directly indexed by the pair ( )Ag,  for which it was calculated. 

 

The score criterion ( )Ags ,  for computing the F scores was MDL. We defined an 

mdl() function that took a gene g, the set A, and the given dataset as input and 
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calculated the score using the equations defined in Section 2.1.1.2. As explained, the 

total description length consists of summing up the description length of the graph, 

the conditional probability table of the variable g given its parents in set A, and the 

length of encoding the data. Calculating graphMDL  (Equation 5) and tableMDL  

(Equation 6) is fairly easy, since we know the number of variables (nvar), the number 

of values the data can take (cs), and the number of parents contained in the set A. To 

calculate dataMDL  is a little more complex. We record the frequencies of all possible 

value combinations of gene g with parents in set A occurring in the dataset, and use 

them for calculating the likelihood of g given its parents in set A (Equation 7). Taking 

logs of this likelihood gives us the description length for the data. 

3.2.3 Computing Q-scores 

The function ( )AQ  takes as input a set A and returns g*, an element that is considered 

to be the last element in the permutation of all elements of set A.  

  { }( ) { } { }( )( )( )gAMQgAgFg gA
Ag −+−= −

∈ ,minarg*             (11)  

 
Therefore, for a set A of cardinality m, the Q function involves looking up both F 

scores and Q scores for subsets of cardinality m-1. Another class named Qset was 

created to store the Q score values and g* element for a given set A. We also stored 

the optimal parents of the g* element by looking up { }( )**, gAgF − .  

3.2.4 Output: Gene Matrix 

By incrementing the cardinality of set A, we eventually compute the F and Q scores of 

all Gg ∈  and all possible subsets GA ⊆  in the network. We now have all the 

information we need to build the optimal gene network for the set of given genes. We 

can figure out the optimal permutation or ordering of the variables in the network by 

looking at the g* element stored in ( )GQ . To find the next last element in the 

ordering, we decrease the cardinality of set G and lookup the g* element in 

{ }( )*gGQ − . We do this repeatedly until we reach the empty set. To find the optimal 

parents for each gene g in the ordering, we simply lookup the optimal parents 

associated with each g* element stored in the Qset. The optimal permutation and the 
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optimal set of parents for each gene are used to compute an nvar x nvar gene matrix 

that specifies child – parent relations between the gene variables.   

3.3 Small Example 

For a clear understanding of how the algorithm works, we present a small example. 

Let’s say for instance that we have a network of three genes, a, b, and c. To find the 

optimal model, we perform the following computations: 

 

1. Compute ( )AgF ,  for all subsets A of cardinality 0: 

{ }( ) { }( )
{ }( ) { }( )
{ }( ) { }( ),,

,,

,,

cscF

bsbF

asaF

=
=
=

 

 

2. Generate all possible subsets A of cardinality 1: { } { } { }cba ,,  

3. Compute ( )AQ  for all subsets A of cardinality 1: 

( ) { }( )
( ) { }( )
( ) { }( ) cgcFcQ

bgbFbQ

agaFaQ

=→=
=→=
=→=

*,

*,

*,

 

 

4. Compute ( )AgF ,  for all subsets A of cardinality 1: 

{ }( ) { }( ) { }( ){ }
{ }( ) { }( ) { }( ){ }
{ }( ) { }( ) { }( ){ }
{ }( ) { }( ) { }( ){ }
{ }( ) { }( ) { }( ){ }
{ }( ) { }( ) { }( ){ },min,,min,

,min,,min,

,min,,min,

,min,,min,

,min,,min,

,min,,min,

cFbcsbcF

cFacsacF

bFcbscbF

bFabsabF

aFcascaF

aFbasbaF

=
=
=
=
=
=

 

 

5. Generate all possible subsets A of cardinality 2: { } { } { }bcacab ,,  

6. Compute ( )AQ  for all subsets A of cardinality 2: 

( ) { }( ) ( ) { }( ) ( ){ }
( ) { }( ) ( ) { }( ) ( ){ }
( ) { }( ) ( ) { }( ) ( ){ } cbgbQbcFcQcbFbcQ

cagaQacFcQcaFacQ

bagaQabFbQbaFabQ

|*,,,min

|*,,,min

|*,,,min

=→++=
=→++=
=→++=
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7. Compute ( )AgF ,  for all subsets A of cardinality 2:  

{ }( ) { }( ) { }( ) { }( ){ }{ }
{ }( ) { }( ) { }( ) { }( ){ }{ }
{ }( ) { }( ) { }( ) { }( ){ }{ }bcFacFabcsabcF

cbFabFacbsacbF

caFbaFbcasbcaF

,,,min,,min,

,,,min,,min,

,,,min,,min,

=
=
=

 

 

8. Generate all possible subsets A of cardinality 3: { }abc  

9. Compute ( )AQ  for all subsets A of cardinality 3: 

( ) { }( ) ( ) { }( ) ( ) { }( ) ( ){ } cbagabQabcFacQacbFbcQbcaFabQ ||*,,,,,min =→+++=
 

By increasing cardinality of the subset A, we have been able to recursively calculate 

both the functions F and Q. No more computations needed to be carried out once the 

cardinality of set A reached 3, the number of genes in the network. It should also be 

noted that for computational reasons, we are able to remove the cached F score values 

once they have been used up in calculating the Q scores.  

 

In order to build the gene network from the above calculated scores, we do the 

following: 

 

1. Find ( )abcQ  and lookup the corresponding g* and optimal parents value. If 

{ }( ) ( )bcQbcaF +,  is minimal, then ag =∗ , and its optimal parents are from the 

set { }bc .  

2. Find ( )bcQ  and lookup the corresponding g* and optimal parents value. If 

{ }( ) ( )bQbcF +,  is minimal, then cg =∗ , and its optimal parents are from the set 

{ }b .  

3. Finally lookup ( )bQ . The corresponding bg =∗  and optimal parents are from the 

empty set { }.  

 

The algorithm displays the optimal permutation as being acb ,,  where a has parents 

from the set { }bc  and c has parents from the set { }b . 
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4 Results and Discussion 

Most studies on inferring genetic networks assess the accuracy of their results on real 

gene expression data by comparing predicted regulatory interactions with those 

known from biological literature. Although we are able to estimate the number of true 

interactions, there is yet no reliable way of quantifying the number of false edges 

detected in the network. As Husmeier [2003] says, “It is impossible to decide without 

doing more experiments whether an algorithm has discovered a new, previously 

unknown interaction or whether it has flagged a spurious edge”. For this reason, it has 

become increasingly necessary to test the viability of any genetic inference method on 

synthetic data as well as real data. 

 

The aim of the results and discussion presented in this chapter is two-fold. First, we 

assess the effect of changing sample size and noise in the dataset using artificially 

constructed networks. Can the method cope with noisy data and low number of 

samples, features that are characteristic of microarray data? Secondly, we apply the 

algorithm to real data, selected from the study by Kim et al. [2000] and compare the 

results with those presented in the paper. 

