
Small Gene Networks: Finding Optimal Models

Small Gene Networks:

Finding Optimal Models

Shivani Puri

September 2004

Masters of Science

School Of Informatics

University of Edinburgh

Small Gene Networks: Finding Optimal Models

Abstract

Genetic networks help in identifying interactions between genes, and provide information about the

function role of individual genes in the cellular system. In this thesis, we have employed a Bayesian

framework to learn network structures from microarray data, and implemented an algorithm that

uses dynamic programming to find the optimal gene network model for a small number of genes.

To test its performance, we applied the method to two distinctive synthetic datasets. ROC graphs

were used to evaluate the effects of noise and a small number of samples, features that are known to

be characteristic of gene expression datasets. Results showed significant improvements when the

numbers of samples in a dataset were increased. The effect of adding noise to the data gave

unexpected results and requires further analysis. The method was finally applied to a real

microarray dataset, and led to biologically plausible results.

Small Gene Networks: Finding Optimal Models

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Stuart Aitken for his skillful guidance and help

throughout the project. I need to thank Sascha Ott for answering my many questions, and for

providing me with the script to generate data for testing my implementation. I would like to thank

EPSRC, who has funded my thesis and Masters degree.

Finally, I would like to thank all my friends in family who have been extremely supportive, and

kept me motivated.

Small Gene Networks: Finding Optimal Models

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own except

where explicitly stated otherwise in the text, and that this work has not been submitted for any other

degree or professional qualification except as specified.

(Shivani Puri)

Small Gene Networks: Finding Optimal Models

 -1-

Table of Contents
1 INTRODUCTION .. 2

1.1 GENE NETWORKS.. 4
1.1.1 Microarray Datasets.. 5
1.1.2 Properties of Biological Networks.. 7

1.2 GENE NETWORK MODELS.. 8
1.2.1 Weight Matrices .. 9
1.2.2 Boolean Networks.. 10
1.2.3 Differential Equations.. 11
1.2.4 Clustering.. 12
1.2.5 Bayesian Networks .. 13

1.3 AIM AND STRUCTURE OF THIS REPORT... 15

2 BAYESIAN NETWORKS.. 16

2.1 LEARNING BAYESIAN NETWORKS FROM EXPRESSION DATA .. 18
2.1.1 Scoring Mechanism ... 18

2.1.1.1 Bayesian Score (BDe).. 20
2.1.1.2 Minimum Description Length (MDL) .. 21
2.1.1.3 BNRC ... 23

2.2 FINDING THE OPTIMAL MODEL: SEARCH STRATEGIES... 24
2.2.1 Heuristic Methods ... 26
2.2.2 Ott’s Approach.. 28

3 OPTIMAL SEARCH MODEL... 29

3.1 FORMAL DEFINITION.. 29
3.2 THE ALGORITHM ... 31

3.2.1 Input.. 32
3.2.2 Computing F-scores... 32
3.2.3 Computing Q-scores .. 33
3.2.4 Output: Gene Matrix.. 33

3.3 SMALL EXAMPLE ... 34

4 RESULTS AND DISCUSSION .. 36

4.1 SYNTHETIC DATA .. 36
4.1.1 Asia Network ... 36
4.1.2 11-Node Network... 37
4.1.3 Performance Measures .. 38
4.1.4 Results... 40

4.1.4.1 Effect of Sample Size... 40
4.1.4.2 Effect of Noise in Data... 43

4.2 MICROARRAY DATA .. 45
4.3 DISCUSSION... 46

5 CONCLUSION ... 48

APPENDIX A : RESULTS TABLES... 54

APPENDIX B – SOURCE CODE.. 57

APPENDIX C... 66

Small Gene Networks: Finding Optimal Models

 -2-

1 Introduction

All of the genetic information in any living creature is stored in DNA

(deoxyribonucleic acid). The double helix structured molecule is functionally divided

into information units called genes that contain instructions to make proteins, which

play a vital role in all cellular processes. The Human Genome Project, initiated in

1990, aimed to sequence the entire human genome and catalogue all human genes.

The draft human genome was published in 2000, and genomes of several other

organisms, for example, E.coli, mouse, chicken, and yeast have also been completed.

Due to the availability of this vast amount of sequencing information, the main focus

of genomic research is switching from sequencing to using the genome sequences in

order to understand how genomes function [Brazma & Vilo 2000].

To retrieve the information encoded in the gene, cells use the process of gene

expression. According to the central ‘dogma of molecular biology’, this occurs in two

steps. Genes are transcribed into messenger RNA (mRNA), which is then translated

into proteins. A gene is expressed in a cell if its corresponding proteins are present in

the cell. “Functioning of different cells or an organism as a whole, to a large extent is

governed by the ‘selective’ expression of genes” [Fuente et al., 2002]. Although all

cells in an organism contain more or less the same DNA, i.e. the same genetic

material, we observe specialized behaviour from different cell types. For example, the

function of a liver cell differs from that of a skin cell. This occurs due to differences

in gene expression, that is, whether or not a product a gene codes for is produced, and

how much is produced. For a cell to function properly, the proteins being synthesized

must be controlled, the amount being produced changing as per the cell’s needs.

