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Abstract

Genetic networks help in identifying interactioretween genes, and provide information about the
function role of individual genes in the cellulasgem. In this thesis, we have employed a Bayesian
framework to learn network structures from micragrdata, and implemented an algorithm that

uses dynamic programming to find the optimal gegtevark model for a small number of genes.

To test its performance, we applied the methodvm distinctive synthetic datasets. ROC graphs
were used to evaluate the effects of noise andadl somber of samples, features that are known to
be characteristic of gene expression datasets.ltReshowed significant improvements when the
numbers of samples in a dataset were increased.effeet of adding noise to the data gave
unexpected results and requires further analysiie method was finally applied to a real

microarray dataset, and led to biologically plalesitesults.
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1 Introduction

All of the genetic information in any living creat is stored in DNA
(deoxyribonucleic acid). The double helix structuraolecule is functionally divided
into information units callegenesthat contain instructions to make proteins, which
play a vital role in all cellular processes. Thenkin Genome Project, initiated in
1990, aimed to sequence the entire human genomeaabbgue all human genes.
The draft human genome was published in 2000, ambmges of several other
organisms, for example, E.coli, mouse, chicken, yaabkt have also been completed.
Due to the availability of this vast amount of seqcing information, the main focus
of genomic research is switching from sequencingding the genome sequences in

order to understand how genomes function [Brazmél& 2000].

To retrieve the information encoded in the gendls cese the process ajene
expressionAccording to the central ‘dogma of molecular b@y, this occurs in two
steps. Genes atenscribedinto messenger RNA (mRNA), which is theanslated
into proteins. A gene isxpressedh a cell if its corresponding proteins are presant
the cell. “Functioning of different cells or an argsm as a whole, to a large extent is
governed by the ‘selective’ expression of genesiefie et al., 2002]. Although all
cells in an organism contain more or less the s@Né, i.e. the same genetic
material, we observe specialized behaviour frorfedsht cell types. For example, the
function of a liver cell differs from that of a skcell. This occurs due to differences
in gene expression, that is, whether or not a prodwene codes for is produced, and
how much is produced. For a cell to function prbpehe proteins being synthesized
must be controlled, the amount being produced dhgngs per the cell’'s needs.
Genetic regulation ensures this. Levels of genedymts do change during
development, cell differentiation, the onset ofedse and in response to the

environment [Hunter 1993].

Gene expression levels are regulated in humansobtrad mechanisms at several
levels in the steps between transcription and praggnthesis. Regulation at the
transcriptional level is most important since itetenines the amount of mRNA to be
made. The process is controlled by regulatory stéranscription factors) that bind

to cisregulatory elements (promoters or enhancers) @ciapregions of the gene.
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Since transcription factors are also productsarfdcription and translation, we reason
that genes interact with and influence each othetu€e or repress) by controlling
each other’s expression levels. To gain a good! lek@&nderstanding of how cells
work, we need to therefore discover how specifinegeare regulated, study gene —
gene interactions and attempt to reconstruct anrate& model of the gene interaction

network.

This is a difficult task mainly because of the she@ember of interactions involved.
Traditional biology approaches are unable to sedhtbugh every possibility to
identify the genes involved in a particular proce$ie number of experiments
necessary to build a gene network model is a latentlean is possible in ‘wet’ labs
[Dutilh & Hogeweg 1999]. Due to this, research fedwias been on studying single
genes, proteins or single reactions, looking atalicorrelations between the genes
and phenotypes to determine gene function. A fidbdth of important roles for well-
known, highly characterized genes have been disedvia this manner, but a need
for methods that could provide a wider experimemtatspective on how genes
interact was also recognized [Kim et al., 2000].

With the advent of high-throughput microarray tedlogy, this has been made
possible, and our ability to explore gene interawihas increased dramatically. Gene
expression data is now available on a large (genoitie) scale since it is possible to
measure expression levels of all genes of a givgamsm, at a number of time
points, or under various conditions. “The datagetsride snapshots of the molecular
state of cell populations at the transcript levad are rich in information about gene
networks. It seems logical that these data ard#st to uncover gene networks, and
indeed this strategy is presently the most widelgpaed” [Brazhnik et al., 2002].
Researchers have proposed numerous computationlodse for inferring gene
regulatory networks from this huge amount of datahis thesis, we concentrate on
one particular method, and evaluate its performamceynthetic and real biological

data.
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1.1 Gene Networks

Gene networks are models that display causal oekttips between gene activities,

usually at the mRNA level, and are commonly repmesg as directed graphs

(Figurela). A directed grapN is defined as a tupl(a\/,E) with V being a set of

vertices andE a set of edges. A directed edge is a tu{'plg'a) of vertices, where is

the head (child) and is the tail (parent) of the edge. The verticesésdorrespond
to genes and the edges denote interactions betWeerconnected genes. More
information about genes and their interactionstwashown, for instance, by labelling

the edges with sign +, or — to indicate whetheeneg is activated or inhibited by
genej.
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(a) (b)
Figure 1: (a) Graph representation of a gene netwér (b) Matrix representation of a gene
network. 1 represents an interaction, while O reprgents no interaction.

gl O W >

o| o| o o »
P R o k| @
o| o] o »r| O
o| ol ol ol ©

Gene networks can also be represented as matkees column and row of the
matrix represents one gene, while matrix elemepfwesent relationships. The
matrices can be qualitative, where positive intéoas (activation) are denoted by 1,
negative interactions (inhibition) with —1, and Or fthe case of no interactions
between genes [Brazhnik et al., 2002]. In somes;dbe elements only take on two
values; 1 represents an interaction (positive ogatiee), and O represents no
interaction (Figure 1b). Quantitative representaiandicate the sign as well as the
strength of the gene interaction by using real eslin the matrix.

Both of the above representations show which garefteracting with the others in
the network. How changes in expression of the ioating gene’ affect the ‘target
gene’ in the network is still not explained. Foisthsome kind of function at each
node in the network is used. The type of functi@pehds on the network model.
Bayesian networks, for example, use conditionababdlity distributions to explain

gene interactions, while Boolean networks makeofiggolean logical rules.
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Inferring the biological gene network from a largeount of experimental data, as
obtained from microarrays is a difficult problenhéere are a number of factors that

complicate the modelling of gene networks.
1.1.1 Microarray Datasets

Microarray analysis provides a global picture ohgexpression for the genome by
revealing which genes are expressed at a partiatege of the cell cycle or
development cycle of an organism, or genes thgiores to a given environment
signal to the same extent. A large amount of erpemtal data is available at the
MRNA level as a result. From a biological pointagw, it would be preferable to use
protein levels rather than mRNA levels to descgbae expression since proteins are
the ultimate products of a gene, not mMRNA. Howewas, know that transcription is
the first step in gene regulation, so informatiooni transcript levels will be useful
for understanding gene networks. Furthermore, taiim@ studies between mRNA
and protein abundance in a cell, such as done bgraum et al. in 2003, imply that
high levels of mRNA in a cell is likely to corresmb to a large presence of the
respective protein, and vice versa. Since it is hme@sier to measure mRNA levels,
and on a much larger scale than measuring progewld directly, gene expression

data is currently being modelled using mRNA abuceddavel data.

A microarray is a glass slide, onto which singlesstied DNA molecules are attached
at fixed locations, calledpots Such a microarray may consist of thousands afsspo
each representing genes, fragments of genes, os ESXpressed Sequence Tags).
The central principle of the microarray-techniguse hiybridization the selective
binding of complementary single-stranded nucleid aequences. There are several
ways of using microarray technology. A popular meths to compare the mRNA
levels from two different samples, for example altiley and a tumour affected cell.
MRNA from both samples are extracted and labellétl two different fluorescent
labels, red for healthy sample and green for theotur sample. They are then mixed
and washed over the surface of the microarray, alwved to hybridize to their

complementary sequences in the spots [Kerr 2@0]].
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To quantify the hybridization level of each spotle array, a laser is used to excite
the fluorescent tags, and a photo detector measueeamount of light with the label
specific wavelength that is emitted. If the mRNAorfr the tumour cell is in
abundance, the spot will be green, if the heal#l{/scmRNA is in abundance, the
spot will be red. If mMRNA from both cells binds edjy, the spot will be yellow,
while if neither binds, there will be no fluorescenand the spot will be black (Figure
2). Thus, by using this technique we are able terdene the relative levels of

MRNA associated with a huge number of genes inglesexperiment.
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Figure 2: A sample image obtained from a microarrayexperiment.
The intensity and colour of each spot encode inforation on a specific gene from the tested
sample. Figure taken from Gene-Chips [http://www.gre-chips.com/samplel.html]

Measuring expression levels of genes in an orgaruswier various conditions

ultimately helps in building ‘gene expression plesi that characterize the dynamic
functioning of each gene in an organism’s genonfee €xpression data can be
represented using a ‘gene expression matrix’ wothisr representing genes, columns
representing samples, and each matrix cell comt@iai number characterizing the
expression level of the particular gene in the ipaldr sample. However, when

analysing this gene expression matrix, we neece&pkn mind that at each stage in
the microarray process: sample extraction, flu@ese labeling, hybridization, and

image processing of the two fluorescent light signa number of errors are
introduced. Software is used to minimise the eftddhe errors at each level but the

resulting dataset is still very noisy, and may eantlistorted gene expression levels.

Furthermore, modelling of gene networks from micrap datasets is presented with
another problem, namely the curse of dimensionalifthe number of

samples/measurements (usually dozens) made in aniasoexperiments is far less
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than the number of genes (tens of thousands) whgpeession levels have been
measured. This basically means that there is notigin data to infer the complete
underlying gene biological network. Ideally, we vdweed to collect as many

measurements/samples as the number of genes.

In a recent study, Husmeier [2003] tried to quardkperimentally exactly how much
can be learned from the data in this unfavourakbl@aton. Gene expression data was
simulated from a realistic biological network, aimteractions inferred using a
Bayesian modelwhich are described in detail in Chapter 2. Timeutation results
were presented as receiver operator character(Ri©€) curves, and demonstrated
that increasing the training set i.e. the numbesashples in the dataset resulted in an
increase in the number of true interactions, ad@@ease in the number of spurious

interactions being inferred.
1.1.2 Properties of Biological Networks

Biological systems exhibit certain characteristicat need to be taken into account
when one tries to reconstruct a genetic network @hd8ome of them are outlined

below.

Stochastic Nature

Genes in some pathways evolve rapidly, while otliErsnot; some processes are
highly sensitive to mutations and external stimwhile others vary little despite
significant pressures; some individuals with matadi are affected with disease while
others with the same mutation are healthy. Somthe@fabove phenomena can be
explained away by the complex and stochastic naifigene network and biological

systems in general.

A stochastic process is one governed by a randogeps, and in a biological context
this means that the system is subject to fluctnatidVith respect to gene networks,
“Stochasticity allows significant variations in theequence of activation and
inactivation of genes” explains Szallasi [1999]. dach a system, a given gene-

expression state can generate more than one sivecgsse-expression states, and
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therefore, different cells of the same populatioaynfollow a different gene-

expression path from one state of gene-expressiandther.

Robustness

Biological systems are dynamic, with gene intematgitaking place at different points
in space and time. The network is continuously wugl under effects of mutation,
environmental effects and other perturbations. Roimss ensures that the gene
network is able to cope with changes, adapt to taedhrestore stability. Some of the
mechanisms that allow this are the existence oflichtppn in the genome
(redundancy), feedback control (positive and negatnd degeneracy — the ability of
different elements in the network to perform thensafunction or yield the same
output. Gene network models should try and incaothese features, trying to

ensure that sensitivity to small variations in retkv parameters are reduced.

Modularity

Modularity is a highly characteristic feature obloigical networks according to Alon
[2003]. He describes modules as “set of nodes Hhaae strong interactions and a
common function. A module has defined input nodas$ autput nodes that control
the interactions with the rest of the network. Adule also has internal nodes that do
not significantly interact with nodes outside thedule”. Modular networks can
change with time and adapt to new conditions, witen-modular system, in which
every component is optimally linked to every otiemponent, is effectively frozen
and cannot evolve to meet new optimisation conatiowhat this essentially implies
is that the connections within a gene network a@rse — genes are unlikely to be
linked with every other gene in the network. Subwoeks consisting of small number
of densely connected genes work on a local levgdrépagate changes through the
network to yield a global response. In view of thgene networks might be
approached by first modelling parts of the netwduKy derive complete connectivity
within, and then look at interactions between tifieidnt sub networks.