4.1 Synthetic Data 

Two synthetic datasets have been used to see how much information from a known 

network can be recovered under the varying conditions (number of samples, noise). 

The first was a benchmark Bayesian network known as the ‘Asia Network’ consisting 

of 8 variables while the other was a constructed network of 11 variables. 

4.1.1 Asia Network 

This is a very small Bayesian network proposed by Lauritzen et al. [1988] to help 

diagnose patients arriving at a chest clinic (Figure 9). Each variable in the network 

corresponds to some condition of the patient. The network consists of 8 discrete 

variables with binary values (true, false) connected by 8 edges. The links between the 

nodes indicate how the relationships between the nodes are structured. The two top 

nodes, A and S are for predispositions which influence the likelihood of the diseases. 
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They link to nodes T, L, E, and B that represent internal conditions or failure states. 

They in turn link to the nodes for observables i.e. the symptoms X and D.  

 

 

 

 
 
 

 

 

 

 
 

Figure 9: The Asia Network 
 

The set of conditional probability distributions for the network are described in Netica 

[Norsys], the software that was used to generate the datasets. We chose to experiment 

with nine sample sized datasets, ranging from 10 to 1000 in the number of samples. 

For each sample size, the algorithm was applied to 5 different datasets, running a total 

of 45 experiments on this network. 

4.1.2 11-Node Network 

 

 

 

 

 

 

 

 

 
Figure 10: 11-node Network 

 

The second set of experiments was performed on the above artificial network (Figure 

10). Unlike the Asia network, this network is not generated from a set of probability 

distributions. To generate data, we specified a set of functions where the value of each 

variable depends on the values of its parents in the network. Variable nodes 1, 2, 3 

A: Visit to Asia 
S: Smoking 
T: Tuberculosis 
L: Lung Cancer 
B: Bronchitis 
X: X-Ray 
D: Dyspnea 
E: Tuberculosis or Cancer 
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and 11 are independent, while the rest of the variables have at most three parents. The 

functions describe linear as well as non-linear relationships among the variables. An 

‘R’ script [Appendix C] provided by Sascha Ott used the set of functions to generate 

continuous valued data for the network. Since we were using the MDL criterion to 

score networks, we had to modify the script to output discrete data values. This was 

done by normalisation – variable values within one standard deviation of the mean 

were set to value 0. Values above and below this range were set to +1, and -1 

respectively.  

 

Two sets of experiments were performed on this network. First, we ran the algorithm 

on 10 different sized datasets containing between 10 and 1000 samples. Secondly, to 

try and simulate real microarray data, we introduced noise into the network. In order 

to solely study the affect of noise, the experiments were run on large datasets each 

containing 1000 samples. Seven different noise levels in the range of 0.01 and 0.5 

were introduced into the data. We did not choose to experiment with levels greater 

than 0.5 since that would mean that the values were being generated randomly. To 

ensure validity, each experiment was repeated thrice, each time on a different dataset.  

4.1.3 Performance Measures 

Synthetic data allows us to quantify accuracy by looking at the similarities and 

differences between the inferred network and the known network. There are four 

possible outcomes when comparing the true network with the predicted model. If an 

edge exists in the known network and is recovered by the model, it is counted as a 

true positive (TP); if it is not recovered it is considered as a false negative (FN). 

When both the network and inferred model agree on the absence of an edge, we have 

a true negative (TN), while if the model infers an edge that does not exist in the 

known network, we count the edge as false positive (FP). Figure 11 encapsulates the 

above observations as a confusion matrix.  

          Predicted Model 
 
 
                  Actual 

               Network 

 
Figure 11: Confusion matrix for gene network inference 

 Edge No Edge 

Edge True Positive False Negative 

No Edge False Positive True Negative 
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We used receiver operator characteristics (ROC) graphs, the evaluation method 

suggested by Husmeier [2003] to assess the efficiency of our gene network inference 

method. It is as important to determine the number of true edges predicted as it is to 

quantify the number of false edges predicted by the model. ROC graphs enable us to 

judge the performance of a method on both these measures. The accuracy or 

sensitivity of a model is defined as the proportion of recovered true edges, also known 

as true positive rate. 

True Positive Rate = ( )FNTP

TP

+
 

 
 
Similarly, the proportion of recovered spurious edges is known as false positive rate 

or complementary specificity of a model.  

False Positive Rate = ( )FPTN

FP

+
 

 
 

To assess our network inference algorithm, we analysed its output i.e. the matrix 

denoting the predicted network. For each experiment, we plotted the model’s true 

positive rate against its false positive rate to produce a single point located in two-

dimensional ROC space (Figure 12). 

 

 
 

 Figure 12: An ROC graph showing three different network predictors 
 

In the ROC graph above, Point A at location (1, 0) produces the optimal network. 

Point B at location (0, 0) represents a method that is unable to infer any edges, while 
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point C at (0.5, 0.5) represents a method that infers true edges randomly. In general, a 

model that produces a point located in the north-west region of the graph is said to be 

a good network predictor. The idea is to maximise the number of true edge 

predictions (high TP rate), while minimising the number of spurious edge predictions 

(low FP rate) at the same time. 

 

In Chapter 2, we had mentioned that networks belonging to the same equivalence 

class cannot be distinguished by data alone. This means that our method could 

possibly infer a network structure that is not the true known network, but belongs to 

its equivalence class. For this reason, we decided to construct the PDAG (partial 

DAG) matrix for both the Asia and 11-node network. Conversion of a DAG to a 

PDAG was relatively easy and is explained by Chickering [1995] in his study on 

Equivalent Bayesian Network structures. 

 

For each experiment performed on both sets of synthetic data, the predicted model’s 

DAG, or network matrix was compared with the DAG and PDAG matrices of the 

actual network. For the 11-node network, we compared the predicted graph with an 

additional matrix that considered justifiable inferences as true edges. For instance, if 

we have a CBA →→  relationship in the network, a justifiable inference would be 

that A is the parent of C, i.e. we considered indirect relationships as being true. This 

new matrix was termed JDAG (justifiable DAG).  

4.1.4 Results 

This section presents the results of testing the performance of our method on synthetic 

data. The effect of sample size was studied using both networks, while the noise 

parameter was varied on the 11-node network. Complete set of results can be 

consulted from Appendix A. 

4.1.4.1 Effect of Sample Size 

 

Figure 13 shows the ROC graph of the algorithm’s performance on the Asia network 

dataset. The graph shows the average true positive and false positive rates since we 

repeated the experiment on 5 different datasets for each sample size. The gene matrix 

of the predicted model was compared to the directed acyclic DAG matrix of the 
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known network. As explained in the previous section, we had also compared the 

predicted graph with the partial DAG structure of the known network. The true 

positive and false positive rates for both the DAG and PDAG structures were almost 

identical. Hence, we only present the results of the DAG structure here. As can be 

seen from the graph below, there is a clear correlation between the number of samples 

in the dataset and the accuracy of the algorithm. As the number of samples increase, 

the models being inferred move closer towards the point location (1, 0) which denotes 

the optimal model. We observe a steady rise in the true positive rate as the size of the 

dataset increases, i.e. the proportion of true edges being recovered.  