Genetic regulation ensures this. Levels of gene products do change during

development, cell differentiation, the onset of disease and in response to the

environment [Hunter 1993].

Gene expression levels are regulated in humans by control mechanisms at several

levels in the steps between transcription and protein synthesis. Regulation at the

transcriptional level is most important since it determines the amount of mRNA to be

made. The process is controlled by regulatory proteins (transcription factors) that bind

to cis-regulatory elements (promoters or enhancers) in special regions of the gene.

Small Gene Networks: Finding Optimal Models

 -3-

Since transcription factors are also products of transcription and translation, we reason

that genes interact with and influence each other (induce or repress) by controlling

each other’s expression levels. To gain a good level of understanding of how cells

work, we need to therefore discover how specific genes are regulated, study gene –

gene interactions and attempt to reconstruct an accurate model of the gene interaction

network.

This is a difficult task mainly because of the sheer number of interactions involved.

Traditional biology approaches are unable to search through every possibility to

identify the genes involved in a particular process. The number of experiments

necessary to build a gene network model is a lot more than is possible in ‘wet’ labs

[Dutilh & Hogeweg 1999]. Due to this, research focus has been on studying single

genes, proteins or single reactions, looking at direct correlations between the genes

and phenotypes to determine gene function. A full breadth of important roles for well-

known, highly characterized genes have been discovered in this manner, but a need

for methods that could provide a wider experimental perspective on how genes

interact was also recognized [Kim et al., 2000].

With the advent of high-throughput microarray technology, this has been made

possible, and our ability to explore gene interactions has increased dramatically. Gene

expression data is now available on a large (genome-wide) scale since it is possible to

measure expression levels of all genes of a given organism, at a number of time

points, or under various conditions. “The datasets provide snapshots of the molecular

state of cell populations at the transcript level and are rich in information about gene

networks. It seems logical that these data are the best to uncover gene networks, and

indeed this strategy is presently the most widely adopted” [Brazhnik et al., 2002].

Researchers have proposed numerous computational methods for inferring gene

regulatory networks from this huge amount of data. In this thesis, we concentrate on

one particular method, and evaluate its performance on synthetic and real biological

data.

Small Gene Networks: Finding Optimal Models

 -4-

1.1 Gene Networks

Gene networks are models that display causal relationships between gene activities,

usually at the mRNA level, and are commonly represented as directed graphs

(Figure1a). A directed graph N is defined as a tuple EV, with V being a set of

vertices and E a set of edges. A directed edge is a tuple ji, of vertices, where i is

the head (child) and j is the tail (parent) of the edge. The vertices/nodes correspond

to genes and the edges denote interactions between the connected genes. More

information about genes and their interactions can be shown, for instance, by labelling

the edges with sign +, or – to indicate whether a gene i is activated or inhibited by

gene j .

(a) (b)
Figure 1: (a) Graph representation of a gene network. (b) Matrix representation of a gene

network. 1 represents an interaction, while 0 represents no interaction.

Gene networks can also be represented as matrices. Each column and row of the

matrix represents one gene, while matrix elements represent relationships. The

matrices can be qualitative, where positive interactions (activation) are denoted by 1,

negative interactions (inhibition) with –1, and 0 for the case of no interactions

between genes [Brazhnik et al., 2002]. In some cases, the elements only take on two

values; 1 represents an interaction (positive or negative), and 0 represents no

interaction (Figure 1b). Quantitative representations indicate the sign as well as the

strength of the gene interaction by using real values in the matrix.

Both of the above representations show which genes are interacting with the others in

the network. How changes in expression of the ‘originating gene’ affect the ‘target

gene’ in the network is still not explained. For this, some kind of function at each

node in the network is used. The type of function depends on the network model.

Bayesian networks, for example, use conditional probability distributions to explain

gene interactions, while Boolean networks make use of Boolean logical rules.

 A B C D

A 0 1 1 0

B 0 0 0 0

C 0 1 0 0

D 0 1 0 0

C B

A D

Small Gene Networks: Finding Optimal Models

 -5-

Inferring the biological gene network from a large amount of experimental data, as

obtained from microarrays is a difficult problem. There are a number of factors that

complicate the modelling of gene networks.