1.2 Gene Network Models

There is absolutely no doubt that biological netwgoexhibit behaviour that is very

complex. Existing methods try to somehow abstraist tcomplexity, at least at some
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levels, by introducing assumptions to simplify thaodels. It can be argued that even
if we are unable to model all the parameters oiatsées involved in a realistic gene
network, we could observe the average overall hebawf our model, and predict,

for instance how a network of genes would reaetnt@xternal stimuli.

This section aims to provide an overview of sevgrapular’ gene network models.
Advantages and disadvantages of each model anesdest with respect to how well
it contends with the noisy nature and dimensioyadibblem of microarray datasets,
and the extent to which it is able to reflect tr@mplexities of the underlying

biological network.
1.2.1 Weight Matrices

A weight matrix model considers the interactionsaleen all combinations of genes,
by using a weight matrix, W, where each row of inatrix represents all the inputs

for one gene. The effect of gemeon genej is simply the expression level of

multiplied by its influence onj, the weightW,. The total influence exerted on a

specific genej can then be calculated by summing the influendées| genes in the

system, and then normalizing to produce an exmressilue between 0 and 1.

The model is advantageous in the sense that eaxehoge have multiple inputs, both
positive and negative, with varying strengths. llovas us to study many different
kinds of interactions, as found in real biologisgstems. Weaver et al. [1999] for
example, investigated the effects of various emritental variables on the network
model, and observed various alterations in geneesgn patterns, one of which was
the classic transition of periodic gene expressma stable gene expression pattern.
They state many advantages of the model, but &sniss several limitations. “These
models make assumptions about the behaviour ofategy systems that are known
to be untrue. For example, the assumption thageaiktic interactions can be treated
as independent events is contradicted by knowrsdrgtional regulators that have

different activities depending on their proteintpars”.
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1.2.2 Boolean Networks

A Boolean network considers each node represemtiggne as a binary variable,
which can either be expressed or repressed (ncxlstage 1 or O, respectively). The
dynamics of the network are determined by a lishdBoolean functions which each
receive input fromk specified nodes. Every node has its own speaifiction, which

can determine its next state from the current statall the input nodes. A sequence
of states connected by transitions forms a trajgotd the system, with all initial

states eventually reaching a steady state (potrdacéar) or a state cycle (dynamic

attractor) [D’Haeseleer et al., 1999a].

“Boolean networks allow large gene networks to balysed in an efficient way, by
making strong simplifying assumptioren the structure and dynamics of a genetic
regulatory system” says De Jong [2002]. While nadessBoolean model take binary
values (genes are considered either ‘on’ or ‘offfhich are updated synchronously,
guantities of gene expressions in real networks mo¢ binary and change
continuously with time [Akutsu et al., 1999]. Fuwetmore, for computational reasons,
most Boolean model networks are designed suchathgenes can be controlled by
k, a fixed maximum number of other genes in the netwThis does not truly reflect
the complexities of gene networks, where there ggemt degree of variation in the
number of genes controlling a specific gene. Soereeg are known to have many
regulatory inputs while others have but a few iatéipbns.

Despite their simplicity, Boolean network models/édeen used extensively in the
past as conceptual tools for investigating the gipies of a gene network — its
structure, organisation and dynamics. Studies tracadr states and trajectories, for
instance, have confirmed biological network chagastics such as stability and
robustness. Constraints in the number of inputsoartputs per gene, input and output
sharing among genes evolved within a gene familpathway, and restrictions on
rule types (thresholding, no "exclusive or" ruless)ehave also been discovered
through simulations of Boolean nets [D'Haeseleerlet1999b]. Ultimately, these
models serve as good starting points for investgatf gene networks. For a more

realistic approach however, better methods arenexju
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1.2.3 Differential Equations

Differential equation methods have been used witteljnodel gene networks [Chen
et al., 1999b; De Hoon et al., 2002; 2003]. Gemeractions and regulation are based
on rate equations, which express the rate of ptaduof a component as a function
of the concentration of other components in theesygDe Jong 2002]. The models
allow gene regulation to be described in greatidietahe level of individual reaction
steps. Hartemink et al. [2001] remark, “While suaWw-level dynamics are critical to

a complete understanding of regulatory networlay tiequire detailed specifications
of both the relationship between the interactingraig as well as the parameters of the

biochemical reaction, like reaction rates, diffus@pnstants, etc.”.

Finding appropriate parameter values that fit tlagads very difficult, and is the
model’s greatest drawback. The approach is thexefstricted to very small systems.
Chen et al. [1999b] proposed a differential equmatiwodel for gene expression, and
constructed their model using temporal expressiata.dBoth transcription and
translation processes by kinetic equations withdlieek loops from translation
products to transcription were modelled, and theameters solved usinfinear
algebra. The model was specific to time expression datd,@as unable to work on
MRNA expression level data alone. It required kmumge of protein levels at
different time steps also. Linearity in the moddbwed parameters to be found
efficiently, but was unable to model important dov@ar gene interactions. To tackle
this weakness, non-linear rate equations have bbEen used to model gene
regulation. Although the models are more realistiwy are computationally very
expensive, and require a larger number of parasébelbe approximated than linear
models [Szallasi 2001]. Another approach worth nosimg is of models that
incorporate stochasticity into their methods. Askmew, gene regulatory interactions
are best described as stochastic processes. Mtuslsise stochastic differential
equations are thus better than those that makemasisuns of concentrations of
substances varying continuously and determinisgicDe Jong 2002]. Again
however, these stochastic models are too compuoélyoexpensive in terms of

approximating parameters and fitting them to data.

-11-
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Problems regarding the measurements of the numéinesc parameters can be to
some extent solved with the growing availability ggfne expression data obtained
through microarray technology. However, one woldddto solve the dimensionality
problem (See 1.1.1) since for reliable estimatime, would need the number of
measurements or data points to exceed the numiparameters. Two methods have
tried to solve the problem. One method clustersegewith similar expression
profiles, so as to reduce the number of paraméaietfee model, while the other tries
to increase the number of measurements by intdipgldata points [D’Haeseleer et
al., 1999a]. Both approaches make strong assunsptivet can lead to mistaken
conclusions. It is thus wise to use differentiali@ipn methods once we have enough

knowledge, and appropriate data.
1.2.4 Clustering

Clustering works by partitioning genes and/or sasphto groups by applying some
kind of similarity measure on gene expression d&maclidean distance, linear

correlation, rank correlation and mutual informatiare most popular. Clusters are
formed such that there is high correlation amomgneints within a cluster, and low
correlation between elements from different clust&zallasi [2001] explains that a
high correlation between two genes i.e. both ekhipisimilar expression profiles

most probably signifies that they are part of thens regulatory process and are

functionally related.

According to D'Haeseleer et al. [1999b], clusterisgpotentially useful in at least
three areas. Functions of unknown genes may berédfeby studying genes with
known function in the same cluster. Secondly, m$tef grouping genes, we could
search for clusters of microarray samples/experisnéivat are highly correlated over
a subset of genes. This would help in classificatid different cell types. For
instance, Golub et al. [1999] performed clustelamggene expression data obtained
from human leukaemia patients. They were able $oadier new tumour classes, and
predict the cancer type of incoming leukaemia pédifrom the clusters found.
Finally, by combining clustering methods with seqeeeanalysis, studies such as that
of Brazma et al [1998] have been able to deterraaramon regulatory factors for a

set of co-regulated (highly — correlated) genes.

-12-
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Despite their many advantages, clustering techsigue limited. A gene is allocated
to a single cluster that is associated with perfogone biological function. This is
inappropriate since we know that a gene can perfomaitiple functions, and is
controlled by several genes through a variety glilstory elements. Thus, methods
should allow genes to belong to more than one elustloreover, similarity is
guantified using a ‘global’ correlation measure,ickihmay cause relations that only

exist over a subset of the data to remain unidedtif

Most importantly, clustering can only go far asntiging which genes are co-
regulated. It does not lead to a fine resolutiorthef interaction processes. | like to
regard clustering as a useful pre-processing stepirfferring gene regulatory
networks. Once we are able to determine a grogeiés that most probably, share a
biological function, we can perform further anatysd elucidate finer structure and
relations between the genes within. We can hopmnswer questions such as, is the
effect of one gene on another direct, or mediatgdother genes? Which genes
mediate the interactions within a cluster of geaedetween clusters? What is the
nature of the interaction between genes? [Pe’al,2001]

1.2.5 Bayesian Networks

A Bayesian network is a probabilistic graph modétjch describes the multivariate
probability distribution for a set of variables HPe1988; Heckerman 1998]. When
applied to our problem of genetic networks, thereggpion level of each gene is
treated as a random variable, and regulatory ictierzs as probabilistic
dependencies. The joint distribution over the sktalb genes then reflects the
distribution of cell ‘states’ and how these affegpression levels [Pe’er et al., 2001].
Bayesian learning techniques try to estimate antrgtand the network structure that
best describes this distribution with respect te ttata. They are able to capture
complex relationships between genes by extractinfprination about their
(conditional) dependencies and independencies edcaad the high-dimensional
microarray datasets.

The work of Friedman et al. [2000] was the first use Bayesian networks for

analysing gene expression data. They discoverddtipamodels took advantage of

-13-
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the modularity characteristic in biological netwsrkSee 1.1.2) i.e. they were
particularly useful for describing processes coregosof locally interacting

components. Their method demonstrated that gendd be modelled as discrete or
continuous variables but was limited to detectinmgedr interactions between the
genes. Imoto et al. [2002, 2003a] extended the @lark, and constructed a genetic
network from expression data by using a nonparame&gression strategy in

conjunction with a Bayesian network framework. Theiethod was successful in
capturing even nonlinear relationships between dgbaes. Another extension by
Hartemink et al. [2001] incorporated hidden vargsbin the Bayesian framework to
capture unobserved factors in the data, and wastabdescribe gene interactions at

varying levels of refinement.

There are a number of reasons why Bayesian netwargkgecoming increasingly

popular as methods to infer genetic networks. Fifsall, the models are used to
capture causal relationships within the data, le@adis to make conclusions that are
biologically meaningful. Secondly, the statistié@lmework of Bayesian learning is

designed for domains with a large number of vaeafDejori 2002], and is therefore

ideal for modelling interactions of the huge numbggenes found in any biological

network. The probabilistic nature of Bayesian medafe able to deal with the

stochastic aspects of gene expression and noisguregaents in a natural way [De
Jong 2002], and allow the confidence in the inférreetwork structures to be

estimated objectively [Husmeier 2003]. Since thescover dependencies among all
variables, the models are even able to handle iptaindatasets.

Another advantage of the Bayesian approach, asionedt by Heckerman [1998] in
his tutorial on Bayesian Networks, is the abilibydombine prior knowledge with the
information extracted from data. Prior or domaimmwiedge is crucially important if
one performs a real-world analysis, he says, itiqudar, when data is inadequate or
expensive. Studies by Hartemink et al. [2002] aedab et al. [2002] used binding
site information as priors to improve their Bayesmodels. Imoto et al. [2003b] went
further and used a large range of biological knogée such as protein — protein
interactions, protein — DNA interactions, bindirite Snformation, existing literature

etc with their microarray data. They showed thairtBayesian network model was
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successful in extracting more information from tiieta and estimated the gene

network more accurately.

As with all models, even Bayesian networks havatditions. For instance, circular
dependencies present in biological networks catweomodelled. De Jong [2002]
comments “Although Bayesian networks are intuithepresentations of genetic
networks, they have the disadvantage of leavinguohyoal aspects of gene regulation
implicit”. He also states that the problem can beroome by using dynamic

Bayesian networks to model dynamic processes, asiféedback mechanisms.
1.3 Aim and Structure of This Report

This project aims to develop and evaluate an algorithat infers the structure of a
gene network for a relatively small number of genssg Bayesian Networks and

dynamic programming.

Chapter two provides a detailed description of B&ym®e Networks, and goes on to
discuss the task of inferring the network from b@tal data. Scoring functions and

search algorithms are reviewed.

Chapter three aims to provide the reader with aterstanding of the optimal search
algorithm. We present the basic concepts and thenog to discuss the

implementation, providing rationale behind any clesithat had to be made.

Chapter four is a detailed analysis of the algaritfiReceiver operating characteristic
(ROC) graphs have been employed to assess thermarfoe of the technique.
Results from both synthetic and real datasets laoevrs and discussed. Effects of

increasing sample size and noise in the data soaralestigated.

Chapter five concludes with a brief summary of pgreject, its achievements and
limitations and includes ideas for further work.
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2 Bayesian Networks

A Bayesian NetworkB for a set of random variableX :{Xl,...,Xp} is the pair

(N,©) that uniquely specifies the joint probability distition P, for X. The
network structureN is a directed acyclic graph (DAG), consisting cfedt of nodes
corresponding to random variabl@(l,...,xp} and a set of directed edges that
represent dependencies between the variables. &rempter © is the set of
conditional probability distributions that describéne conditional probability

P(X, | Pa) of a variableX; given its parentda in the graph.