 

 
 

 
Figure 13: ROC graph for the Asia network, results being averaged over 5 
runs. The graph shows the effect of varying sample size in the dataset. 
Predicted model was compared with the directed acyclic graph (DAG) of the 
known model.  

 

In the above graph, we hardly notice a difference in the false positive rates. This could 

be explained by the fact that the underlying model of the Asia network is itself a 

Bayesian network. The optimal search algorithm is therefore highly unlikely to infer 

spurious edges since it also is designed under the same framework. For interest, we 

plotted the TP and FP rates for the five different datasets on which each sample size 

was tested. The results are displayed in Figure 14, with the ROC graph zoomed in. 

We can still observe the general pattern of larger sample sizes giving more accuracy. 
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For instance, the graph clearly demonstrates that a dataset of 10 samples is not at all 

sufficient for recovering the true network. At the same time, we notice a fair amount 

of variance in the performance of the large datasets. The true positive rate of a 400 

sample large dataset for instance ranges between 0.5 – 0.9.  

 
 

Figure 14: ROC graph for the Asia network. For each sample size tested, the 
algorithm was applied to five different datasets. The graph shows the variance 
in performance over the 5 datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: ROC graph for the 11-node network, results being averaged over 
3 runs. The graph shows the effect of varying sample size in the dataset. 
Predicted model was compared with the PDAG of the known model. 
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Figure 15 and 16 show the effect of sample size on the performance of the 11-node 

network. The former is the ROC graph when comparing the predicted model to the 

PDAG structure of the known network, while the latter compares it to the justifiable 

directed acyclic graph (JDAG). 

 

 

 
 

 

 

The performance of the method on the second synthetic dataset is not as good as the 

performance on the Asia network. In general, most of the datasets have both the true 

positive rates and false positive rates below 0.5. Datasets of size 10, 20, 40 and 60 are 

clustered together in the south western region of the graph and are poor performers, 

which is intuitive. Increasing the dataset size does improve performance in general 

but there is no clearly defined pattern. Furthermore, the optimal search method seems 

to be inferring a large amount of edges that are not present in the actual network. In 

fact, larger sized datasets induce a higher number of spurious edges into the network, 

causing the false positive rate to be high. 

4.1.4.2 Effect of Noise in Data 

 
The 11-node network was used to assess the effect of noise present in datasets 

containing 1000 samples. Figure 17 shows the average results plotted in ROC space 

Figure 16: ROC graph for the 11-node network, results being averaged over 
3 runs. The graph shows the effect of varying sample size in the dataset. 
Predicted model was compared with JDAG of the known model. 
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for the datasets with varying levels of noise incorporated. The first thing we notice is 

that adding noise really only affects the proportion of true edges being recovered. The 

proportion of false edges being inferred is almost constant over all the datasets. 

 

 
 
 
 
 
 

 
 
 
 
 

Figure 17: ROC graph for the 11-node network, results being averaged over 
3 runs. The graph shows the effect of varying noise levels in the dataset. 

Figure 18: ROC graph for the 11-node network. Depicts the variance in 
performance of the algorithm on datasets containing varying noise 
parameters.  
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Secondly, we observe that the performance of the method actually increases when we 

amplify the noise in the dataset. In fact, the best results are provided by the dataset 

where the noise level is set to 0.2. This is somewhat puzzling. We plot the true 

positive and false positive rates of each of the individual datasets tested (See Figure 

18) and observe the variance in performance. We now observe that noisy datasets do 

not always give better performance than datasets containing a lower level of noise. 

Most if not all of the datasets show a large variance in performance, and it might just 

be necessary to average the performance of the method over a larger number of 

datasets than used in this study. 

4.2 Microarray Data 

After several experiments on artificially constructed data, we ran the algorithm on a 

microarray dataset. Since our focus was on discretised data, we chose a dataset that 

had already been discretised by Kim et al. [2000] in their study on gene networks. 

This option was easier than obtaining continuous microarray data, selecting a subset 

of genes using clustering and then discretising the values ourselves using some 

arbitrary threshold. 

 

Kim et al. [2000] used real microarray data from known gene response pathways of 

ionizing radiation and downstream targets of inactivating gene mutations and 

converted it into ternary expression data by thresholding the changes at the transcript 

level. They used a perceptron network to predict relations among the genes, providing 

a measure of confidence with their prediction. Several relations had been found that 

were known from previous biological knowledge. Our program was provided with the 

discretised dataset of 12 genes, and 30 samples. The resulting gene matrix obtained 

was highly sparse and inferred a total of only nine relationships, some of which were 

mentioned in the study. 
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4.3 Discussion 

The results presented in the previous sections indicate that the optimal search 

algorithm implemented in this project is indeed capable of inferring a network from a 

given dataset. The algorithm was successful in reconstructing 7 out of 8 edges in the 

Asia network from a dataset of 1000 samples, and reasonably successful at 

reconstructing the network of the 11-node network. When applied to real microarray 

data, the method constructed a highly sparse gene matrix, but inferred some 

biologically meaningful gene relations.  

 

Effect of Sample Size 

Increasing the sample size of data generated from the Asia network showed very good 

results. The method clearly demonstrated that large datasets increase the proportion of 

true edges being inferred from the data. The results from experiments run on the 11-

node network were not as profound but still indicated that a large sample size would 

result in higher accuracy. The findings are not surprising. In small datasets, the 

number of edges being inferred in total is low since the dependencies encoded in the 

data are statistically too insignificant to be picked up. In a large dataset however, we 

have enough data to estimate the likelihood of a particular variable having another 

variable as a parent in the network.  

 

Several important observations were noted from the above experiments on sample 

size. First of all, the method performed a lot better on the benchmark Bayesian 

network than the self-constructed 11-node network. This can partly be explained by 

the fact that both the network (Asia) and the algorithm used to infer the network (our 

method) are defined using a Bayesian framework. Secondly, we observed that the 

models inferred for the 11-node network consisted of a high number of false edges. 

Moreover, for large datasets, this number of spurious edges increased further. The 

high false positive rate was probably the main reason why we couldn’t get a strong 

correlation between accuracy and sample size in the second test set (11-node 

network). One explanation for the above could be that we had encoded linear as well 

as non-linear relationships into the 11-node network. The MDL scoring criterion used 
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in the algorithm might have been unable to pickup the non-linear relations from the 

network and instead introduced spurious edges to try and explain the relationships.  

 

Effect of Noise in Data 

 

The results obtained from introducing noise into the data were unexpected. At first 

glance, we came to the conclusion that increasing the noise parameter somehow aids 

the process of structural learning resulting in a higher number of true edges being 

inferred. However, on performing more detailed analysis, it was revealed that the 

results varied in their accuracy by a great deal. While some datasets performed 

extremely well in very noisy conditions, others performed equally bad. Nevertheless, 

we were unable to define a correlation between noise and accuracy. Intuition tells us 

that noisy data distorts the actual values, and introduces errors into the learning of 

network structure. Our results show otherwise. The problem could be due to the 

method by which noise is incorporated in the dataset. Further analysis is required to 

assess the affect of noise. 