1.1.1 Microarray Datasets

Microarray analysis provides a global picture of gene expression for the genome by

revealing which genes are expressed at a particular stage of the cell cycle or

development cycle of an organism, or genes that respond to a given environment

signal to the same extent. A large amount of experimental data is available at the

mRNA level as a result. From a biological point of view, it would be preferable to use

protein levels rather than mRNA levels to describe gene expression since proteins are

the ultimate products of a gene, not mRNA. However, we know that transcription is

the first step in gene regulation, so information from transcript levels will be useful

for understanding gene networks. Furthermore, correlation studies between mRNA

and protein abundance in a cell, such as done by Greenbaum et al. in 2003, imply that

high levels of mRNA in a cell is likely to correspond to a large presence of the

respective protein, and vice versa. Since it is much easier to measure mRNA levels,

and on a much larger scale than measuring protein levels directly, gene expression

data is currently being modelled using mRNA abundance level data.

A microarray is a glass slide, onto which single-stranded DNA molecules are attached

at fixed locations, called spots. Such a microarray may consist of thousands of spots,

each representing genes, fragments of genes, or ESTs (Expressed Sequence Tags).

The central principle of the microarray-technique is hybridization, the selective

binding of complementary single-stranded nucleic acid sequences. There are several

ways of using microarray technology. A popular method is to compare the mRNA

levels from two different samples, for example a healthy and a tumour affected cell.

mRNA from both samples are extracted and labelled with two different fluorescent

labels, red for healthy sample and green for the tumour sample. They are then mixed

and washed over the surface of the microarray, and allowed to hybridize to their

complementary sequences in the spots [Kerr et al., 2001].

Small Gene Networks: Finding Optimal Models

 -6-

To quantify the hybridization level of each spot in the array, a laser is used to excite

the fluorescent tags, and a photo detector measures the amount of light with the label

specific wavelength that is emitted. If the mRNA from the tumour cell is in

abundance, the spot will be green, if the healthy cell’s mRNA is in abundance, the

spot will be red. If mRNA from both cells binds equally, the spot will be yellow,

while if neither binds, there will be no fluorescence and the spot will be black (Figure

2). Thus, by using this technique we are able to determine the relative levels of

mRNA associated with a huge number of genes in a single experiment.

Figure 2: A sample image obtained from a microarray experiment.

The intensity and colour of each spot encode information on a specific gene from the tested
sample. Figure taken from Gene-Chips [http://www.gene-chips.com/sample1.html]

Measuring expression levels of genes in an organism under various conditions

ultimately helps in building ‘gene expression profiles’ that characterize the dynamic

functioning of each gene in an organism’s genome. The expression data can be

represented using a ‘gene expression matrix’ with rows representing genes, columns

representing samples, and each matrix cell containing a number characterizing the

expression level of the particular gene in the particular sample. However, when

analysing this gene expression matrix, we need to keep in mind that at each stage in

the microarray process: sample extraction, fluorescence labeling, hybridization, and

image processing of the two fluorescent light signals, a number of errors are

introduced. Software is used to minimise the effect of the errors at each level but the

resulting dataset is still very noisy, and may contain distorted gene expression levels.

Furthermore, modelling of gene networks from microarray datasets is presented with

another problem, namely the curse of dimensionality. The number of

samples/measurements (usually dozens) made in microarray experiments is far less

Small Gene Networks: Finding Optimal Models

 -7-

than the number of genes (tens of thousands) whose expression levels have been

measured. This basically means that there is not enough data to infer the complete

underlying gene biological network. Ideally, we would need to collect as many

measurements/samples as the number of genes.

In a recent study, Husmeier [2003] tried to quantify experimentally exactly how much

can be learned from the data in this unfavourable situation. Gene expression data was

simulated from a realistic biological network, and interactions inferred using a

Bayesian model, which are described in detail in Chapter 2. The simulation results

were presented as receiver operator characteristics (ROC) curves, and demonstrated

that increasing the training set i.e. the number of samples in the dataset resulted in an

increase in the number of true interactions, and a decrease in the number of spurious

interactions being inferred.

1.1.2 Properties of Biological Networks

Biological systems exhibit certain characteristics that need to be taken into account

when one tries to reconstruct a genetic network model. Some of them are outlined

below.

Stochastic Nature

Genes in some pathways evolve rapidly, while others do not; some processes are

highly sensitive to mutations and external stimuli, while others vary little despite

significant pressures; some individuals with mutations are affected with disease while

others with the same mutation are healthy. Some of the above phenomena can be

explained away by the complex and stochastic nature of gene network and biological

systems in general.

A stochastic process is one governed by a random process, and in a biological context

this means that the system is subject to fluctuations. With respect to gene networks,

“Stochasticity allows significant variations in the sequence of activation and

inactivation of genes” explains Szallasi [1999]. In such a system, a given gene-

expression state can generate more than one successive gene-expression states, and

Small Gene Networks: Finding Optimal Models

 -8-

therefore, different cells of the same population may follow a different gene-

expression path from one state of gene-expression to another.