A conditional independenc';(xi ;Y|Z) expresses the fact that, is independent of

Y given Z, whereY and Z denote sets of variables. The graph encodes
conditional independence assumptions (Markov indégecies), which state that
each variableX; is independent of its non-descendants, givenaitergs inN . Thus,

for each variable, we havgX;;nondesceraht{X,)|(Pa)) [De Jong 2002]. The
joint distribution P, of a networkB that satisfies the above independence statements

can be decomposed into product form as

n

P, :F>(xl,...,xn):np(xi |Pa), 1)

where Pa is the set of parents of, in N [Pearl 1988].

(N EDREPLD

P(C| A B) P(D|B)
\
ple1c)_E D)

Figure 3: A direct acyclic graph: conditional probabilities for each variable are specified.

The above figure shows an example of a graph domgisf the set of variables
X ={A,B,C,D,E}. The joint probability distribution, P(A B,C,D,E) can be

calculated from the product of the conditional oty distributions for each
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variable, and is given byP(A)P(B)P(C|AB)P(D|B)P(E|C). Additional
conditional independencies found in the graph #&;:B,D), i(B; A), i(C;D| A B),
i(D; AC,E|B) andi(E; A B,D|C).

More than one direct acyclic graph (DAG) can imply tame set of independencies.
For example, let us examine the three graph structures (apn@)(c) in Figure 4

below. The decomposed joint probability distributioesprectively are:

p.(AB,C)=p(A)p(C| A)p(BIC),
p,(AB,C)= p(B)p(C|B)p(A|C),
p.(AB,C)= p(C)p(A|C)p(BIC).

The laws of conditional probability show that theetn graphs represent the same
probability distribution, and therefore denote the sa®iof independencies. The

graphs are said to be equivalent to each other and bedoting tsameequivalence

KL @&? =R

class

©

(@ (©) PDAG

Figure 4: The three graphs (a), (b) and (c) belontp the same equivalence class,
and can thus be uniquely represented by the PDAG rsicture.

Chickering [1995] shows that equivalent graphs have the serderlying undirected
graph but can differ on the direction of some edges.hEéurtore, his work
demonstrated that an equivalence class of network strectae be uniquely
represented by a partially directed graph (PDAG), where extdot edgeX - Y
compels all members of the equivalence class to contain tlee>Xedg Y, while an
undirected edgeX —Y allows members to contain an edge in either one oftebres
X -Y,andY - X.

The above notion oéquivalences important and especially relevant to our problem
of learning structures from data. Graphs belonging & stime equivalence class
cannot be distinguished from observing data alone. Additicriteria or knowledge

is required [Buntine 1996]. Hence, in the absence of prformation, search strategy
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should be to find an equivalence class of networks tbstt inatches the data rather

than trying to find a single network.
2.1 Learning Bayesian Networks from Expression Data

The process of establishing relationships between gendbeohasis of observed
expression levels is referred to as ‘reverse engineeringzfik et al., 2002]. This
gene network inference task can be regarded as an unsepel®arning problem.
We define our microarray expression datasgt génes and samples/experiments as

atraining setD ={xl,x2,...,x”} of independent observations, where each data point

i
p

Xi

is an p-dimensional vectox' ={xix'2x } We need to find a network

Bz(N,@), or more precisely an equivalence class of netsvtdrétbest matchethis

dataset D; both a biologically meaningful network structuend parameters

(conditional probability distributions) need to foeind.
2.1.1 Scoring Mechanism

Learning network structures from data can be teragedmodel selectiomproblem in
the sense that each network corresponds to aalistindel and one is to be selected
based on the data [Buntine 1996]. When searchinthéobest network over the space
of possible networks, a criterion that measures degree to which a network
structure (equivalence class) fits the prior knalgke and data is required. A

statistically motivatedscoring functionthat assigns a scorS(B) to each network

structureB is generally used to rank models based on theindgess of fit' to the
data. Moreover, the difference between the scarearfy two models leads to a direct
significance measure for determining how strongtg should be preferred over the
other Hartemink et al. [2001].

A number of scoring functions are used in reseaadhpof them exhibiting two

important characteristics — namelgcomposabilitgndstructural equivalence
Decomposability

A scoring function can be decomposed in the presendull data. When the dataset

D is complete i.e. it contains neither missing oddein values, the score for a
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network structureS(B) can be expressed as a summation of terms thatspomds to

individual nodes in the network. Just as the jpiatbability distribution of a Bayesian
network is specified as the product of the condéigrobability distributions of each
of its variables (Equation 1), the scoring functfantorises into terms related to the
individual variable dependent only on its paremsjpri 2002], allowing us to make

efficient computations.

Given a networkB consisting of a set of geneG ={gl,...,gp}, the function

s:Gx2% _, [0 assigns a score to a geg€lG and a set of parent gends] G. The

score of the whole network is defined as

s(B)=Y s(g,Pag), )

g0G

where Pa,gB denotes the set of parent genes of ggna the networkB (Figure 5).

Y w®

= s(a{ }D+ s(b.{a})

C oD C e roefd)+daind)
] ] +slefd)
2D

>

Figure 5: Score of a network is calculated as theum of scores for each variable in the network.

The contribution of each gerg to the total score thus depends only on its owneva

and the values of its parents in the datBset

Structural Equivalence

In the beginning of this chapteeguivalenceamong graphs, and the concept of an
equivalence clasef network structures were introduced. Structiure®nging to the
same equivalence class contain the same set gfendencies, and thus have equal
sample likelihoods. For this reason, two graphs d@ha structurally equivalent will be

given the same score value by a scoring functitis iE calledscore equivalence
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The following sections provide the details for #hgopular scoring mechanisms that

have been used to infer gene networks from micagatatasets.

2.1.1.1 Bayesian Score (BDe)

One of the ways to learn a network from dBtgproduced by microarray experiments
would be to compute the posterior probabiIIB(Bl D) i.e. the probability of the
model B being correct given the observed data. The taskldvthen be to find a
model network B that maximises this probability, and paramet@®s that
maximise P(G)|D,BD). The Bayesian score is derived from Bayesiansttal

methods and is proportional to the posterior praibyab

According to Bayes rule, the posterior probabitig;y be computed as:

P(D|B)P(B)

P(B | D) = P(D) 3)

The term P(B) is the prior probability of the network structusehile P(D) is a
normalisation constant that does not depend oghbiEe of model structure and can
be ignored. The tern(D | B) is the marginal likelihood for network structuBe and

represents the likelihood or probability of theadB given that the network structure
is B and has paramete&|[Friedman et al., 2000].

The Bayesian score is defined as the logarithm h&f posterior probability

logP(B|D) and can therefore be computedlagP(D | B)+ P(B). To evaluate the
marginal IikeIihoodP(D | B) we must consider all possible parameter assigrsment

B. Thus,

P(D|B)=[P(D|B,0)P(©|B)dO, (4)

where P(D|B,0) is defined as the joint distribution of the vatibin network
(Equation 1), andP(@l B) is the prior density over parameter assignment®to
[Friedman & Goldszmidt 1998]. The particular choiwepriors P(B) and P(©|B)

determines the exact Bayesian score.
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The work of Cooper & Herskovits [1992] introducedet of BDe priors to be used in
conjunction with the Bayesian score to evaluate ‘tfomdness’ of a network. The
BDe criterion evaluates a Bayesian network basedhermmultinomial distribution,
and therefore needs data to be discretised. Addilip it makes assumptions of
complete dataparameter independencand parameter modularitylt requires the

prior over parameter@(@l B) to have Dirichlet prior distributions and the stiwre
prior P(B) to be uniform. All of the above restraints catis marginal likelihood
term P(D | B) to be rewritten. Heckerman [1998] explains theo$@ssumptions and

shows that they justify the decomposition of theegnal in Equation 4 making it

analytically tractable.

The assumption ofparameter independencgtates that the parameter values
associated with a given variable is independenthefparameter values associated
with another variable. This permits us to constthet priors for the parameters for

each variableX; separatelyParameter modularitymplies that the distributions for
parameter® depend only on the structure of the network théngsl to variableX,
- namely X, and its parent$a . Finally, acomplete datasendicates that there are

no hidden or missing values in the dataset. Fried&&oldszmidt [1998] used the
BDe criterion for model selection and demonstrdted it was suitable for inferring

the true network.

2.1.1.2 Minimum Description Length (MDL)

The MDL scoring function is based on coding theaiyen the data and a class of
network models, select the model which achieveshinetest codelength for the data
and the model. Codelength, also terrdedcription lengtirefers to the number of bits

used in encoding.

In the context of learning Bayesian networks frompression data, we have networks
B that describe a probability distributid®y over then samples op genes appearing
in datasetD . The MDL score for a network is defined as tbial description length
which is the sum of the length of the encoded datd,the length of the description of

the model network.
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To describe the network modBIz(N,®>, we need to encode both the graghand

its parameter® . The description of the DA depends on the number of parents

each variable has in the network. If a varialde hask parents, ther{E] is the

number of possible combinations of parents could have from a set pfvariables.
The description length for the graph structuré@éfore given by:
: p
MDLgraph(N) = Z IOg p + IOg ”Pa, ” ’ (5)

where the first term encodes the number of par¢fs| while the second term

encodes the index of the set of parents for théahigr [Friedman & Goldszmidt
1998].

Next, to describe the network paramet@®s we store the conditional probability
distributions for each variable in tabular form. Véssume that the dataset is

discretised so that each variabte takes values from a finite domain. The encoding

length of a variable’s conditional probability tab$ given by:

MDLo,e(X,.P3) = (X |-2)(Pa) logn. ©

where Q|xi||—1)0|xi||)k are the dimensions for each variable’s table, witl||

denoting the number of values taken by the variablglogn is the number of bits

used to store each numeric parameter witheing the number of samples in the
dataset. The above encoding term is also refeg¢depenaltyterm since it penalises
the complexity of the network structure. For examg@ simple network with fewer

edges is preferred over a network containing mdges

To encode the training data, the probability disttion P, defined by the networB

is used to build an encoding scheme that assigm$esitodelengths to instances that
occur in the dataset with high probability. In effewe encode the datB using

network B by calculating the marginal likelihood®(D|B). The representation

length for encoding the marginal likelihood candeeomposed as a sum of terms that
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are local to each variable’s conditional probapilitistribution. For a multinomial
distribution, we get

fi

<

N,
> 2N |°9N__J_|- (7

p
i=1 j=1 I=1 ij

MDL,,.(D|B)=-

data
The equation above works out the number of bitessary to encode each value of

X, given that we know the value of the variable’sgmés. v, is the set of values
which variable X, can take whiler, denotes the set of values that the parents<pf

can take on. The teriy;; denotes the number of instances found in the elatesere

variable X, takes on valuéand its parents take on value

Finally, the MDL score for network structui® is the total description length and is
given by:

MDL(B) = MDLgraph(N)+ Zp MDLtabIe(Xi ’ Pa1 )+ MDLdata(D | B) (8)

The optimal model is the one that minimises theescbhe MDL approach seeks a
class of network models that describe the datacesrately as possible, but also
considers the complexity of the models as a peanglifactor, striving to strike a
balance between the two modeling aspects [Tabust&l& 2001]. As the number of
samples in the dataset increase, the criteriorbbas shown to converge to the BDe
criterion described in section 2.1.1.1. Moreovemimising MDL is equivalent to
maximizing another scoring function known as theyddan information criterion
(BIC) [Heckerman 1998].

2.1.1.3 BNRC

Both of the scoring mechanisms reviewed so far €8ay score with BDe priors and
MDL) require data to be discretised and assumeinouftial distributions. Friedman

et al. [2000] reason that the number of discreteegallowed in the model, and the
thresholds used in discretization of the continudasa are unknown parameters
which have to be estimated from the data. Unswgtalakrameters may therefore lead

to wrong results. For this reason Imoto et al. PJOfropose a scoring mechanism
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called BNRC (Bwyesian Network and dswparametric Bgression @terion) that deals

with continuous variables.

As with the BDe score in section 2.1.1.1, the BN&t@@erion is also derived from

Bayesian statistical methods. As before, the postprobability of the network i.e.

the probability of the modeB being correct given the observed data can beewritt
as:

P(D|B)P(B)

P(B|D)= P(D)

=P(B)[ P(D|B,0)P(0 | B)d® 9)
Instead of using a multinomial distribution, theinjo probability distribution
P(D | B, @) of the variables (Equation 1) is captured using nonpdranmegression

models that are able to identify linear as well as non-lidependencies between the
variables. Laplace approximations are then used to cemjet integration. The
criterion is shown to be decomposable; the BNRC scorghiernetwork can be
computed as the sum of the local scores of each varialiie imetwork. Finally, the

network that minimises the score is chosen to be thenfmektl.