 

Small Gene Network  

It must be noted that the method described in this project can only yet infer a gene 

network for a small number of genes. Knowing that a real genetic network consists of 

a large number of interacting genes, is this approach really justifiable?? We think it is.  

First of all, in Section 1.1.2, we learnt about the properties of real biological networks. 

Modularity is a key characteristic of genetic networks - genes tend to operate in small 

clusters. An approach which looks at a small subset of genes in the network and 

defines their interactions to a fine level of detail will always be more useful than an 

approach which infers a small number of interactions among a large sparsely 

connected network. Secondly, microarray datasets contain expression measurements 

for a large number of genes, but a large proportion of them are not useful in 

determining a gene network. The expression levels of several genes do not change, or 

give enough information to infer a network, the genes that do relay information form 

a small subset and can be used for further analysis. Finally the work of Ott & Miyano 

[2003] relates the present work and provides methods of extending it to work with 

larger gene subsets. 
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5 Conclusion 

We now provide a summary of what has been achieved in this thesis. Our goal has 

been to model the relationships among genes that exist in our biological systems. A 

Bayesian network framework was used to learn the structure of a network from a 

given dataset. Bayesian network models were found to be appropriate due to their 

probabilistic approach. They are known to be good at dealing with the stochastic 

nature of real biological systems and noisy characteristics of gene expression 

measurements.  

 

A dynamic programming technique was used to infer the optimal gene model. The 

algorithm performed well on synthetic datasets, and gave biologically plausible 

results when applied to real microarray data. 
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Appendix A : Results Tables 

DAG             
 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average 
Numbe

r of 
Sampl

es 
TP 

rate 
FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

Avera
ge TP 
Rate 

Avera
ge FP 
Rate 

10 0.000 0.000 0.125 0.000 0.125 0.036 0.000 0.036 0.000 0.000 0.050 0.014 
20 0.250 0.000 0.250 0.054 0.000 0.036 0.125 0.000 0.000 0.036 0.125 0.025 
40 0.250 0.018 0.250 0.018 0.500 0.036 0.250 0.000 0.125 0.036 0.275 0.021 
80 0.500 0.018 0.250 0.054 0.500 0.054 0.500 0.000 0.250 0.054 0.400 0.036 
100 0.250 0.036 0.625 0.018 0.500 0.018 0.625 0.000 0.625 0.000 0.525 0.014 
200 0.500 0.054 0.625 0.036 0.750 0.000 0.625 0.054 0.500 0.036 0.600 0.036 
400 0.625 0.054 0.875 0.000 0.625 0.036 0.625 0.036 0.500 0.054 0.650 0.036 
800 0.625 0.036 0.875 0.000 0.625 0.036 0.500 0.054 0.875 0.000 0.700 0.025 
1000 0.750 0.018 0.500 0.054 0.875 0.000 0.875 0.000 0.875 0.000 0.775 0.014 
             
             
             
PDAG             
 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average 
Numbe

r of 
Sampl

es 
TP 

rate 
FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

TP 
rate 

FP 
rate 

Avera
ge TP 
Rate 

Avera
ge FP 
Rate 

10 0.000 0.000 0.091 0.000 0.091 0.038 0.091 0.019 0.000 0.000 0.055 0.011 
20 0.182 0.000 0.182 0.057 0.000 0.038 0.091 0.000 0.000 0.038 0.091 0.026 
40 0.182 0.019 0.182 0.019 0.364 0.038 0.182 0.000 0.091 0.038 0.200 0.023 
80 0.364 0.019 0.182 0.057 0.545 0.019 0.364 0.000 0.182 0.057 0.327 0.030 
100 0.182 0.038 0.545 0.000 0.364 0.019 0.455 0.000 0.455 0.000 0.400 0.011 
200 0.455 0.038 0.545 0.019 0.545 0.000 0.636 0.019 0.455 0.019 0.527 0.019 
400 0.636 0.019 0.636 0.000 0.636 0.000 0.545 0.019 0.545 0.019 0.600 0.011 
800 0.636 0.000 0.636 0.000 0.636 0.000 0.545 0.019 0.636 0.000 0.618 0.004 
1000 0.545 0.019 0.545 0.019 0.636 0.000 0.636 0.000 0.636 0.000 0.600 0.008  

Performance of Asia Network 
 
 

DAG         
 Rep 1 Rep 2 Rep 3 Average 
Number 

of 
Samples 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

10 0.273 0.027 0.182 0.018 0.091 0.036 0.182 0.027 
20 0.364 0.082 0.182 0.136 0.364 0.100 0.303 0.106 
40 0.455 0.118 0.000 0.136 0.091 0.164 0.182 0.139 
60 0.182 0.109 0.455 0.109 0.182 0.164 0.273 0.127 
80 0.545 0.127 0.364 0.145 0.455 0.100 0.455 0.124 
100 0.455 0.236 0.636 0.255 0.364 0.182 0.485 0.224 
200 0.455 0.345 0.364 0.309 0.455 0.336 0.424 0.330 
400 0.364 0.245 0.455 0.273 0.273 0.309 0.364 0.276 
800 0.364 0.264 0.545 0.255 0.273 0.264 0.394 0.261 
1000 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252 
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5000 0.636 0.218         0.636 0.218 
10000 0.455 0.273         0.455 0.273 
         
         
PDAG         
 Rep 1 Rep 2 Rep 3 Average 
Number 

of 
Samples 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

10 0.250 0.028 0.167 0.018 0.083 0.037 0.167 0.028 
20 0.417 0.073 0.167 0.138 0.333 0.101 0.306 0.104 
40 0.500 0.110 0.083 0.128 0.167 0.156 0.250 0.131 
60 0.250 0.101 0.417 0.110 0.167 0.165 0.278 0.125 
80 0.583 0.119 0.333 0.147 0.417 0.101 0.444 0.122 
100 0.417 0.239 0.583 0.257 0.333 0.183 0.444 0.226 
200 0.417 0.349 0.333 0.312 0.500 0.330 0.417 0.330 
400 0.417 0.239 0.583 0.257 0.250 0.312 0.417 0.269 
800 0.417 0.257 0.500 0.257 0.333 0.257 0.417 0.257 
1000 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251 
5000 0.583 0.220         0.583 0.22 
10000 0.417 0.275         0.417 0.275 
         