Robustness

Biological systems are dynamic, with gene interactions taking place at different points

in space and time. The network is continuously evolving under effects of mutation,

environmental effects and other perturbations. Robustness ensures that the gene

network is able to cope with changes, adapt to them and restore stability. Some of the

mechanisms that allow this are the existence of duplication in the genome

(redundancy), feedback control (positive and negative) and degeneracy – the ability of

different elements in the network to perform the same function or yield the same

output. Gene network models should try and incorporate these features, trying to

ensure that sensitivity to small variations in network parameters are reduced.

Modularity

Modularity is a highly characteristic feature of biological networks according to Alon

[2003]. He describes modules as “set of nodes that have strong interactions and a

common function. A module has defined input nodes and output nodes that control

the interactions with the rest of the network. A module also has internal nodes that do

not significantly interact with nodes outside the module”. Modular networks can

change with time and adapt to new conditions, while a non-modular system, in which

every component is optimally linked to every other component, is effectively frozen

and cannot evolve to meet new optimisation conditions. What this essentially implies

is that the connections within a gene network are sparse – genes are unlikely to be

linked with every other gene in the network. Sub networks consisting of small number

of densely connected genes work on a local level to propagate changes through the

network to yield a global response. In view of this, gene networks might be

approached by first modelling parts of the network; fully derive complete connectivity

within, and then look at interactions between the different sub networks.

1.2 Gene Network Models

There is absolutely no doubt that biological networks exhibit behaviour that is very

complex. Existing methods try to somehow abstract this complexity, at least at some

Small Gene Networks: Finding Optimal Models

 -9-

levels, by introducing assumptions to simplify their models. It can be argued that even

if we are unable to model all the parameters or variables involved in a realistic gene

network, we could observe the average overall behaviour of our model, and predict,

for instance how a network of genes would react to an external stimuli.

This section aims to provide an overview of several ‘popular’ gene network models.

Advantages and disadvantages of each model are discussed with respect to how well

it contends with the noisy nature and dimensionality problem of microarray datasets,

and the extent to which it is able to reflect the complexities of the underlying

biological network.

1.2.1 Weight Matrices

A weight matrix model considers the interactions between all combinations of genes,

by using a weight matrix, W, where each row of the matrix represents all the inputs

for one gene. The effect of gene i on gene j is simply the expression level of i

multiplied by its influence on j , the weight ijW . The total influence exerted on a

specific gene j can then be calculated by summing the influences of all genes in the

system, and then normalizing to produce an expression value between 0 and 1.

The model is advantageous in the sense that each gene can have multiple inputs, both

positive and negative, with varying strengths. It allows us to study many different

kinds of interactions, as found in real biological systems. Weaver et al. [1999] for

example, investigated the effects of various environmental variables on the network

model, and observed various alterations in gene expression patterns, one of which was

the classic transition of periodic gene expression to a stable gene expression pattern.

They state many advantages of the model, but also discuss several limitations. “These

models make assumptions about the behaviour of regulatory systems that are known

to be untrue. For example, the assumption that all genetic interactions can be treated

as independent events is contradicted by known transcriptional regulators that have

different activities depending on their protein partners”.

Small Gene Networks: Finding Optimal Models

 -10-

1.2.2 Boolean Networks

A Boolean network considers each node representing a gene as a binary variable,

which can either be expressed or repressed (node has state 1 or 0, respectively). The

dynamics of the network are determined by a list of n Boolean functions which each

receive input from k specified nodes. Every node has its own specific function, which

can determine its next state from the current states of all the input nodes. A sequence

of states connected by transitions forms a trajectory of the system, with all initial

states eventually reaching a steady state (point attractor) or a state cycle (dynamic

attractor) [D’Haeseleer et al., 1999a].

“Boolean networks allow large gene networks to be analysed in an efficient way, by

making strong simplifying assumptions on the structure and dynamics of a genetic

regulatory system” says De Jong [2002]. While nodes in a Boolean model take binary

values (genes are considered either ‘on’ or ‘off’), which are updated synchronously,

quantities of gene expressions in real networks are not binary and change

continuously with time [Akutsu et al., 1999]. Furthermore, for computational reasons,

most Boolean model networks are designed such that all genes can be controlled by

k , a fixed maximum number of other genes in the network. This does not truly reflect

the complexities of gene networks, where there is a great degree of variation in the

number of genes controlling a specific gene. Some genes are known to have many

regulatory inputs while others have but a few interactions.

Despite their simplicity, Boolean network models have been used extensively in the

past as conceptual tools for investigating the principles of a gene network – its

structure, organisation and dynamics. Studies on attractor states and trajectories, for

instance, have confirmed biological network characteristics such as stability and

robustness. Constraints in the number of inputs and outputs per gene, input and output

sharing among genes evolved within a gene family or pathway, and restrictions on

rule types (thresholding, no "exclusive or" rules etc) have also been discovered

through simulations of Boolean nets [D’Haeseleer et al. 1999b]. Ultimately, these

models serve as good starting points for investigation of gene networks. For a more

realistic approach however, better methods are required.