Imoto et al. [2002; 2003a; 2003b] apply their scarericroarray expression data and
obtain promising results. Furthermore they show thatsttege can incorporate a

number of different types of biological knowledge inte firior probabilityP(B) of

the network. They conclude, “The balance between microarraymation and
biological knowledge is optimised by the proposed doitér Nariai et al. [2004]
also use the BNRC score criterion on expression datanmioation with protein -
protein interaction data, and attain accurate resultsatieatomparable with earlier
studies.

2.2 Finding the Optimal Model: Search Strategies

As defined earlier, learning structures from data involfireding a network or an
equivalence class of networks that best fits the availabée @ataccomplish this, we
utilise a score based search algorithm that identifiels $ogring networks over the

space of possible networks.
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Finding theoptimal gene networis a difficult task for two reasons. First, the number
of samples contained in gene expression datasets iveglatmall compared to the
number of genes (Section 1.1.1). With a large number ofleapmiparning the ‘true’
network model is possible with high probability. Tdegta that is currently available to
us is not informative enough to determine a single optimadiel. Searching will
result in several different networks that equally fit thead@asonably well thereby
introducing uncertainty into model selection [Buntine9@P From a Bayesian
viewpoint, this means that the posterior probabiligrothe search space is spread
and not dominated by a single network model. Friedman §G40] deal with this
dimensionality problem by focusing deaturessuch as pairwise relations that are
common to high scoring networks instead of looking fesimgle network or a single
equivalence class of networks. Pe’er et al. [2001] extéad work and consider
additional features, like activation, inhibition and diaion relations between the

variables.

Secondly, the number of possible Bayesian networks increages exponentially
with the number of variables in the network (Table 1)e Tmoblem is NP-hard,
making computation intractable for networks containirigrge number of variables.
Ott et al. [2004] remark, “Even for a gene network ofe@eas (search space roughly
1.21x13°), a brute force approach would take years of computatiom éiven on a

supercomputer”.

Number of variables | Number of possible DAG
In network structures
1
3
25
543
2.9 x 10
37x16
1.1 x 16
7.8 x 10"
1.2 x 16°
4.2 x 16°
2.3 x10°

N =
OO@OO\IO?U'I-POOI\)H

Table 1: The search space of possible Bayesian netis increases super exponentially
with the number of variables in the network.
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2.2.1 Heuristic Methods

To deal with the large number of gene variables foundniaroarray datasets,
researchers have so far used local heuristic searches t@&gsian Networks from
the data. Local searches work by making successive edggeaehto the network,
taking advantage of the decomposability property of sgdtinctions (Section 2.1.1)
to evaluate the gain made by each change. Changes made atepacbuitl be

adding, removing or reversing the direction of a singleeeddl changes ensure that
the resulting network structure does not contain direcigdes. Popular heuristic
search algorithms are greedy-hill climbing, greedy ramdeearch, simulated

annealing, and Monte-Carlo methods.

The simplest heuristic method is the greedy hill-climgbisearch, and has been
adopted by Pe’er et al. [2001] for learning gene netwdrke. method starts with an
initial network structureB, which could be an empty graph, a random graph, or a
domain specific prior network. Local search proceedsutiitothe set of eligible
changesB' that can be made to the graph, and keeps the ct&hder which the
gain in score is largest. The algorithm is terminated whenstructure cannot be

improved further i.e. there is no structure with a besttere (Figure 6).

Choose initial network B
FOR each change B  inB’
Compute S(B i)

END

B”=argmax g S(B )

IF S(B”) > S(B) THEN
B:=B”"

ELSE return B

Figure 6: Pseudo-code for greedy hill-climbing seah algorithm.

Although greedy hill-climbing search has been cominaised for learning network
purposes, it encounters several problems. Filsitgl search might find a set of edge
changes that have the same high score. Which dugege does the method pick to
improve the structure? Secondly, the method carstgek in local optima, meaning
that there might be another network structure aithigher score that hasn’'t been

discovered by the search algorithm.
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To avoid the above problems, Imoto et al. [2003s¢ greedy random search for
inferring gene networks. They apply the greedy-¢lithbing method until it hits a

local maximum. Then, they randomly perturb the meknstructure by permuting the
computational order of the genes and repeat thedgresearch for a number of
iterations. Hartemink et al. [2002] try to prevdatal maxima by using a search
algorithm called simulated annealing.

Simulated annealing starts with an initial netwestkucture B and picks an edge
changee from the set of eligible graph chang& at random. The change is
accepted as an improvement to netw@rkf it obtains a higher score. If it obtains a

lower score, it is accepted with probability=exp(S(e)- S(B)/T,) whereT, is a

temperatureparameter. We repeat the process, and lower the v&the temperature
parameter gradually after a select number of itmmat(Figure 7). Initially, when the
temperature is high, a lot of edge changes argémteThe method explores a lot of
search space, and hence has a higher chance iofyfitvé global optimal network. As
the temperature decreases, few edge changes apteat@nd a stable network is
obtained.

Initialise T 0
Choose initial network B
WHILE To<T
FORx=1toN
Pick random change B i from B’
Compute S(B )
Change =S(B )-S(B)
IF Change>0 OR exp(Change/T o)>random
THEN
B:=B ;
END FOR
Reduce T
END WHILE

Figure 7: Pseudo-code for the simulated annealing ethod.

The results from heuristic methods vary dependimg tbe network used at
initialisation and the order in which computatiorsse made. Despite the
improvements made by simulated annealing or rangi@ady hill-climbing searches,

we cannot be confident about the accuracy of tipecgah.
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2.2.2 Ott's Approach

Avoiding heuristic methods, Ott et al. [2004] prepan algorithm that usdgnamic
programmingto search through the super exponential spaceosdie networks,
obtaining the optimal model in exponential time.eTéuthors focus on real-valued
continuous gene expression data and utilise the ®NBoring criterion (Section
2.1.1.3) for learning the network structure. Thewlg their method on microarray
datasets that studied the response of yeast tougstress conditions, and obtain

biologically plausible results.

The method has a sound theoretical basis, and eandde to work with different
scoring functions, and any kind of gene expressimmasurements. The method is
feasible for studying only small gene networks pfta 30 genes, although techniques
such as limiting the number of parents for eactegem increase the scalability of the
approach. Biological information such as proteiotpin interaction data, binding site

information can also be incorporated into the meéth® prior information.

In this thesis, we implement the above method batentrate on using discretised
data, searching for networks using the MDL scoex(in 2.1.1.1). We evaluate the
algorithm’s performance on both synthetic and reatroarray datasets, and
investigate the effects of increasing sample sa#r®l noise in the dataset on the
method’s accuracy. The next chapter gives a degaripf how the algorithm works

and discusses implementation.
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3 Optimal Search Model

Inferring a gene network using a Bayesian framewavklves finding a set of parent
genes for each gene in the network such that thetireg network is acyclic and that
the score of the network is minimal. The naive epph for finding the best model is
to search through the whole search space of pessdtvorks, and return the network
or equivalence class of networks that gives themahscore. As explained in Section
2.2, this is computationally infeasible. Additiolyala lot of time would be wasted on
investigating networks that relate very poorly wiitle given data. The optimal search
algorithm by Ott et al. [2004] finds the optimalngenetwork model for a set of genes

using a dynamic programming strategy.

Dynamic programming is applied to our gene networfkrence problem since it
helps us to effectively prune the huge search sphdermation gained from
searching aids in making decisions about which gades needs to be searched next,
that is we are able to avoid or eliminate poor ekamodels from being investigated.
The idea is to find the subspace within the supppeential search space that
contains the optimal network. Once we know the pabs, we can exhaustively
search and determine the network.

3.1 Formal Definition

The method uses the concept/flinearity and ordering of the variables in thepira
to define network subspaces. In a netwdsk consisting of a set of genes
G ={gl,...,gp} we can define an ordering of a sé&t[JG as a permutation
n{LW} - A. We would like a network to have an ordering sttt all edges in

its acyclic graph are oriented in the directiorthef ordering. In other words, the each

geneg in the network should be positioned earlier othmordering than its parents.

Such an ordering would result in a network thatz idinear.

Definition 1: 72- linearity
Let AOG and 701" where[]” is the set of all permutations Af Let B0 Ax A

be a networkB is 71-linear iff for all (g,h) 0B 777*(g) < 77(h) holds.
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Given a fixed ordering or permutatiom of a network, we can define a subspace as
the set of all networks that comply with the givendering i.e. the set of all networks
that are 71-linear. Two functions, namellf and Q* have been defined that search
through the space oi -linear networks given a permutatienand calculate the score

of each network.

Definition 2: F
F:Gx2° - O, whereF(g,A) =, ming,,s(g,B) forall g0G and ADG.

The functionF returns the optimal choice of parents for a ggméen parents have to
be selected for it from the subgetlt works by scoring each set of possible parants
A with geneg using some kind of scoring criterion, be it MDLNRC, BDe or indeed

any score mechanism that can be decomposed (Sectid). The optimal parent set

is the one that returns the minimal score.

Definition 3: Q*
Let AOG. Forall zO*, Q*:1* - O can be defined as:

QMM =g S F(afnO A7 (h) < 7(0)})

gloA

Given a permutatiom on a set of genes, functionQ” calculates the score of each
ni-linear network by summing the score of each ggrend its optimal parents using
the information obtained from tHe function. The bestz-linear network is the one
that returns the minimal score. The authors Oél.§2004] argue that if they are able
to find the bestn-linear network for a given permutation, then in order to find the
optimal network, all that needs to be done is d the optimal permutatiorn. This

is defined by functioM.

Definition 4: M
Forall AD G, we defineM :2° - [ J[1* as:

AOG

M (A) =, argmin . Q*(7)

The above function returns the optimal permutafiiwra set of gene& by selecting
the permutatiorrz that returns the minim&) value.
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3.2 The Algorithm

The goal of the optimal search model is to fig8(M (G)) i.e. we want to know the
optimal permutation for all geneS in the network, and build the optimal network
according to this permutation. Since b@tandM functions require values &, we
computeF(g, A) for allg and allA, and alsoM (A) for all A. In other words, for each
geneg and each se&, we compute the optimal selection of parentsgffnom A, and

for each sef, we compute the optimal permutation for linear networks oA.

Dynamic programming allows us to divide the tadb istages and calculate the F, Q

and M functions for a set of genes recursively.

. Compute Compute
foreachgin G F.A) optimal  _ Q(A)
—> >
m=0 Parents of g
- |Al=m [Al=m+1 g*
A
Yes Recover
m=m-+1 Gene Matrix
Remove F(g,A) B No
Al=m

Figure 8: The Optimal Search Algorithm

The above figure shows how the algorithm functidfet each geng in the set of

genesG, we start by computing the F score, witlibeing the empty set/q =0), i.e.

we calculate the score for each gene assumingj ties$ no parents. This allows us to

compute the scores for all possibte linear networks containing only one gene, i.e.

we computeQ(A) for|A =1. The remaining F and Q scores are calculated siely
by increasing the cardinality of sat At each stage, th® score for a subseA ] G

of cardinality | =m will require the F(g,A) score values of each gegeand all
subsetsA of cardinalit){A{ =m-1. We stop recursion onck reaches the set of all

genesG, i.e. when|A =(G|.
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The remainder of this section describes how weemght the algorithm to obtain an
optimal gene network model. The program was wriitetC++, and the full code

listing can be seen in Appendix B.
3.2.1 Input

The program receives as input a set of discreteedatiata that has been generated
from a network of a number of genes. For any gidata, we need to specify three
parameters, the number of genes in the netwuordr), the number of samples present
in the datasetn), and the number of values that each variabldhénrietwork can
have €9). For binary data, this value would be 2, wherfeagernary data containing

for instance the gene expression values -1, 0 &nthe value would be 3.

Our program uses the Standard Template Library+it, @nd uses sets as the basic
data structures. We use the functgemerate ( that takes as parameters an intéger
and the number of variablewar, and creates subsets of cardinakitirom a set of

nvarintegers.
3.2.2 Computing F-scores

The functionF(g, A) that takes as input a gegend a set of parengsof cardinality
mis computed as follows:

F(g, A) = min{s(g, A), min ,, F(g, A-{a}} (10)

It basically computes the score of ggpneand parentd and compares it to previously
stored score values of gegewith the number of parents being one less thasetho
contained in seA. The optimal parent set for gegés the set with the minimal score.
As mentioned before, the formula is recursiffescores for gene g and s&tof
cardinalitym need to lookup F scores for gene g and the geareitsA of cardinality
m— 1. To store the score values and the set aihapparents, a class namiesetwas
created. To speed lookups of the score values ptitha parents, eachset was

directly indexed by the pa(rg,A) for which it was calculated.