         
JDAG         
 Rep 1 Rep 2 Rep 3 Average 
Number 

of 
Samples 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

TP 
Rate 

FP 
Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

10 0.222 0.019 0.111 0.019 0.056 0.039 0.130 0.026 
20 0.222 0.087 0.167 0.136 0.222 0.107 0.204 0.110 
40 0.333 0.117 0.000 0.146 0.167 0.155 0.167 0.139 
60 0.167 0.107 0.389 0.097 0.111 0.175 0.222 0.126 
80 0.444 0.117 0.444 0.117 0.444 0.078 0.444 0.104 
100 0.333 0.243 0.611 0.233 0.389 0.165 0.444 0.214 
200 0.556 0.320 0.500 0.282 0.500 0.320 0.519 0.307 
400 0.222 0.262 0.278 0.291 0.444 0.282 0.315 0.278 
800 0.278 0.272 0.611 0.223 0.389 0.243 0.426 0.246 
1000 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243 
5000 0.611 0.194         0.611 0.194 
10000 0.444 0.262         0.444 0.262  

Performance of 11-node Network (number of samples) 
 
 
 

DAG         
 Rep 1 Rep 2 Rep 3 Average 

Noise 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

0 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252 
1 0.545 0.236 0.545 0.236 0.364 0.255 0.485 0.242 
2 0.455 0.245 0.364 0.255 0.273 0.264 0.364 0.255 
5 0.091 0.282 0.364 0.255 0.455 0.236 0.303 0.258 
10 0.273 0.273 0.545 0.236 0.636 0.227 0.485 0.245 
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20 0.545 0.236 0.455 0.245 0.727 0.209 0.576 0.230 
50 0.273 0.264 0.545 0.236 0.545 0.236 0.455 0.245 
         
PDAG         
 Rep 1 Rep 2 Rep 3 Average 

Noise 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

0 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251 
1 0.500 0.239 0.500 0.239 0.333 0.257 0.444 0.245 
2 0.417 0.248 0.333 0.257 0.333 0.257 0.361 0.254 
5 0.167 0.275 0.417 0.248 0.500 0.229 0.361 0.251 
10 0.250 0.275 0.500 0.239 0.583 0.229 0.444 0.248 
20 0.500 0.239 0.500 0.239 0.667 0.211 0.556 0.229 
50 0.333 0.257 0.500 0.239 0.429 0.243 0.421 0.246 
         
JDAG         
 Rep 1 Rep 2 Rep 3 Average 

Noise 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 
TP 

Rate 
FP 

Rate 

Averag
e TP 
Rate 

Averag
e FP 
Rate 

0 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243 
1 0.611 0.204 0.444 0.233 0.333 0.252 0.463 0.230 
2 0.444 0.233 0.611 0.204 0.278 0.262 0.444 0.233 
5 0.056 0.301 0.556 0.214 0.444 0.223 0.352 0.246 
10 0.167 0.291 0.500 0.223 0.500 0.223 0.389 0.246 
20 0.500 0.223 0.556 0.214 0.722 0.175 0.593 0.204 
50 0.278 0.262 0.667 0.194 0.444 0.233 0.463 0.230  

Performance of 11-node Network (noise) 
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Appendix B – Source Code 

Ott.cpp 
#include <iostream> 
#include <set> 
#include <map> 
#include <vector> 
#include <algorithm> 
 
#include "Scores.cpp" 
#include "GenSubset.cpp" 
#include "MDL.cpp" 
#include "Results.cpp" 
 
using namespace std; 
 
int nvar = 11; 
double ns = 1000; // no: samples 
double cv = 3; // 2 values 
int cal = 2; 
 
int AsiaMat[8] [8]; 
int SynMat[11] [11]; 
 
string Data[] = 
{ 
"" 
}; 
 
map < set < int >, Qset > QMap; 
map < Fpair, Fset > FMap; 
 
vector < set < int > >::iterator it; 
vector < set < int > >::iterator it2; 
set < int >::iterator sit; 
set < int >::iterator sit1; 
map < set < int >, Qset >::iterator iter; 
map < Fpair, Fset >::iterator iter2; 
 
void display( map < set < int >, Qset > a ) 
{ 
  for ( iter = a.begin(); iter != a.end(); iter++ )  
  { 
    display( "QSet =", iter->first ); 
    cout << ", Score = "; 
    display( iter->second ); 
  } 
} 
 
void display( map < Fpair, Fset > b ) 
{ 
  for ( iter2 = b.begin(); iter2 != b.end(); iter2+ + ) 
  { 
    cout << "F="; 
    display( iter2->first ); 
    cout << ", Score= "; 
    display( iter2->second ); 
  } 
} 
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void minF( float mval, Fpair mm1, int & mres ) 
{ 
  if ( mval <= FMap[mm1].get_Fval() ) 
  { 
    mres = 1; 
  } 
  else 
  { 
    mres = 2; 
  } 
} 
 
int main() 
{ 
  int mres; 
  float mval; 
  float mqval = 1000000; 
  float mqval1; 
  set < int, less < int > > s; //geneset 
  set < int > tset; //temp set 
  set < int > dset; //difference set 
  set < int > res; //result set 
  set < int > res1; // intern result set 
  set < int > mmres; // mdl result set 
  set < int > eset; //empty set 
  vector < set < int > > SetList; 
  vector < set < int > > SList; 
  vector < set < int > > S1List; 
  Qset Qrec; 
  Fset Frec; 
 
  for ( int i = 1; i <= nvar; i++ ) s.insert( i ); 
  display( "S = ", s ); 
  cout << endl; 
 
  // Compute F(g,{}) for each gene g: cardinality 0  
  cout << "Generating sets of cardinality 0:" << en dl; 
  cout << "Adding F-scores for each (g,{})" << endl ; 
  for ( int i = 1; i <= nvar; i++ ) 
  { 
    tset.insert( i ); 
    float r = mdl( tset, res, nvar, ns, cv, Data );  
    Frec.sFval( r ); 
    Frec.sFpar( res ); 
    FMap[Fpair( tset, res )] = Frec; 
    tset.clear(); 
  } 
  cout << "Adding Q({})" << endl; 
  QMap[res] = Qrec; 
  //  display( FMap ); 
 
  // Compute F(g,A) for each gene g and subset A: c ardinality 1 
  cout << "Generating sets of cardinality 1:" << en dl; 
  cout << "Adding F-scores for each (g,{})" << endl ; 
  for ( int i = 1; i <= nvar; i++ ) 
  { 
    tset.insert( i ); 
    set_diff( s, tset, dset ); 
    int kk = dset.size(); 
    int * string = new int[kk]; 
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    generate( string, 0, 1, kk, dset, & SList ); 
    delete[] string; 
    dset.clear(); 
 