Small Gene Networks: Finding Optimal Models

 -11-

1.2.3 Differential Equations

Differential equation methods have been used widely to model gene networks [Chen

et al., 1999b; De Hoon et al., 2002; 2003]. Gene interactions and regulation are based

on rate equations, which express the rate of production of a component as a function

of the concentration of other components in the system [De Jong 2002]. The models

allow gene regulation to be described in great detail to the level of individual reaction

steps. Hartemink et al. [2001] remark, “While such low-level dynamics are critical to

a complete understanding of regulatory networks, they require detailed specifications

of both the relationship between the interacting agents as well as the parameters of the

biochemical reaction, like reaction rates, diffusion constants, etc.”.

Finding appropriate parameter values that fit the data is very difficult, and is the

model’s greatest drawback. The approach is therefore restricted to very small systems.

Chen et al. [1999b] proposed a differential equation model for gene expression, and

constructed their model using temporal expression data. Both transcription and

translation processes by kinetic equations with feedback loops from translation

products to transcription were modelled, and the parameters solved using linear

algebra. The model was specific to time expression data, and was unable to work on

mRNA expression level data alone. It required knowledge of protein levels at

different time steps also. Linearity in the model allowed parameters to be found

efficiently, but was unable to model important non-linear gene interactions. To tackle

this weakness, non-linear rate equations have also been used to model gene

regulation. Although the models are more realistic, they are computationally very

expensive, and require a larger number of parameters to be approximated than linear

models [Szallasi 2001]. Another approach worth mentioning is of models that

incorporate stochasticity into their methods. As we know, gene regulatory interactions

are best described as stochastic processes. Models that use stochastic differential

equations are thus better than those that make assumptions of concentrations of

substances varying continuously and deterministically [De Jong 2002]. Again

however, these stochastic models are too computationally expensive in terms of

approximating parameters and fitting them to data.

Small Gene Networks: Finding Optimal Models

 -12-

Problems regarding the measurements of the numerous kinetic parameters can be to

some extent solved with the growing availability of gene expression data obtained

through microarray technology. However, one would need to solve the dimensionality

problem (See 1.1.1) since for reliable estimation, we would need the number of

measurements or data points to exceed the number of parameters. Two methods have

tried to solve the problem. One method clusters genes with similar expression

profiles, so as to reduce the number of parameters in the model, while the other tries

to increase the number of measurements by interpolating data points [D’Haeseleer et

al., 1999a]. Both approaches make strong assumptions that can lead to mistaken

conclusions. It is thus wise to use differential equation methods once we have enough

knowledge, and appropriate data.

1.2.4 Clustering

Clustering works by partitioning genes and/or samples into groups by applying some

kind of similarity measure on gene expression data. Euclidean distance, linear

correlation, rank correlation and mutual information are most popular. Clusters are

formed such that there is high correlation among elements within a cluster, and low

correlation between elements from different clusters. Szallasi [2001] explains that a

high correlation between two genes i.e. both exhibiting similar expression profiles

most probably signifies that they are part of the same regulatory process and are

functionally related.

According to D’Haeseleer et al. [1999b], clustering is potentially useful in at least

three areas. Functions of unknown genes may be inferred by studying genes with

known function in the same cluster. Secondly, instead of grouping genes, we could

search for clusters of microarray samples/experiments that are highly correlated over

a subset of genes. This would help in classification of different cell types. For

instance, Golub et al. [1999] performed clustering on gene expression data obtained

from human leukaemia patients. They were able to discover new tumour classes, and

predict the cancer type of incoming leukaemia patients from the clusters found.

Finally, by combining clustering methods with sequence analysis, studies such as that

of Brazma et al [1998] have been able to determine common regulatory factors for a

set of co-regulated (highly – correlated) genes.

Small Gene Networks: Finding Optimal Models

 -13-

Despite their many advantages, clustering techniques are limited. A gene is allocated

to a single cluster that is associated with performing one biological function. This is

inappropriate since we know that a gene can perform multiple functions, and is

controlled by several genes through a variety of regulatory elements. Thus, methods

should allow genes to belong to more than one cluster. Moreover, similarity is

quantified using a ‘global’ correlation measure, which may cause relations that only

exist over a subset of the data to remain unidentified.