The score criteriors(g,A) for computing the= scores was MDL. We defined an

mdl() function that took a geng, the setA, and the given dataset as input and
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calculated the score using the equations definedkation 2.1.1.2. As explained, the
total description length consists of summing up diescription length of the graph,
the conditional probability table of the varialgegiven its parents in sé&t, and the

length of encoding the data. CalculatifdDL,,, (Equation 5) andMDL,,,

(Equation 6) is fairly easy, since we know the nemiif variablesr{var), the number
of values the data can takes)( and the number of parents contained in thésdo

calculateMDL,,, is a little more complex. We record the frequesn@éall possible

data
value combinations of gergewith parents in sef occurring in the dataset, and use
them for calculating the likelihood gfgiven its parents in sét (Equation 7). Taking
logs of this likelihood gives us the descriptiondéh for the data.

3.2.3 Computing Q-scores

The functionQ(A) takes as input a sAtand returns g*, an element that is considered

to be the last element in the permutation of alivents of seA.

g* =argmin,, (F(9. A-{g}) + Q*19 (M (A-{g})) (11)

Therefore, for a sef of cardinalitym, the Q function involves looking up both
scores and) scores for subsets of cardinality-1. Another class name@Qsetwas
created to store th® score values and g* element for a givenAeétVe also stored

the optimal parents of the g* element by lookingfig*, A-{g*}).

3.2.4 Output: Gene Matrix

By incrementing the cardinality of s&f we eventually compute tlieandQ scores of

all gOG and all possible subsetd 1G in the network. We now have all the
information we need to build the optimal gene netfor the set of given genes. We
can figure out the optimal permutation or orderirighe variables in the network by
looking at the g* element stored i@(G). To find the next last element in the
ordering, we decrease the cardinality of set G wukup the g* element in

Q(G —{g*}). We do this repeatedly until we reach the empty e find the optimal

parents for each gene g in the ordering, we sinipbkup the optimal parents

associated with each g* element stored inQiset The optimal permutation and the
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optimal set of parents for each gene are usedrtgote amvar x nvar gene matrix

that specifies child — parent relations betweergtmee variables.
3.3 Small Example

For a clear understanding of how the algorithm wpuie present a small example.
Let's say for instance that we have a network oédhgenes, a, b, and c. To find the

optimal model, we perform the following computason

1. ComputeF(g ) for all subsets A of cardinality O:

Flal ) =sla{})
Fb{ })=sb{})
Fle{ D=slc{})

2. Generate all possible subsétsf cardinality 1:{a},{b},{c}
3. ComputeQ( ) for all subsets A of cardinality 1:

Qa)=F(a{}) - g*=a
Qb)=F(b.{}) - g*=b
Qc)=Flc{}) - g =c

4. ComputeF(g A) for all subsets A of cardinality 1:

5. Generate all possible subsétsf cardinality 2:{ab},{ac},{bc}

6. ComputeQ( ) for all subsets A of cardinality 2:

Q(ab) = min{F (a{b}) + Q(b), F (b{a}) + Qa)} - g* =alb
Qlac) = min{F(a.{c}) + Qlc). F(c.{a}) + Qla} ~ g* =alc
Qlbc) = min{F (b.{c}) + Q(c). F(c.{b}) + Qb)} ~ g* =b|c
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7. ComputeF(g, A) for all subsets A of cardinality 2:

F(a.{bd}) = min{s(a,{bct), min{F (a.{o}), F (a. {c}}
F(b{ad}) = min{s(b.{act), min{F (b {a}), F (b {c})}
F(c.{ab}) = min{s(c,{ab}), min{F (c.{a}), F (c.{b})}

8. Generate all possible subsétsf cardinality 3:{ab(}

9. ComputeQ(A) for all subsets A of cardinality 3:

Q(ab) = min{F (a{od}) + Q(bc). F(b{ad}) + Qlac). F(c.{an}) + Qlabl} - g*=a[b]c

By increasing cardinality of the subg&twe have been able to recursively calculate
both the functiong andQ. No more computations needed to be carried ow trne
cardinality of setA reached 3, the number of genes in the networhduld also be
noted that for computational reasons, we are abterhove the cachdescore values

once they have been used up in calculatingtiseores.

In order to build the gene network from the abowécuated scores, we do the

following:

1. Find Q(abc) and lookup the corresponding g* and optimal parerdlue. If
F(a,{bd})+Q(bc) is minimal, theng” = a, and its optimal parents are from the
set{bc}.

2. Find Q(bc) and lookup the corresponding g* and optimal paremlue. If
F(c,{b})+Q(b) is minimal, theng” = ¢, and its optimal parents are from the set
{b}.

3. Finally lookup Q(b). The corresponding” =b and optimal parents are from the

empty sef }.

The algorithm displays the optimal permutation e'm@(b, C, a> wherea has parents

from the sefbc andc has parents from the s .
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4 Results and Discussion

Most studies on inferring genetic networks assessatcuracy of their results on real
gene expression data by comparing predicted regwlahteractions with those

known from biological literature. Although we arel@to estimate the number of true
interactions, there is yet no reliable way of qifginty the number of false edges
detected in the network. As Husmeier [2003] salfss‘impossible to decide without

doing more experiments whether an algorithm hasogeyed a new, previously
unknown interaction or whether it has flagged aispis edge”. For this reason, it has
become increasingly necessary to test the vialafigny genetic inference method on

synthetic data as well as real data.

The aim of the results and discussion presentedisnchapter is two-fold. First, we
assess the effect of changing sample size and noide dataset using artificially
constructed networks. Can the method cope withyndata and low number of
samples, features that are characteristic of micagadata? Secondly, we apply the
algorithm to real data, selected from the studKimy et al. [2000] and compare the

results with those presented in the paper.
4.1 Synthetic Data

Two synthetic datasets have been used to see hak miormation from a known
network can be recovered under the varying comditijmumber of samples, noise).
The first was a benchmark Bayesian network knowth@sAsia Network’ consisting

of 8 variables while the other was a constructed/oek of 11 variables.
4.1.1 Asia Network

This is a very small Bayesian network proposed byrltzen et al. [1988] to help
diagnose patients arriving at a chest clinic (Fég). Each variable in the network
corresponds to some condition of the patient. Téevork consists of 8 discrete
variables with binary values (true, false) connédig 8 edges. The links between the
nodes indicate how the relationships between tlikes@re structured. The two top

nodesA andS are for predispositions which influence the likelial of the diseases.
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They link to noded, L, E, andB that represent internal conditions or failure state

They in turn link to the nodes for observablesthe.symptomX andD.

 Visit to Asia o @
: Smoking

: Tuberculosis

: Lung Cancer 0 e
: Bronchitis

: X-Ray

: Dyspnea
: Tuberculosis or Canc

Figure 9: The Asia Network

moXxXwrdwn>

The set of conditional probability distributiong the network are described in Netica

[Norsys], the software that was used to generataltiasets. We chose to experiment
with nine sample sized datasets, ranging from 1000 in the number of samples.

For each sample size, the algorithm was appliéddifferent datasets, running a total

of 45 experiments on this network.

4.1.2 11-Node Network

2 D 2
4> £
C_1e D

Figure 10: 11-node Network

The second set of experiments was performed oalibee artificial network (Figure
10). Unlike the Asia network, this network is nengrated from a set of probability
distributions. To generate data, we specified afskinctions where the value of each

variable depends on the values of its parentsemgtwork. Variable nodes 1, 2, 3
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and 11 are independent, while the rest of the blesahave at most three parents. The
functions describe linear as well as non-lineaati@hships among the variables. An
‘R’ script [Appendix C] provided by Sascha Ott uskd set of functions to generate
continuous valued data for the network. Since weewssing the MDL criterion to
score networks, we had to modify the script to otttiscrete data values. This was
done by normalisation — variable values within stendard deviation of the mean
were set to value 0. Values above and below thiggavere set to +1, and -1

respectively.

Two sets of experiments were performed on this owFirst, we ran the algorithm
on 10 different sized datasets containing betwé&earid 1000 samples. Secondly, to
try and simulate real microarray data, we introduneise into the network. In order
to solely study the affect of noise, the experirmenére run on large datasets each
containing 1000 samples. Seven different noiseldevethe range of 0.01 and 0.5
were introduced into the data. We did not choosexigeriment with levels greater
than 0.5 since that would mean that the values Wweneg generated randomly. To

ensure validity, each experiment was repeatedetheiach time on a different dataset.
4.1.3 Performance Measures

Synthetic data allows us to quantify accuracy bgking at the similarities and
differences between the inferred network and thewknnetwork. There are four
possible outcomes when comparing the true netwadttk thve predicted model. If an
edge exists in the known network and is recoverethb model, it is counted as a
true positive(TP); if it is not recovered it is considered adadse negativegFN).
When both the network and inferred model agreeéherabsence of an edge, we have
a true negative(TN), while if the model infers an edge that does nastein the
known network, we count the edgefakse positivgFP). Figure 11 encapsulates the
above observations asanfusion matrix

Predicted Model

Edge No Edge
Actual| Edge True Positive  False Negatiye

Network| No Edge| False Positive True Negative

Figure 11: Confusion matrix for gene network inference

-38-



Small Gene Networks: Finding Optimal Models

We usedreceiver operator characteristicROC) graphs, the evaluation method
suggested by Husmeier [2003] to assess the effiziehour gene network inference
method. It is as important to determine the nundfdrue edges predicted as it is to
guantify the number of false edges predicted bymtibeel. ROC graphs enable us to
judge the performance of a method on both thesesumes The accuracy or
sensitivityof a model is defined as the proportion of recesldrue edges, also known

astrue positive rate

True Positive Rate = ™
TP+FN)
Similarly, the proportion of recovered spurious eslgs known aalse positive rate

or complementary specificitgf a model.

False Positive Rate = FP
(TN +FP)

To assess our network inference algorithm, we aedlyits output i.e. the matrix
denoting the predicted network. For each experimast plotted the model’s true
positive rate against its false positive rate todpice a single point located in two-

dimensional ROC space (Figure 12).
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Figure 12: An ROC graph showing three different nework predictors

In the ROC graph above, Point A at location (1pfjduces the optimal network.

Point B at location (0, 0) represents a methodithahable to infer any edges, while
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point C at (0.5, 0.5) represents a method thatdrtieie edges randomly. In general, a
model that produces a point located in the nortetwegion of the graph is said to be
a good network predictor. The idea is to maximike nhumber of true edge

predictions (high TP rate), while minimising thenmer of spurious edge predictions

(low FP rate) at the same time.

In Chapter 2, we had mentioned that networks béhgngp the same equivalence
class cannot be distinguished by data alone. Thaans that our method could
possibly infer a network structure that is not thee known network, but belongs to
its equivalence class. For this reason, we dectdedonstruct the PDAG (partial
DAG) matrix for both the Asia and 11-node netwo@onversion of a DAG to a
PDAG was relatively easy and is explained by Chicke[1995] in his study on

Equivalent Bayesian Network structures.

For each experiment performed on both sets of syiothata, the predicted model’s
DAG, or network matrix was compared with the DAGIdPDAG matrices of the
actual network. For the 11-node network, we congdne predicted graph with an
additional matrix that considered justifiable irdaces as true edges. For instance, if
we have aA - B - C relationship in the network, a justifiable infecerwould be
that A is the parent of C, i.e. we considered ctirelationships as being true. This

new matrix was termed JDAG (justifiable DAG).
4.1.4 Results

This section presents the results of testing thtoprvance of our method on synthetic
data. The effect of sample size was studied usoth betworks, while the noise
parameter was varied on the 11-node network. Cdmpdet of results can be

consulted from Appendix A.

4.1.4.1 Effect of Sample Size

Figure 13 shows the ROC graph of the algorithmi$gsmance on the Asia network
dataset. The graph shows tneeragetrue positive and false positive rates since we
repeated the experiment on 5 different datasetedoh sample size. The gene matrix
of the predicted model was compared to the direciegtlic DAG matrix of the
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known network. As explained in the previous sectime had also compared the
predicted graph with the partial DAG structure bé tknown network. The true

positive and false positive rates for both the DAl PDAG structures were almost
identical. Hence, we only present the results ef /AG structure here. As can be
seen from the graph below, there is a clear cdivelbetween the number of samples
in the dataset and the accuracy of the algorithenth&® number of samples increase,
the models being inferred move closer towards thet pocation (1, 0) which denotes

the optimal model. We observe a steady rise inrthepositive rate as the size of the

dataset increases, i.e. the proportion of true €tlgéng recovered.
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Figure 13: ROC graph for the Asia network, resultsbeing averaged over 5
runs. The graph shows the effect of varying samplsize in the dataset.
Predicted model was compared with the directed aclic graph (DAG) of the

known model.