    { 
      for ( it = SList.begin(); it != SList.end(); it++ ) 
      { 
        res = * it; 
        float r = mdl( tset, res, nvar, ns, cv, Dat a ); 
        // F(a,{b}) = min { mdl(a,{b}), F(a,{}) } 
        minF( r, Fpair( tset, eset ), mres ); 
        if ( mres == 2 ) 
        { 
          Frec.sFval( FMap[Fpair( tset, eset )].get _Fval() ); 
          Frec.sFpar( eset ); 
        } 
        else 
        { 
          Frec.sFval( r ); 
          Frec.sFpar( res ); 
        } 
        FMap[Fpair( tset, res )] = Frec; 
      } 
      SList.resize( 0 ); 
    } 
    tset.clear(); 
  } 
  //display (FMap); 
 
  cout << "Adding Q{A} for A of cardinality 1" << e ndl; 
  int * string = new int[nvar]; 
  generate( string, 0, 1, nvar, s, & SetList ); 
  delete[] string; 
  //display( "List: ", SetList ); 
  { 
    for ( it = SetList.begin(); it != SetList.end() ; it++ ) 
    { 
      // Q{a} = F(a,{}) 
      res = * it; 
      Qrec.setQval( FMap[Fpair( res, eset )].get_Fv al() ); 
      Qrec.set_optg( res ); 
      Qrec.setQpar( FMap[Fpair( res, eset )].get_pa rs() ); 
      QMap[res] = Qrec; 
      //display( "Qset = ", res ); 
      //cout << "Score="; 
      //display( Qrec ); 
      // Clear F values of sets cardinality 0 
      FMap.erase( Fpair( res, eset ) ); 
    } 
  } 
  SetList.resize( 0 ); 
 
 
  for ( int g = 1; g < nvar - 1; g++ ) 
  //  for ( int g = 1; g < 2; g++ ) 
  { 
 
    // Compute F(g,A) for each gene g and subset A:  cardinality g+1 
    cout << "Generating sets of cardinality " << g + 1 << ":" << 
endl; 
    cout << "Adding F-scores" << endl; 
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    for ( int i = 1; i <= nvar; i++ ) 
    { 
      tset.insert( i ); 
      set_diff( s, tset, dset ); 
      int kk = dset.size(); 
      int * string = new int[kk]; 
      generate( string, 0, g + 1, kk, dset, & SList  ); 
      delete[] string; 
      { 
        for ( it = SList.begin(); it != SList.end() ; it++ ) 
        { 
          res = * it; 
          int ss = res.size(); 
          float r = mdl( tset, res, nvar, ns, cv, D ata ); 
          // F(a,{b}) = min { mdl(a,{b}), F(a,{}) }  
          int * string = new int[ss]; 
          generate( string, 0, g, ss, res, & S1List  ); 
          delete[] string; 
          mval = r; 
          mmres = res; 
 
          for ( it2 = S1List.begin(); it2 != S1List .end(); it2++ ) 
          { 
            res1 = * it2; 
            minF( mval, Fpair( tset, res1 ), mres ) ; 
            if ( mres == 2 ) 
            { 
              mval = FMap[Fpair( tset, res1 )].get_ Fval(); 
              //mmres = res1; 
              mmres = FMap[Fpair( tset, res1 )].get _pars(); 
            } 
          } 
          Frec.sFval( mval ); 
          Frec.sFpar( mmres ); 
          FMap[Fpair( tset, res )] = Frec; 
          S1List.resize( 0 ); 
        } 
        SList.resize( 0 ); 
        mmres.clear(); 
      } 
      dset.clear(); 
      tset.clear(); 
    } 
 
    //display(FMap); 
 
    cout << "Adding Q{A} for A of cardinality:" << g + 1 << endl; 
    int * string = new int[nvar]; 
    generate( string, 0, g + 1, nvar, s, & SetList ); 
    delete[] string; 
    for ( it = SetList.begin(); it != SetList.end() ; it++ ) 
    { 
      res = * it; 
      for ( sit = res.begin(); sit != res.end(); si t++ ) 
      { 
        tset.insert( * sit ); 
        set_diff( res, tset, dset ); 
        mqval1 = ( FMap[Fpair( tset, dset )].get_Fv al() ) + ( 
QMap[dset].get_Qval() ); 
        if ( mqval1 <= mqval ) 
        { 
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          mqval = mqval1; 
          Qrec.setQval( mqval1 ); 
          Qrec.set_optg( tset ); 
          Qrec.setQpar( FMap[Fpair( tset, dset )].g et_pars() ); 
 
        } 
 
        tset.clear(); 
        dset.clear(); 
      } 
      mqval = 100000; 
      QMap[res] = Qrec; 
      //display( "Qset = ", res ); 
      //cout << "Score="; 
      //display( Qrec ); 
    } 
 
    SetList.resize( 0 ); 
 
    // Removing F{g,{A}} for A of cardinality g 
    cout << " Removing Fvalues for A of cardinality  " << g << endl; 
    for ( int i = 1; i <= nvar; i++ ) 
    { 
      tset.insert( i ); 
      set_diff( s, tset, dset ); 
      int kk = dset.size(); 
      int * string = new int[kk]; 
      generate( string, 0, g, kk, dset, & SList ); 
      delete[] string; 
      { 
        for ( it = SList.begin(); it != SList.end() ; it++ ) 
        { 
          res = * it; 
          FMap.erase( Fpair( tset, res ) ); 
        } 
      } 
      tset.clear(); 
      dset.clear(); 
      SList.resize( 0 ); 
    } 
  } 
 
  cout << "Adding Q{A} for A of cardinality:" << nv ar << endl; 
  int * sring = new int[nvar]; 
  generate( sring, 0, nvar, nvar, s, & SetList ); 
  delete[] sring; 
  display( "List: ", SetList ); 
  mqval = 100000; 
  for ( it = SetList.begin(); it != SetList.end(); it++ ) 
  { 
    res = * it; 
    for ( sit = res.begin(); sit != res.end(); sit+ + ) 
    { 
      tset.insert( * sit ); 
      set_diff( res, tset, dset ); 
      mqval1 = ( FMap[Fpair( tset, dset )].get_Fval () ) + ( 
QMap[dset].get_Qval() ); 
      if ( mqval1 <= mqval ) 
      { 
        mqval = mqval1; 
        Qrec.setQval( mqval1 ); 
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        Qrec.set_optg( tset ); 
        Qrec.setQpar( FMap[Fpair( tset, dset )].get _pars() ); 
      } 
 
      tset.clear(); 
      dset.clear(); 
    } 
    mqval = 100000; 
    QMap[res] = Qrec; 
    //display( "Qset = ", res ); 
    //cout << "Score="; 
    //display( Qrec ); 
  } 
  SetList.resize( 0 ); 
  //  display( QMap ); 
 
  // Removing F{g,{A}} for A of cardinality nvar-1 
  cout << " Removing Fvalues for A of cardinality "  << nvar - 1 << 
endl; 
  for ( int i = 1; i <= nvar; i++ ) 
  { 
    tset.insert( i ); 
    set_diff( s, tset, dset ); 
    int kk = dset.size(); 
    int * string = new int[kk]; 
    generate( string, 0, nvar - 1, kk, dset, & SLis t ); 
    delete[] string; 
    { 
      for ( it = SList.begin(); it != SList.end(); it++ ) 
      { 
        res = * it; 
        FMap.erase( Fpair( tset, res ) ); 
      } 
    } 
    tset.clear(); 
    dset.clear(); 
    SList.resize( 0 ); 
  } 
 