Most importantly, clustering can only go far as identifying which genes are co-

regulated. It does not lead to a fine resolution of the interaction processes. I like to

regard clustering as a useful pre-processing step for inferring gene regulatory

networks. Once we are able to determine a group of genes that most probably, share a

biological function, we can perform further analysis to elucidate finer structure and

relations between the genes within. We can hope to answer questions such as, is the

effect of one gene on another direct, or mediated by other genes? Which genes

mediate the interactions within a cluster of genes or between clusters? What is the

nature of the interaction between genes? [Pe’er et al., 2001]

1.2.5 Bayesian Networks

A Bayesian network is a probabilistic graph model, which describes the multivariate

probability distribution for a set of variables [Pearl 1988; Heckerman 1998]. When

applied to our problem of genetic networks, the expression level of each gene is

treated as a random variable, and regulatory interactions as probabilistic

dependencies. The joint distribution over the set of all genes then reflects the

distribution of cell ‘states’ and how these affect expression levels [Pe’er et al., 2001].

Bayesian learning techniques try to estimate and understand the network structure that

best describes this distribution with respect to the data. They are able to capture

complex relationships between genes by extracting information about their

(conditional) dependencies and independencies encoded in the high-dimensional

microarray datasets.

The work of Friedman et al. [2000] was the first to use Bayesian networks for

analysing gene expression data. They discovered that the models took advantage of

Small Gene Networks: Finding Optimal Models

 -14-

the modularity characteristic in biological networks (See 1.1.2) i.e. they were

particularly useful for describing processes composed of locally interacting

components. Their method demonstrated that genes could be modelled as discrete or

continuous variables but was limited to detecting linear interactions between the

genes. Imoto et al. [2002, 2003a] extended the above work, and constructed a genetic

network from expression data by using a nonparametric regression strategy in

conjunction with a Bayesian network framework. Their method was successful in

capturing even nonlinear relationships between the genes. Another extension by

Hartemink et al. [2001] incorporated hidden variables in the Bayesian framework to

capture unobserved factors in the data, and was able to describe gene interactions at

varying levels of refinement.

There are a number of reasons why Bayesian networks are becoming increasingly

popular as methods to infer genetic networks. First of all, the models are used to

capture causal relationships within the data, leading us to make conclusions that are

biologically meaningful. Secondly, the statistical framework of Bayesian learning is

designed for domains with a large number of variables [Dejori 2002], and is therefore

ideal for modelling interactions of the huge number of genes found in any biological

network. The probabilistic nature of Bayesian models are able to deal with the

stochastic aspects of gene expression and noisy measurements in a natural way [De

Jong 2002], and allow the confidence in the inferred network structures to be

estimated objectively [Husmeier 2003]. Since they discover dependencies among all

variables, the models are even able to handle incomplete datasets.

Another advantage of the Bayesian approach, as mentioned by Heckerman [1998] in

his tutorial on Bayesian Networks, is the ability to combine prior knowledge with the

information extracted from data. Prior or domain knowledge is crucially important if

one performs a real-world analysis, he says, in particular, when data is inadequate or

expensive. Studies by Hartemink et al. [2002] and Segal et al. [2002] used binding

site information as priors to improve their Bayesian models. Imoto et al. [2003b] went

further and used a large range of biological knowledge, such as protein – protein

interactions, protein – DNA interactions, binding site information, existing literature

etc with their microarray data. They showed that their Bayesian network model was

Small Gene Networks: Finding Optimal Models

 -15-

successful in extracting more information from the data and estimated the gene

network more accurately.

As with all models, even Bayesian networks have limitations. For instance, circular

dependencies present in biological networks cannot be modelled. De Jong [2002]

comments “Although Bayesian networks are intuitive representations of genetic

networks, they have the disadvantage of leaving dynamical aspects of gene regulation

implicit”. He also states that the problem can be overcome by using dynamic

Bayesian networks to model dynamic processes, such as feedback mechanisms.

1.3 Aim and Structure of This Report

This project aims to develop and evaluate an algorithm that infers the structure of a

gene network for a relatively small number of genes using Bayesian Networks and

dynamic programming.

Chapter two provides a detailed description of Bayesian Networks, and goes on to

discuss the task of inferring the network from biological data. Scoring functions and

search algorithms are reviewed.

Chapter three aims to provide the reader with an understanding of the optimal search

algorithm. We present the basic concepts and then go on to discuss the

implementation, providing rationale behind any choices that had to be made.

Chapter four is a detailed analysis of the algorithm. Receiver operating characteristic

(ROC) graphs have been employed to assess the performance of the technique.

Results from both synthetic and real datasets are shown and discussed. Effects of

increasing sample size and noise in the data are also investigated.

Chapter five concludes with a brief summary of the project, its achievements and

limitations and includes ideas for further work.