In the above graph, we hardly notice a differemcthe false positive rates. This could
be explained by the fact that the underlying maafethe Asia network is itself a
Bayesian network. The optimal search algorithmhesefore highly unlikely to infer
spurious edges since it also is designed undesahee framework. For interest, we
plotted the TP and FP rates for the five differéatasets on which each sample size
was tested. The results are displayed in Figurenith, the ROC graph zoomed in.

We can still observe the general pattern of lasgenple sizes giving more accuracy.
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For instance, the graph clearly demonstrates thiztaset of 10 samples is not at all
sufficient for recovering the true network. At tk@me time, we notice a fair amount
of variance in the performance of the large dasaskte true positive rate of a 400

sample large dataset for instance ranges betwBen@9.
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Figure 14: ROC graph for the Asia network. For eachsample size tested, the
algorithm was applied to five different datasets. Tie graph shows the variance
in performance over the 5 datasets.
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Figure 15: ROC graph for the 11-node network, resus being averaged over
3 runs. The graph shows the effect of varying samplsize in the dataset.
Predicted model was compared with the PDAG of therlown model.
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Figure 15 and 16 show the effect of sample siz¢éherperformance of the 11-node
network. The former is the ROC graph when compatimegpredicted model to the
PDAG structure of the known network, while thedattompares it to the justifiable

directed acyclic graph (JDAG).
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Figure 16: ROC graph for the 11-node network, resus being averaged over

3 runs. The graph shows the effect of varying samplsize in the dataset.

Predicted model was compared with JDAG of the knowmodel.
The performance of the method on the second syottiataset is not as good as the
performance on the Asia network. In general, mbsh® datasets have both the true
positive rates and false positive rates below Ddiasets of size 10, 20, 40 and 60 are
clustered together in the south western regiorhefgraph and are poor performers,
which is intuitive. Increasing the dataset sizesdimeprove performance in general
but there is no clearly defined pattern. Furtheemtite optimal search method seems
to be inferring a large amount of edges that atepnesent in the actual network. In
fact, larger sized datasets induce a higher numibgpurious edges into the network,

causing the false positive rate to be high.

4.1.4.2 Effect of Noise in Data

The 11-node network was used to assess the effenbise present in datasets
containing 1000 samples. Figure 17 shows the agemrgults plotted in ROC space
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for the datasets with varying levels of noise ipooated. The first thing we notice is
that adding noise really only affects the proportid true edges being recovered. The

proportion of false edges being inferred is alnooststant over all the datasets.
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Figure 17: ROC graph for the 11-node network, resus being averaged over
3 runs. The graph shows the effect of varying noidevels in the dataset.
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Figure 18: ROC graph for the 11-node network. Depits the variance in
performance of the algorithm on datasets containingvarying noise
parameters.
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Secondly, we observe that the performance of thbodeactuallyincreasesvhen we
amplify the noise in the dataset. In fact, the Wesults are provided by the dataset
where the noise level is set to 0.2. This is sonagvwguzzling. We plot the true
positive and false positive rates of each of tltbvidual datasets tested (See Figure
18) and observe the variance in performance. We gluserve that noisy datasets do
not always give better performance than datasettairing a lower level of noise.
Most if not all of the datasets show a large vargam performance, and it might just
be necessary to average the performance of theothetter a larger number of

datasets than used in this study.
4.2 Microarray Data

After several experiments on artificially constedttdata, we ran the algorithm on a
microarray dataset. Since our focus was on dise@tdata, we chose a dataset that
had already been discretised by Kim et al. [2000ihieir study on gene networks.
This option was easier than obtaining continuousrmairray data, selecting a subset
of genes using clustering and then discretising akies ourselves using some

arbitrary threshold.

Kim et al. [2000] used real microarray data fronokm gene response pathways of
ionizing radiation and downstream targets of inatthg gene mutations and
converted it into ternary expression data by thokbhg the changes at the transcript
level. They used a perceptron network to predietims among the genes, providing
a measure of confidence with their prediction. $&vieelations had been found that
were known from previous biological knowledge. @uvgram was provided with the
discretised dataset of 12 genes, and 30 samplesreBnlting gene matrix obtained
was highly sparse and inferred a total of only niglationships, some of which were

mentioned in the study.
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4.3 Discussion

The results presented in the previous sectionscatelithat the optimal search
algorithm implemented in this project is indeedatalp of inferring a network from a
given dataset. The algorithm was successful inngtcocting 7 out of 8 edges in the
Asia network from a dataset of 1000 samples, armsorably successful at
reconstructing the network of the 11-node netwtvken applied to real microarray
data, the method constructed a highly sparse geawixmbut inferred some

biologically meaningful gene relations.

Effect of Sample Size

Increasing the sample size of data generated fnermsia network showed very good
results. The method clearly demonstrated that ldegasets increase the proportion of
true edges being inferred from the data. The re$tdim experiments run on the 11-
node network were not as profound but still indédathat a large sample size would
result in higher accuracy. The findings are notpssing. In small datasets, the
number of edges being inferred in total is low sitite dependencies encoded in the
data are statistically too insignificant to be gidkup. In a large dataset however, we
have enough data to estimate the likelihood of rdiqudar variable having another

variable as a parent in the network.

Several important observations were noted fromaiheve experiments on sample
size. First of all, the method performed a lot éetbn the benchmark Bayesian
network than the self-constructed 11-node netwdhis can partly be explained by
the fact that both the network (Asia) and the atgor used to infer the network (our
method) are defined using a Bayesian frameworkoi@#yg, we observed that the
models inferred for the 11-node network consisted bigh number of false edges.
Moreover, for large datasets, this number of smusriedges increased further. The
high false positive rate was probably the mainoeashy we couldn’t get a strong
correlation between accuracy and sample size instmond test set (11-node
network). One explanation for the above could Iz¢ ¥e had encoded linear as well

as non-linear relationships into the 11-node nétwdhe MDL scoring criterion used
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in the algorithm might have been unable to pickugp rion-linear relations from the

network and instead introduced spurious edgeytand explain the relationships.

Effect of Noise in Data

The results obtained from introducing noise inte tata were unexpected. At first
glance, we came to the conclusion that increagiagibise parameter somehow aids
the process of structural learning resulting inighér number of true edges being
inferred. However, on performing more detailed gsial it was revealed that the
results varied in their accuracy by a great deahil®/some datasets performed
extremely well in very noisy conditions, othersfpemed equally bad. Nevertheless,
we were unable to define a correlation betweenenaisl accuracy. Intuition tells us
that noisy data distorts the actual values, antbdloices errors into the learning of
network structure. Our results show otherwise. pheblem could be due to the
method by which noise is incorporated in the datdserther analysis is required to

assess the affect of noise.

Small Gene Network

It must be noted that the method described inghigect can only yet infer a gene
network for a small number of genes. Knowing thega genetic network consists of
a large number of interacting genes, is this apgroeally justifiable?? We think it is.
First of all, in Section 1.1.2, we learnt about pineperties of real biological networks.
Modularity is a key characteristic of genetic netk#go- genes tend to operate in small
clusters. An approach which looks at a small sub$aejenes in the network and
defines their interactions to a fine level of detail always be more useful than an
approach which infers a small number of interasticamong a large sparsely
connected network. Secondly, microarray datasatsagoexpression measurements
for a large number of genes, but a large proporbbrthem are not useful in
determining a gene network. The expression leviet®weral genes do not change, or
give enough information to infer a network, the gethat do relay information form
a small subset and can be used for further analysially the work of Ott & Miyano
[2003] relates the present work and provides mettafdextending it to work with

larger gene subsets.
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5 Conclusion

We now provide a summary of what has been achigveldis thesis. Our goal has
been to model the relationships among genes thstt iexour biological systems. A
Bayesian network framework was used to learn théctsire of a network from a
given dataset. Bayesian network models were foondet appropriate due to their
probabilistic approach. They are known to be gobdiealing with the stochastic
nature of real biological systems and noisy charatics of gene expression

measurements.
A dynamic programming technique was used to irther dptimal gene model. The

algorithm performed well on synthetic datasets, @ade biologically plausible

results when applied to real microarray data.
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Appendix A : Results Tables