  //  display( FMap ); 
  //Printing solution in gene matrix form 
  { 
    for ( int i = 0; i < nvar; i++ )   { 
      for ( int j = 0; j < nvar; j++ ) { 
        if ( cal == 1 ) {   AsiaMat[i] [j] = 0;  } 
        else  {  SynMat[i] [j] = 0;   } 
      } 
    } 
  } 
 
  display( "S = ", s ); 
  { 
    for ( int i = 0; i < nvar; i++ ) 
    { 
      sit = QMap[s].get_optg().begin(); 
      int l = * sit; 
      cout << ( l ) < ","; 
      for ( sit1 = QMap[s].get_par().begin(); sit1 != 
QMap[s].get_par().end(); sit1++ ) 
      { 
        int k = * sit1; 
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        cout << k; 
        if ( cal == 1 ) 
        {  AsiaMat[l - 1] [k - 1] = 1;     } 
        else 
        {  SynMat[l - 1] [k - 1] = 1;      } 
      } 
      cout << ")" << endl; 
      set_diff( s, QMap[s].get_optg(), dset ); 
      s.clear(); 
      s = dset; 
      dset.clear(); 
      display( "S = ", s ); 
    } 
  } 
  cout << endl; 
 
//Compare with others to get true positive and fals e positive rates 
if(cal==1) 
{ 
  roc(AsiaMat,AsiaD,nvar); 
  roc(AsiaMat,AsiaPD,nvar); 
} 
else 
{ 
  roc1(SynMat,SynD,nvar); 
  roc1(SynMat,SynPD,nvar); 
  roc1(SynMat,SynJD,nvar); 
} 
 
} 
 
 
 
 
 

MDL.cpp  
#include <iostream> 
#include <stdio> 
#include <math> 
#include <set> 
#include <vector> 
#include <map> 
#include <string> 
 
#include "factorial.cpp" 
#include "mclass.cpp" 
 
using namespace std; 
 
double lg2( double xx ) 
{ 
  if (xx==0.0) { 
    return 0; 
  } 
  else{ 
  return log( xx ) / log( 2 ); 
  } 
} 
 
void display( map < string, mclass > a ) 
{ 
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  map < string, mclass >::iterator it0; 
  for ( it0 = a.begin(); it0 != a.end(); it0++ ) 
  { 
    cout << "( " << it0->first << " , "; 
    display( it0->second ); 
    cout << " ) " << endl; 
  } 
} 
 
 
float mdl( set < int > first, set < int > last, int  nvar,double 
ns,double cv, string Data[] ) 
{ 
//  double ns = 10; // no: samples 
 // double cv = 2; // 2 values 
 
  map < string, mclass > MMap; 
  map < string,mclass>::iterator it1; 
  set < int >::iterator its1; 
  set < int >::iterator its2; 
  mclass mc; 
  double cnt0 = 0.0; 
  double cnt1 = 0.0; 
  double cnt2 = 0.0; 
  char psent; 
 
  string hold = ""; 
 
  int P = last.size(); // no: parents of given vari able 
 
  double bin = combination( nvar, P ); 
  double mdl_graph = lg2( nvar ) + lg2( bin ); 
//double mdl_table = 0.5 * pow( cv, P ) * ( cv - 1 ) * lg2( ns ); 
  double mdl_table = 0.5 * P * ( cv - 1 ) * lg2( ns  ); 
  double mdl_data = 0.0; 
 
  if ( P == 0 ) 
  { 
    its1 = first.begin(); 
    int sres = * its1; 
 
    for ( int x = 0; x < ns; x++ ) 
    { 
      if ( ( Data[x] ) [sres - 1] == '0' ) 
      { 
        cnt0 = cnt0 + 1; 
              } 
      else if ( ( Data[x] ) [sres - 1] == '1' ) 
      { 
        cnt1 = cnt1 + 1; 
      } 
      else 
      { 
        cnt2 = cnt2 + 1; 
      } 
 
    } 
 
  int temp = cnt0 + cnt1+ cnt2; 
  mdl_data = -
1*((cnt0*lg2((cnt0/temp)))+(cnt1*lg2((cnt1/temp)))+ (cnt2*lg2((cnt2/te
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mp)))); 
  } 
 
  else 
  { 
    its1 = first.begin(); 
    int sres1 = * its1; 
 
    for ( int x = 0; x < ns; x++ ) 
    { 
      psent = ( Data[x] ) [sres1 - 1]; 
      for ( its2 = last.begin(); its2 != last.end() ; its2++ ) 
      { 
        int sres = * its2; 
        hold = hold + ( Data[x] ) [sres - 1]; 
      } 
 
      if ( psent == '0' ) 
      { 
        cnt0 = MMap[hold].gf1(); 
        MMap[hold].sf1( cnt0 + 1 ); 
        } 
      else if ( psent == '1' ) 
      { 
        cnt1 = MMap[hold].gf2(); 
        MMap[hold].sf2( cnt1 + 1 ); 
      } 
      else 
      { 
        cnt2 = MMap[hold].gf3(); 
        MMap[hold].sf3( cnt2 + 1 ); 
      } 
      hold = ""; 
    } 
 
    mdl_data = 0.0; 
    for ( it1 = MMap.begin(); it1 != MMap.end(); it 1++ ) 
  { 
    double m1 = it1->second.gf1(); 
    double m2 = it1->second.gf2(); 
    double m3 = it1->second.gf3(); 
    double m4 = it1->second.gsum(); 
 
    mdl_data = mdl_data + (m1*lg2(m1/m4))+ (m2*lg2( m2/m4))+ 
(m3*lg2(m3/m4)); 
  } 
 
  mdl_data = -1 * mdl_data; 
  } 
 
 return mdl_graph + mdl_table + mdl_data; 
} 
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Appendix C 

Script for generating data for the 11-node network 

#-------------------------------------------------- ----------------- 
# generation of synthetic microarray data with R (i nclude module ggm) 
# author: Sascha Ott 
 
# two-dimensional list of functions as input for sy nthetic_data 
single_valued_functions <- list(function(x) 33*(1/( 5+exp(x))), 
        function(x) 0.9*x, 
        function(x) 
sign(x)*(abs(1.4*x)^0.5), 
        function(x) 
1/(0.2+exp(5*x))) 
two_valued_functions <- list(function(x,y) 0.7*x+y)  
three_valued_functions <- list(function(x,y,z) x+1. 1*y+1.4*z) 
function_list <- 
list(single_valued_functions,two_valued_functions,t hree_valued_functions) 
# n-th item must be a list of n-ary functions      
 
# example graph input 
network <- DAG(n1 ~ n1, n2 ~ n2, n3 ~ n3, n4 ~ n1, n5 ~ n2+n3, 
        n6 ~ n2+n11, n7 ~ n2, n8 ~ n4+n6+n7, n9 ~ n 6, n10 ~ n5, n11 
~ n11, order = FALSE) 
 