Small Gene Networks: Finding Optimal Models

 -16-

2 Bayesian Networks

A Bayesian Network B for a set of random variables X { }pXX ,...,1= is the pair

Θ,N that uniquely specifies the joint probability distribution BP for X . The

network structure N is a directed acyclic graph (DAG), consisting of a set of nodes

corresponding to random variables { }pXX ,...,1 and a set of directed edges that

represent dependencies between the variables. The parameter Θ is the set of

conditional probability distributions that describe the conditional probability

()ii PaXP | of a variable iX given its parents iPa in the graph.

A conditional independency ()ZYXi i |; expresses the fact that iX is independent of

Y given Z , where Y and Z denote sets of variables. The graph N encodes

conditional independence assumptions (Markov independencies), which state that

each variable iX is independent of its non-descendants, given its parents in N . Thus,

for each variable, we have () ()()iii PaXantsnondescendXi |; [De Jong 2002]. The

joint distribution BP of a network B that satisfies the above independence statements

can be decomposed into product form as

 () ()∏
=

==
n

i
iinB PaXPXXPP

1
1 |,..., , (1)

where iPa is the set of parents of iX in N [Pearl 1988].

Figure 3: A direct acyclic graph: conditional probabilities for each variable are specified.

The above figure shows an example of a graph consisting of the set of variables

X { }EDCBA ,,,,= . The joint probability distribution, ()EDCBAP ,,,, can be

calculated from the product of the conditional probability distributions for each

()BDP |

 A B

 C

 E

 D

()AP ()BP

()BACP ,|

()CEP |

Small Gene Networks: Finding Optimal Models

 -17-

variable, and is given by ()AP ()BP ()BACP ,| ()BDP | ()CEP | . Additional

conditional independencies found in the graph are: ()DBAi ,; , ()ABi ; , ()BADCi ,|; ,

()BECADi |,,; and ()CDBAEi |,,; .

More than one direct acyclic graph (DAG) can imply the same set of independencies.

For example, let us examine the three graph structures (a), (b), and (c) in Figure 4

below. The decomposed joint probability distributions respectively are:

() () () ()CBpACpApCBApa ||,, = ,

() () () ()CApBCpBpCBApb ||,, = ,

() () () ()CBpCApCpCBApc ||,, = .

The laws of conditional probability show that the three graphs represent the same

probability distribution, and therefore denote the same set of independencies. The

graphs are said to be equivalent to each other and belong to the same equivalence

class.

Figure 4: The three graphs (a), (b) and (c) belong to the same equivalence class,
and can thus be uniquely represented by the PDAG structure.

Chickering [1995] shows that equivalent graphs have the same underlying undirected

graph but can differ on the direction of some edges. Furthermore, his work

demonstrated that an equivalence class of network structures can be uniquely

represented by a partially directed graph (PDAG), where a directed edge YX →

compels all members of the equivalence class to contain the edge YX → , while an

undirected edge YX − allows members to contain an edge in either one of directions

YX → , and XY → .

The above notion of equivalence is important and especially relevant to our problem

of learning structures from data. Graphs belonging to the same equivalence class

cannot be distinguished from observing data alone. Additional criteria or knowledge

is required [Buntine 1996]. Hence, in the absence of prior information, search strategy

PDAG (a) (b) (c)

≡

A A A A B B B B

C C C C

Small Gene Networks: Finding Optimal Models

 -18-

should be to find an equivalence class of networks that best matches the data rather

than trying to find a single network.

2.1 Learning Bayesian Networks from Expression Data

The process of establishing relationships between genes on the basis of observed

expression levels is referred to as ‘reverse engineering’ [Brazhnik et al., 2002]. This

gene network inference task can be regarded as an unsupervised learning problem.

We define our microarray expression dataset of p genes and n samples/experiments as

a training set { }nxxxD ,...,, 21= of independent observations, where each data point

ix is an p-dimensional vector { }i
p

iii xxxx ,...,, 21= . We need to find a network

B= Θ,N , or more precisely an equivalence class of networks that best matches this

dataset D ; both a biologically meaningful network structure and parameters

(conditional probability distributions) need to be found.

2.1.1 Scoring Mechanism

Learning network structures from data can be termed as a model selection problem in

the sense that each network corresponds to a distinct model and one is to be selected

based on the data [Buntine 1996]. When searching for the best network over the space

of possible networks, a criterion that measures the degree to which a network

structure (equivalence class) fits the prior knowledge and data is required. A

statistically motivated scoring function that assigns a score ()BS to each network

structure B is generally used to rank models based on their ‘goodness of fit’ to the

data. Moreover, the difference between the scores for any two models leads to a direct

significance measure for determining how strongly one should be preferred over the

other Hartemink et al. [2001].

A number of scoring functions are used in research; all of them exhibiting two

important characteristics – namely decomposability and structural equivalence.