DAG
Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
Numbe
r of Avera | Avera
Sampl TP FP TP FP TP FP TP FP TP FP ge TP | ge FP
es rate rate rate rate rate rate rate rate rate rate Rate | Rate
10 0.000 | 0.000 | 0.125 | 0.000 | 0.125 | 0.036 | 0.000 | 0.036 | 0.000 | 0.000 | 0.050 | 0.014
20 0.250 | 0.000 | 0.250 | 0.054 | 0.000 | 0.036 | 0.125 | 0.000 | 0.000 | 0.036 | 0.125 | 0.025
40 0.250 | 0.018 | 0.250 | 0.018 | 0.500 | 0.036 | 0.250 | 0.000 | 0.125 | 0.036 | 0.275 | 0.021
80 0.500 | 0.018 | 0.250 | 0.054 | 0.500 | 0.054 | 0.500 | 0.000 | 0.250 | 0.054 | 0.400 | 0.036
100 0.250 | 0.036 | 0.625 | 0.018 | 0.500 | 0.018 | 0.625 | 0.000 | 0.625 | 0.000 | 0.525 | 0.014
200 0.500 | 0.054 | 0.625 | 0.036 | 0.750 | 0.000 | 0.625 | 0.054 | 0.500 | 0.036 | 0.600 | 0.036
400 0.625 | 0.054 | 0.875 | 0.000 | 0.625 | 0.036 | 0.625 | 0.036 | 0.500 | 0.054 | 0.650 | 0.036
800 0.625 | 0.036 | 0.875 | 0.000 | 0.625 | 0.036 | 0.500 | 0.054 | 0.875 | 0.000 | 0.700 | 0.025
1000 0.750 | 0.018 | 0.500 | 0.054 | 0.875 | 0.000 | 0.875 | 0.000 | 0.875 | 0.000 | 0.775 | 0.014
PDAG
Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
Numbe
r of Avera | Avera
Sampl TP FP TP FP TP FP TP FP TP FP ge TP | ge FP
es rate rate rate rate rate rate rate rate rate rate Rate | Rate
10 0.000 | 0.000 | 0.091 | 0.000 | 0.091 | 0.038 | 0.091 | 0.019 | 0.000 | 0.000 | 0.055 | 0.011
20 0.182 | 0.000 | 0.182 | 0.057 | 0.000 | 0.038 | 0.091 | 0.000 | 0.000 | 0.038 | 0.091 | 0.026
40 0.182 | 0.019 | 0.182 | 0.019 | 0.364 | 0.038 | 0.182 | 0.000 | 0.091 | 0.038 | 0.200 | 0.023
80 0.364 | 0.019 | 0.182 | 0.057 | 0.545 | 0.019 | 0.364 | 0.000 | 0.182 | 0.057 | 0.327 | 0.030
100 0.182 | 0.038 | 0.545 | 0.000 | 0.364 | 0.019 | 0.455 | 0.000 | 0.455 | 0.000 | 0.400 | 0.011
200 0.455 | 0.038 | 0.545 | 0.019 | 0.545 | 0.000 | 0.636 | 0.019 | 0.455 | 0.019 | 0.527 | 0.019
400 0.636 | 0.019 | 0.636 | 0.000 | 0.636 | 0.000 | 0.545 | 0.019 | 0.545 | 0.019 | 0.600 | 0.011
800 0.636 | 0.000 | 0.636 | 0.000 | 0.636 | 0.000 | 0.545 | 0.019 | 0.636 | 0.000 | 0.618 | 0.004
1000 0.545| 0.019 | 0.545 | 0.019 | 0.636 | 0.000 | 0.636 | 0.000 | 0.636 | 0.000 | 0.600 | 0.008
Performance of Asia Network
DAG
Rep 1 Rep 2 Rep 3 Average
Number Averag | Averag
of TP FP TP FP TP FP eTP e FP
Samples Rate Rate Rate Rate Rate Rate Rate Rate
10 0.273 0.027 0.182 0.018 0.091 0.036 0.182 0.027
20 0.364 0.082 0.182 0.136 0.364 0.100 0.303 0.106
40 0.455 0.118 0.000 0.136 0.091 0.164 0.182 0.139
60 0.182 0.109 0.455 0.109 0.182 0.164 0.273 0.127
80 0.545 0.127 0.364 0.145 0.455 0.100 0.455 0.124
100 0.455 0.236 0.636 0.255 0.364 0.182 0.485 0.224
200 0.455 0.345 0.364 0.309 0.455 0.336 0.424 0.330
400 0.364 0.245 0.455 0.273 0.273 0.309 0.364 0.276
800 0.364 0.264 0.545 0.255 0.273 0.264 0.394 0.261
1000 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252
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5000 0.636 0.218 0.636 0.218
10000 0.455 0.273 0.455 0.273
PDAG
Rep 1 Rep 2 Rep 3 Average
Number Averag | Averag
of TP FP TP FP TP FP eTP e FP
Samples Rate Rate Rate Rate Rate Rate Rate Rate
10 0.250 0.028 0.167 0.018 0.083 0.037 0.167 0.028
20 0.417 0.073 0.167 0.138 0.333 0.101 0.306 0.104
40 0.500 0.110 0.083 0.128 0.167 0.156 0.250 0.131
60 0.250 0.101 0.417 0.110 0.167 0.165 0.278 0.125
80 0.583 0.119 0.333 0.147 0.417 0.101 0.444 0.122
100 0.417 0.239 0.583 0.257 0.333 0.183 0.444 0.226
200 0.417 0.349 0.333 0.312 0.500 0.330 0.417 0.330
400 0.417 0.239 0.583 0.257 0.250 0.312 0.417 0.269
800 0.417 0.257 0.500 0.257 0.333 0.257 0.417 0.257
1000 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251
5000 0.583 0.220 0.583 0.22
10000 0.417 0.275 0.417 0.275
JDAG
Rep 1 Rep 2 Rep 3 Average
Number Averag | Averag
of TP FP TP FP TP FP eTP e FP
Samples Rate Rate Rate Rate Rate Rate Rate Rate
10 0.222 0.019 0.111 0.019 0.056 0.039 0.130 0.026
20 0.222 0.087 0.167 0.136 0.222 0.107 0.204 0.110
40 0.333 0.117 0.000 0.146 0.167 0.155 0.167 0.139
60 0.167 0.107 0.389 0.097 0.111 0.175 0.222 0.126
80 0.444 0.117 0.444 0.117 0.444 0.078 0.444 0.104
100 0.333 0.243 0.611 0.233 0.389 0.165 0.444 0.214
200 0.556 0.320 0.500 0.282 0.500 0.320 0.519 0.307
400 0.222 0.262 0.278 0.291 0.444 0.282 0.315 0.278
800 0.278 0.272 0.611 0.223 0.389 0.243 0.426 0.246
1000 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243
5000 0.611 0.194 0.611 0.194
10000 0.444 0.262 0.444 0.262
Performance of 11-node Network (number of samples)
DAG
Rep 1 Rep 2 Rep 3 Average
Averag | Averag
TP FP TP FP TP FP eTP e FP
Noise Rate Rate Rate Rate Rate Rate Rate Rate
0 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252
1 0.545 0.236 0.545 0.236 0.364 0.255 0.485 0.242
2 0.455 0.245 0.364 0.255 0.273 0.264 0.364 0.255
5 0.091 0.282 0.364 0.255 0.455 0.236 0.303 0.258
10 0.273 0.273 0.545 0.236 0.636 0.227 0.485 0.245
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20 0.545 0.236 0.455 0.245 0.727 0.209 0.576 0.230
50 0.273 0.264 0.545 0.236 0.545 0.236 0.455 0.245
PDAG
Rep 1 Rep 2 Rep 3 Average
Averag | Averag
TP FP TP FP TP FP e TP e FP
Noise Rate Rate Rate Rate Rate Rate Rate Rate
0 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251
1 0.500 0.239 0.500 0.239 0.333 0.257 0.444 0.245
2 0.417 0.248 0.333 0.257 0.333 0.257 0.361 0.254
5 0.167 0.275 0.417 0.248 0.500 0.229 0.361 0.251
10 0.250 0.275 0.500 0.239 0.583 0.229 0.444 0.248
20 0.500 0.239 0.500 0.239 0.667 0.211 0.556 0.229
50 0.333 0.257 0.500 0.239 0.429 0.243 0.421 0.246
JDAG
Rep 1 Rep 2 Rep 3 Average
Averag | Averag
TP FP TP FP TP FP e TP e FP
Noise Rate Rate Rate Rate Rate Rate Rate Rate
0 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243
1 0.611 0.204 0.444 0.233 0.333 0.252 0.463 0.230
2 0.444 0.233 0.611 0.204 0.278 0.262 0.444 0.233
5 0.056 0.301 0.556 0.214 0.444 0.223 0.352 0.246
10 0.167 0.291 0.500 0.223 0.500 0.223 0.389 0.246
20 0.500 0.223 0.556 0.214 0.722 0.175 0.593 0.204
50 0.278 0.262 0.667 0.194 0.444 0.233 0.463 0.230

Performance of 11-node Network (noise)
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Appendix B — Source Code

at.cpp

#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <algorithm>

#include "Scores.cpp"
#include "GenSubset.cpp”
#include "MDL.cpp"
#include "Results.cpp”

using hamespace std;

int nvar = 11;

double ns = 1000; // no: samples
double cv = 3; // 2 values

int cal = 2;

int AsiaMat[8] [8];
int SynMat[11] [11];

string Data[] =
h

map < set < int >, Qset > QMap;
map < Fpair, Fset > FMap;

vector < set < int > >:.iterator it;
vector < set < int > >::iterator it2;

set < int >::iterator sit;

set < int >::iterator sitl;

map < set < int >, Qset >::iterator iter;
map < Fpair, Fset >::iterator iter2;

void display( map < set <int >, Qset > a)
for (iter = a.begin(); iter I= a.end(); iter++)

display( "QSet =", iter->first );
cout << ", Score =",
display( iter->second );

}
void display( map < Fpair, Fset> b))

for (iter2 = b.begin(); iter2 = b.end(); iter2+
{

cout << "F=",

display( iter2->first );

cout <<", Score=",

display( iter2->second );

+)
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void minF( float mval, Fpair mm1, int & mres )

if ( mval <= FMap[mm1].get_Fval() )
{
mres = 1;
}
else
{
mres = 2;
}
}

int main()

{
int mres;
float mval;
float mgval = 1000000;
float mqgvall;
set <int, less <int > > s; //geneset
set < int > tset; //temp set
set < int > dset; //difference set
set < int > res; //result set
set < int > resl; // intern result set
set < int > mmres; // mdl result set
set < int > eset; //fempty set
vector < set < int > > SetList;
vector < set < int > > SList;
vector < set < int > > S1List;
Qset Qrec;
Fset Frec;

for (inti=1;i<=nvar; i++) s.insert(i);
display("S=",s);
cout << endl;

/l Compute F(g,{}) for each gene g: cardinality O
cout << "Generating sets of cardinality 0:" << en
cout << "Adding F-scores for each (g.{})" << endl
for (inti=1;i<=nvar; i++)
{

tset.insert( i );

float r = mdl( tset, res, nvar, ns, cv, Data );

Frec.sFval(r);

Frec.sFpar(res);

FMap[Fpair( tset, res )] = Frec;

tset.clear();

}

cout << "Adding Q({})" << endI;
QMap[res] = Qrec;

/I display( FMap );

/l Compute F(g,A) for each gene g and subset A: ¢
cout << "Generating sets of cardinality 1:" << en
cout << "Adding F-scores for each (g.{})" << endl
for (inti=1;i<=nvar; i++)
{

tset.insert( i );

set_diff( s, tset, dset );

int kk = dset.size();

int * string = new int[kk];

dl;

ardinality 1
dl;
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generate( string, 0, 1, kk, dset, & SList );
deletef[] string;
dset.clear();

for (it = SList.begin(); it = SList.end();

{
res =*it;
float r = mdl( tset, res, nvar, ns, cv, Dat
/I F(a,{b}) = min { mdi(a,{b}), F(a,{}) }
minF( r, Fpair( tset, eset ), mres);
if (mres ==2)

Frec.sFval( FMap[Fpair( tset, eset )].get
Frec.sFpar( eset );

else

Frec.sFval(r);
Frec.sFpar(res);

LMap[Fpair( tset, res )] = Frec;
}SList.resize( 0);

tset.clear();

}/display (FMap);

cout << "Adding Q{A} for A of cardinality 1" << e
int * string = new int[nvar];

generate( string, 0, 1, nvar, s, & SetList);
delete[] string;

/[display( "List: ", SetList );

for (it = SetList.begin(); it = SetList.end()

{
11 Q{a} = F(a{})
res = *it;
Qrec.setQval( FMap[Fpair( res, eset )].get_Fv
Qrec.set_optg( res);
Qrec.setQpar( FMap[Fpair( res, eset )].get_pa
QMap[res] = Qrec;
/[display( "Qset =", res );
/lcout << "Score=",
/[display( Qrec );
/I Clear F values of sets cardinality O
FMap.erase( Fpair( res, eset) );

}

SetList.resize( 0);

for (intg=1;g<nvar-1; g++)
/I for (intg=1;,9g<2;g++)

/I Compute F(g,A) for each gene g and subset A:

cout << "Generating sets of cardinality " << g
endl;
cout << "Adding F-scores" << end|;

it++)

a)

_Fval() );

ndl;

; itH+)

al());
rs());

cardinality g+1
+1<<™"" <<
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for (inti=1;i<=nvar; i++)

tset.insert( i );

set_diff( s, tset, dset );

int kk = dset.size();

int * string = new int[kk];

generate( string, 0, g + 1, kk, dset, & SList
delete[] string;

for (it = SList.begin(); it '= SList.end()
{
res = *it;
int ss = res.size();
float r = mdl( tset, res, nvar, ns, cv, D
/I F(a,{b}) = min { mdi(a,{b}), F(a.{}) }
int * string = new int[ss];
generate( string, 0, g, Ss, res, & S1List
delete[] string;
mval =r;
mmres = res;

for (it2 = S1List.begin(); it2 != S1List

{
resl =*it2;
minF( mval, Fpair( tset, resl ), mres)
if (mres ==2)

mval = FMap[Fpair( tset, resl )].get_
/Immres = resl;
mmres = FMap[Fpair( tset, resl )].get
}
}

Frec.sFval( mval );
Frec.sFpar( mmres);
FMap[Fpair( tset, res )] = Frec;
SlList.resize( 0);

}
SList.resize( 0);
mmres.clear();

dset.clear();
tset.clear();

/[display(FMap);

cout << "Adding Q{A} for A of cardinality:" <<
int * string = new int[nvar];
generate( string, 0, g + 1, nvar, s, & SetList
deletef[] string;
for (it = SetList.begin(); it = SetList.end()
{

res = *it;

for ( sit = res.begin(); sit = res.end(); si

tset.insert( * sit);

set_diff( res, tset, dset );

mqgvall = ( FMap[Fpair( tset, dset )].get_Fv
QMap[dset].get_Qval() );

if (mgvall <= mqval )

; itH+)

ata);

.end(); it2++)

Fval();

_pars();

g +1<<endl

);

; itH+)

t++)

al)) + (
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maqgval = mqgvall;

Qrec.setQval( mgvall );

Qrec.set_optg( tset );

Qrec.setQpar( FMap[Fpair( tset, dset )].g

}

tset.clear();
dset.clear();

}

mqgval = 100000;
QMapires] = Qrec;
/[display( "Qset =", res );
/lcout << "Score=",
/[display( Qrec );

SetlList.resize( 0);

/I Removing F{g,{A}} for A of cardinality g
cout << " Removing Fvalues for A of cardinality
for (inti=1;i<=nvar; i++)
{
tset.insert( i );
set_diff( s, tset, dset );
int kk = dset.size();
int * string = new int[kk];
generate( string, 0, g, kk, dset, & SList );
delete[] string;

{
for (it = SList.begin(); it '= SList.end()
{
res = *it;
FMap.erase( Fpair( tset, res ) );

tset.clear();
dset.clear();
SList.resize( 0);

}

cout << "Adding Q{A} for A of cardinality:" << nv
int * sring = new int[nvar];
generate( sring, O, nvar, nvar, s, & SetList );
delete[] sring;
display( "List: ", SetList );
mqgval = 100000;
for (it = SetList.begin(); it = SetList.end();
{
res =*it;
for ( sit = res.begin(); sit != res.end(); sit+
{
tset.insert( * sit );
set_diff( res, tset, dset );
mqvall = ( FMap[Fpair( tset, dset )].get_Fval
QMap[dset].get_Qval() );
if (mgvall <= mqval)
{
mqgval = mqgvall,;
Qrec.setQval( mqgvall );

et_pars() );