# function for generation of synthetic data 
synthetic_data <- function(graph,functionlist,noise ratio,arraynumber) { 
 topologicalsort <- topOrder(graph) 
 num_genes <- length(topologicalsort) 
 # assign functions to genes 
 num_dim <- length(functionlist) 
 positions <- vector('integer',num_dim) 
 function_assignment <- vector('integer',num_genes)  
 for (i in seq(1,num_genes,1)) { 
  num_parents <- sum(graph[,i]) 
  if (num_parents>num_dim) 
   stop("Number of parents too high for supplied 
functions!") 
  else  
   if (num_parents!=0) {    
    function_assignment[i] <- 
positions[num_parents]+1 
    positions[num_parents] <-  
positions[num_parents]+1 
    if 
(positions[num_parents]==length(functionlist[[num_p arents]])) 
      positions[num_parents] <- 0 
   } 
 } 
 # apply functions 
 arraydata <- matrix(0,num_genes,arraynumber) 
 for (i in seq(1,num_genes,1)) { 
  actualgene <- topologicalsort[i] 
  num_parents <- sum(graph[,actualgene]) 
  parents <- vector('integer',num_parents) 
  pos <- 1 
  for (k in seq(1,num_genes,1)) { 
   if (graph[k,actualgene]) { 
    parents[pos] <- k 
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    pos <- pos+1 
   } 
  } 
  for (j in seq(1,arraynumber,1)) { 
   if (num_parents==0) 
    arraydata[actualgene,j] <- rnorm(1,mean=0,sd=1)  
   else { 
    if (num_parents==1)     
     arraydata[actualgene,j] <- 
functionlist[[1]][[function_assignment[actualgene]] ](arraydata[parents[1]
,j]) 
    else { 
     if (num_parents==2) 
      arraydata[actualgene,j] <- 
functionlist[[2]][[function_assignment[actualgene]] ](arraydata[parents[1]
,j],arraydata[parents[2],j]) 
     else { 
      if (num_parents==3) 
       arraydata[actualgene,j] <- 
functionlist[[3]][[function_assignment[actualgene]] ](arraydata[parents[1]
,j], 
            
            
          
 arraydata[parents[2],j], 
            
            
          
 arraydata[parents[3],j]) 
      else 
       stop("This case is not 
implemented.") 
     } 
    } 
   } 
  } 
  if (num_parents>0) { 
   # OLD sdthisgene <- (max(arraydata[actualgene,]) -
min(arraydata[actualgene,]))*noiseratio    
   sdthisgene <- sd(arraydata[actualgene,])*noisera tio  
   arraydata[actualgene,] <- arraydata[actualgene,]  + 
rnorm(arraynumber,mean=0,sd=sdthisgene) 
  } 
 } 
 arraydata 
} 
 
# function call 
#data <- synthetic_data(network,function_list,0.5,1 0) 
 
#-------------------------------------------------- ----------------------
- 
# normalise and add measurement error (above is onl y system error) 
normalise_and_add_error <- function(data,measuremen tnoisesd) { 
 for (i in seq(1,dim(data)[1],1)) { 
  genemean = mean(data[i,]) 
  genesd = sd(data[i,]) 
  for (j in seq(1,dim(data)[2],1)) { 
   data[i,j] = (data[i,j]-genemean)/genesd 
  } 
 } 
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 for (i in seq(1,dim(data)[1],1)) { 
  for (j in seq(1,dim(data)[2],1)) { 
   data[i,j] = 
data[i,j]+rnorm(1,mean=0,sd=measurementnoisesd) 
  } 
 } 
 data 
} 
 
# function call 
#normdata <- normalise_and_add_error(data,0.0) 
 
#-------------------------------------------------- ----------------------
- 
# output data to BN-software-compatible file 
write_data <- function(getdata,filename,geneorder) { 
 data = matrix(0,dim(getdata)[1],dim(getdata)[2]) 
 for (i in seq(1,dim(getdata)[1],1)) { 
  data[geneorder[i],] = getdata[i,] 
 }  
  
 write(t(data),file=filename,append=FALSE,ncolumns= dim(data)[2]) 
 rownames <- vector('character',dim(data)[1]) 
 for (i in seq(1,dim(data)[1],1)) { 
  rownames[i] <-  paste(sep="",'gene',i,"\t",'gene' ,i) 
 } 
 now_as_a_table <- read.table(file=filename,row.nam es=rownames) 
 write.table(now_as_a_table,file=filename,col.names =FALSE,sep='\t') 
 } 
 
#function call 
#write_data(data,'C:\\Documents and Settings\\Shiva \\My 
Documents\\Edinburgh\\Project\\R_outputfile.txt',c( 1,2,3,4,5,6,11,7,8,9,1
0)) # ggm orders nodes non-intuitively 
#write_data(normdata,'C:\\Documents and Settings\\S hiva\\My 
Documents\\Edinburgh\\Project\\R_normout.txt',c(1,2 ,3,4,5,6,11,7,8,9,10)) 
# ggm orders nodes non-intuitively 
 
#-------------------------------------------------- ----------------------
- 
# normalise for discrete data 
norm_discrete <- function(data) { 
 for (i in seq(1,dim(data)[1],1)) { 
  genemean = mean(data[i,]) 
  genesd = sd(data[i,]) 
  for (j in seq(1,dim(data)[2],1)) { 
   if (data[i,j]< (genemean-genesd))data[i,j] = -1. 0 
   else { 
     if (data[i,j]> (genemean+genesd)) data[i,j] = 
1.0 
     else data[i,j]=0 
    } 
  } 
 } 
 data 
} 
 
# function call 
#discretedata <- norm_discrete(normdata) 
#write_data(discretedata,'C:\\Documents and Setting s\\Shiva\\My 
Documents\\Edinburgh\\Project\\R_discout.txt',c(1,2 ,3,4,5,6,11,7,8,9,10)) 
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# ggm orders nodes non-intuitively 
 
#-------------------------------------------------- ----------------------
- 
# build series of data sets 
produce_data_sets <- 
function(network,function_list,systemerror,variance _vector,array_number_v
ector,repetition_number,basicfilename,geneorder) { 
 for (i in seq(1,length(variance_vector))) { 
  for (j in seq(1,length(array_number_vector))) { 
   for (k in seq(1,repetition_number)) { 
    rawdata <- 
synthetic_data(network,function_list,systemerror,ar ray_number_vector[j])
     
    normdata <- 
normalise_and_add_error(rawdata,variance_vector[i]/ 100) 
    data <- norm_discrete(normdata) 
    filename = 
sprintf("%s%s%s%s%s%s%s%s",basicfilename,"_var",toS tring(variance_vector[
i]), 
         
"_num",toString(array_number_vector[j]),"_rep",toSt ring(k),".txt") 
    write_data(data,filename,geneorder) 
   } 
  } 
 } 
} 
 
#function call 
produce_data_sets(network,function_list,0.5,c(0,1,2 ,5,10,20,40,50),c(10,2
0,40,50,60,80,100,200,400,600,800,1000,5000,10000), 10, 
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