"<< g<<end

; itH+)

ar << endl;

it++ )

+)

0)+(
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Qrec.set_optg( tset );
Qrec.setQpar( FMap[Fpair( tset, dset )].get

}

tset.clear();
dset.clear();

}

mqval = 100000;
QMapires] = Qrec;
//display( "Qset =", res );
/lcout << "Score=",
//display( Qrec );

SetList.resize( 0);
/I display( QMap );

/I Removing F{g,{A}} for A of cardinality nvar-1

cout << " Removing Fvalues for A of cardinality
end|;

for (inti=1;i<=nvar; i++)

tset.insert( i );

set_diff( s, tset, dset );

int kk = dset.size();

int * string = new int[kk];

generate( string, 0, nvar - 1, kk, dset, & SLis
delete([] string;

for (it = SList.begin(); it I= SList.end();
{

res =*it;

FMap.erase( Fpair( tset, res) );

}

tset.clear();

dset.clear();

SList.resize( 0);
}

/I display( FMap );
/IPrinting solution in gene matrix form

for (inti=0;i<nvar;i++) {
for (intj=0;j<nvar; j++) {
if (cal==1){ AsiaMat[i] [j1=0; }
else { SynMat[i] [j]=0; }
}
}
}

display("S=",s);
{
for (inti=0;i<nvar; i++)
{
sit = QMapls].get_optg().begin();
int | = * sit;
cout<< (1)<""
for ( sitl = QMap([s].get_par().begin(); sitl
QMapls].get_par().end(); sitl++)
{

int k = * sitl;

_pars() );

<<nvar-1<<

t);

it++)
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cout << k;

if (cal==1)

{ AsiaMat[l - 1] [k - 1]=1; }
else

{ SynMat[l-1][k-1]=1; }

cout <<")" << endl;
set_diff( s, QMap[s].get_optg(), dset );
s.clear();
S = dset;
dset.clear();
display("S=",s);
}
}

cout << endl;

/[Compare with others to get true positive and fals
if(cal==1)

roc(AsiaMat,AsiaD,nvar);
roc(AsiaMat,AsiaPD,nvar);

}

else

rocl(SynMat,SynD,nvar);
rocl(SynMat,SynPD,nvar);
rocl(SynMat,SynJD,nvar);

}
}

e positive rates

MDL.cpp

#include <iostream>
#include <stdio>
#include <math>
#include <set>
#include <vector>
#include <map>
#include <string>

#include "factorial.cpp”
#include "mclass.cpp”

using namespace std;

double Ig2( double xx )

if (xx==0.0) {
return O;
else{

return log( xx ) /log( 2);

}

void display( map < string, mclass > a )
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map < string, mclass >::iterator itO;
for (it0 = a.begin(); it0 != a.end(); it0++)

cout << (" << jt0->first <<, ";
display( it0->second );
cout << ") " << endl;
}
}

float mdl( set < int > first, set < int > last, int
ns,double cv, string Data[] )

/I double ns = 10; // no: samples
/I double cv = 2; // 2 values

map < string, mclass > MMap;
map < string,mclass>::iterator it1;
set < int >:iterator its1;

set < int >::iterator its2;

mclass mc;

double cnt0 = 0.0;

double cntl = 0.0;

double cnt2 = 0.0;

char psent;

string hold ="";

int P = last.size(); // no: parents of given vari

double bin = combination( nvar, P );

double mdl_graph =1g2( nvar ) + Ig2( bin );
/l[double mdl_table = 0.5 * pow(cv, P)*(cv-1

double mdl_table=0.5*P *(cv-1)*I1g2(ns

double md|_data = 0.0;

if(P==0)

{

its1 = first.begin();
int sres = * its1,;

for (intx = 0; X < ns; x++)
if (( Data[x] ) [sres - 1] =="0")
cnto = cnt0 + 1;
?Ise |}f ((Data[x] ) [sres - 1] =="1")

cntl=cntl +1;

}
else
{
cnt2 =cnt2 + 1;
}
}
int temp = cnt0 + cntl+ cnt2;
mdl_data = -

nvar,double

1*((cnt0*Ig2((cntO/temp)))+(cnt1*lg2((cntl/temp)))+

(cnt2*lg2((cnt2/te
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mp))));
}

else

its1 = first.begin();
int sresl = *its1;

for (int x = 0; x < ns; x++)

psent = ( Data[x] ) [sres1 - 1];
for (its2 = last.begin(); its2 != last.end()
{

int sres = * its2;
hold = hold + ( Data[x] ) [sres - 1];

}
if (psent=="0")

cnt0 = MMap[hold].gf1();
MMapl[hold].sf1( cnt0 + 1);
}

else if (psent=="1")

cntl = MMap[hold].gf2();
MMaplhold].sf2( cntl + 1);

else

cnt2 = MMap[hold].gf3();
MMaplhold].sf3( cnt2 + 1 );

hold =",
}
mdl_data = 0.0;
for (it1 = MMap.begin(); itl '= MMap.end(); it

{
double m1 = it1->second.gf1();

double m2 = it1->second.gf2();
double m3 = it1->second.gf3();
double m4 = it1->second.gsum();

mdl_data = mdI_data + (m1*lg2(m1/m4))+ (m2*Ig2(
(m3*g2(m3/m4));
}

mdl_data = -1 * mdl_data;

}

return mdl_graph + mdl_table + md|_data;

}

; its2++)

1++)

m2/m4))+
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Appendix C

Script for generating data for the 11-node network

S

# generation of synthetic microarray data with R (i nclude module ggm)
# author: Sascha Ott

# two-dimensional list of functions as input for sy nthetic_data
single_valued_functions <- list(function(x) 33*(1/( 5+exp(x))),
function(x) 0.9*x,
function(x)
sign(x)*(abs(1.4*x)"0.5),
function(x)
1/(0.2+exp(5*X)))
two_valued_functions <- list(function(x,y) 0.7*x+y)
three_valued_functions <- list(function(x,y,z) x+1. 1*y+1.4*z)
function_list <-
list(single_valued_functions,two_valued_functions,t hree_valued_functions)
# n-th item must be a list of n-ary functions
# example graph input
network <- DAG(nl1 ~nl1, n2 ~n2,n3 ~n3,n4 ~nl, n5 ~ n2+n3,
n6 ~ n2+nll, n7 ~ n2, n8 ~ n4+n6+n7, n9 ~ n 6, n10 ~n5, n11

~nll, order = FALSE)

# function for generation of synthetic data
synthetic_data <- function(graph,functionlist,noise ratio,arraynumber) {
topologicalsort <- topOrder(graph)
num_genes <- length(topologicalsort)
# assign functions to genes
num_dim <- length(functionlist)
positions <- vector('integer',num_dim)
function_assignment <- vector(‘integer',num_genes)
for (i in seq(1,num_genes,1)) {
num_parents <- sum(graphl,i])
if (num_parents>num_dim)
stop("Number of parents too high for supplied
functions!")
else
if (num_parents!=0) {
function_assignment[i] <-
positions[num_parents]+1
positions[num_parents] <-
positions[num_parents]+1
if

(positions[num_parents]==length(functionlist[[num_p arents]]))
positions[num_parents] <- 0
}
# apply functions

arraydata <- matrix(0,num_genes,arraynumber)
for (i in seq(1,num_genes,1)) {
actualgene <- topologicalsort[i]
num_parents <- sum(graph[,actualgene])
parents <- vector(‘integer',num_parents)
pos <-1
for (k in seq(1,num_genes,1)) {
if (graph[k,actualgene]) {
parents[pos] <- k
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pos <- pos+1
}
}
for (j in seq(1,arraynumber,1)) {
if (num_parents==0)
arraydata[actualgene,j] <- rnorm(1,mean=0,sd=1)
else {
if (num_parents==1)
arraydata[actualgene,j] <-
functionlist[[1]][[function_assignment[actualgene]] ](arraydata[parents[1]
i)
else {
if (num_parents==2)
arraydata[actualgene,j] <-
functionlist[[2]][[function_assignment[actualgene]] ](arraydata[parents[1]
Jl,arraydata[parents[2],j])

else {
if (num_parents==3)
arraydatalactualgene,j] <-
functionlist[[3]][[function_assignment[actualgene]] ](arraydata[parents[1]
Al
arraydata[parents[2],j],
arraydata[parents[3],j])
else
stop("This case is not
implemented.")
}

}

if (num_parents>0) {
# OLD sdthisgene <- (max(arraydata[actualgene,]) -
min(arraydata[actualgene,]))*noiseratio
sdthisgene <- sd(arraydata[actualgene,])*noisera tio
arraydata[actualgene,] <- arraydata[actualgene,] +
rnorm(arraynumber,mean=0,sd=sdthisgene)

arraydata
}
# function call
#data <- synthetic_data(network,function_list,0.5,1 0)
Hommm e mmmmcmmmmmmmmmmmmmmmmmmmmmmeeme e
# normalise and add measurement error (above is onl y system error)
normalise_and_add_error <- function(data,measuremen tnoisesd) {

for (i in seq(1,dim(data)[1],1)) {
genemean = mean(datali,])
genesd = sd(datali,])
for (j in seq(1,dim(data)[2],1)) {
datali,j] = (data[i,j]-genemean)/genesd
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for (i in seq(1,dim(data)[1],1)) {
for (j in seq(1,dim(data)[2],1)) {

datali,j] =
data[i,j]+rnorm(1,mean=0,sd=measurementnoisesd)
}
data

}

# function call
#normdata <- normalise_and_add_error(data,0.0)

H

T+

# output data to BN-software-compatible file
write_data <- function(getdata,filename,geneorder)
data = matrix(0,dim(getdata)[1],dim(getdata)[2])
for (i in seq(1,dim(getdata)[1],1)) {
data[geneorder[i],] = getdata]i,]
}

write(t(data),file=filename,append=FALSE,ncolumns=
rownames <- vector('character',dim(data)[1])
for (i in seq(1,dim(data)[1],1)) {
rownamesJi] <- paste(sep=
}

now_as_a table <- read.table(file=filename,row.nam
write.table(now_as_a_table,file=filename,col.names

}

#function call

#write_data(data,'C:\\Documents and Settings\\Shiva
Documents\\Edinburgh\\Project\\R_outputfile.txt',c(
0)) # ggm orders nodes non-intuitively
#write_data(normdata,'C:\\Documents and Settings\\S
Documents\\Edinburgh\\Project\R_normout.txt',c(1,2
# ggm orders nodes non-intuitively

,'gene’i,"\t",'gene’

H

T+

# normalise for discrete data
norm_discrete <- function(data) {
for (i in seq(1,dim(data)[1],1)) {
genemean = mean(datali,])
genesd = sd(datali,])
for (j in seq(1,dim(data)[2],1)) {

if (datali,j]J< (genemean-genesd))datali,j] = -1.

else {

{
dim(data)[2])

i)
es=rownames)
=FALSE,sep='\t')

\\My

1,2,3,45,6,11,7,8,9,1

hiva\My
,3,4,5,6,11,7,8,9,10))

if (data[i,j]> (genemean-+genesd)) datali,j] =

1.0
else data[i,j]=0

}

data

}

# function call

#discretedata <- norm_discrete(normdata)
#write_data(discretedata,'C:\\Documents and Setting
Documents\\Edinburgh\\Project\R_ discout.txt',c(1,2

s\Shiva\My
,3,4,5,6,11,7,8,9,10))
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# ggm orders nodes non-intuitively

H

T+

# build series of data sets

produce_data_sets <-
function(network,function_list,systemerror,variance
ector,repetition_number,basicfilename,geneorder) {

for (i in seq(1,length(variance_vector))) {
for (j in seq(1,length(array_number_vector))) {
for (k in seq(1,repetition_number)) {
rawdata <-

synthetic_data(network,function_list,systemerror,ar

normdata <-
normalise_and_add_error(rawdata,variance_vector]i}/
data <- norm_discrete(normdata)
filename =
sprintf("%s%s%s%s%s%s%s%s", basicfilename,”_var",toS
i),
"_num",toString(array_number_vector]j]),"_rep",toSt
write_data(data,filename,geneorder)
}

}

#function call
produce_data_sets(network,function_list,0.5,c(0,1,2
0,40,50,60,80,100,200,400,600,800,1000,5000,10000),

_vector,array_number_v

ray_number_vector[j])

100)

tring(variance_vector|

ring(k),".txt")

5,10,20,40,50),¢(10,2
10,
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