Decomposability

A scoring function can be decomposed in the presence of full data. When the dataset

D is complete i.e. it contains neither missing or hidden values, the score for a

Small Gene Networks: Finding Optimal Models

 -19-

network structure ()BS can be expressed as a summation of terms that corresponds to

individual nodes in the network. Just as the joint probability distribution of a Bayesian

network is specified as the product of the conditional probability distributions of each

of its variables (Equation 1), the scoring function factorises into terms related to the

individual variable dependent only on its parents [Dejori 2002], allowing us to make

efficient computations.

Given a network B consisting of a set of genes G { }pgg ,...,1= , the function

→× GGs 2: ℜ assigns a score to a gene Gg ∈ and a set of parent genes GA ⊆ . The

score of the whole network is defined as

 () ()∑

∈

=
Gg

B
gPagsBS , , (2)

where B

gPa denotes the set of parent genes of gene g in the network B (Figure 5).

Figure 5: Score of a network is calculated as the sum of scores for each variable in the network.

The contribution of each gene g to the total score thus depends only on its own value

and the values of its parents in the datasetD .

Structural Equivalence

In the beginning of this chapter, equivalence among graphs, and the concept of an

equivalence class of network structures were introduced. Structures belonging to the

same equivalence class contain the same set of independencies, and thus have equal

sample likelihoods. For this reason, two graphs that are structurally equivalent will be

given the same score value by a scoring function. This is called score equivalence.

{ }() { }()absas ,, +=

{ }() { }()
{ }()ces

cbdsacs

,

,,,

+
++

 B

 D E

 A

 C

()BS

Small Gene Networks: Finding Optimal Models

 -20-

The following sections provide the details for three popular scoring mechanisms that

have been used to infer gene networks from microarray datasets.

2.1.1.1 Bayesian Score (BDe)

One of the ways to learn a network from data D produced by microarray experiments

would be to compute the posterior probability ()DBP | i.e. the probability of the

model B being correct given the observed data. The task would then be to find a

model network ⊗B that maximises this probability, and parameters ⊗Θ that

maximise ()⊗Θ BDP ,| . The Bayesian score is derived from Bayesian statistical

methods and is proportional to the posterior probability.

According to Bayes rule, the posterior probability can be computed as:

 () () ()
()DP

BPBDP
DBP

|
| = (3)

The term ()BP is the prior probability of the network structure, while ()DP is a

normalisation constant that does not depend on the choice of model structure and can

be ignored. The term ()BDP | is the marginal likelihood for network structure B and

represents the likelihood or probability of the data D given that the network structure

is B and has parameters Θ [Friedman et al., 2000].

The Bayesian score is defined as the logarithm of the posterior probability

()DBP |log and can therefore be computed as () ()BPBDP +|log . To evaluate the

marginal likelihood ()BDP | we must consider all possible parameter assignments to

B . Thus,

 () () ()∫ ΘΘΘ= dBPBDPBDP |,|| , (4)

where ()Θ,| BDP is defined as the joint distribution of the variables in network

(Equation 1), and ()BP |Θ is the prior density over parameter assignments to B

[Friedman & Goldszmidt 1998]. The particular choice of priors ()BP and ()BP |Θ

determines the exact Bayesian score.

Small Gene Networks: Finding Optimal Models

 -21-

The work of Cooper & Herskovits [1992] introduced a set of BDe priors to be used in

conjunction with the Bayesian score to evaluate the ‘goodness’ of a network. The

BDe criterion evaluates a Bayesian network based on the multinomial distribution,

and therefore needs data to be discretised. Additionally it makes assumptions of

complete data, parameter independence, and parameter modularity. It requires the

prior over parameters ()BP |Θ to have Dirichlet prior distributions and the structure

prior ()BP to be uniform. All of the above restraints cause the marginal likelihood

term ()BDP | to be rewritten. Heckerman [1998] explains the set of assumptions and

shows that they justify the decomposition of the integral in Equation 4 making it

analytically tractable.

The assumption of parameter independency states that the parameter values

associated with a given variable is independent of the parameter values associated

with another variable. This permits us to construct the priors for the parameters for

each variable iX separately. Parameter modularity implies that the distributions for

parameters Θ depend only on the structure of the network that is local to variable iX

- namely iX and its parents iPa . Finally, a complete dataset indicates that there are

no hidden or missing values in the dataset. Friedman & Goldszmidt [1998] used the

BDe criterion for model selection and demonstrated that it was suitable for inferring

the true network.

2.1.1.2 Minimum Description Length (MDL)

The MDL scoring function is based on coding theory: given the data and a class of

network models, select the model which achieves the shortest codelength for the data

and the model. Codelength, also termed description length refers to the number of bits

used in encoding.

In the context of learning Bayesian networks from expression data, we have networks

B that describe a probability distribution BP over the n samples of p genes appearing

in dataset D . The MDL score for a network is defined as the total description length,

which is the sum of the length of the encoded data, and the length of the description of

the model network.

Small Gene Networks: Finding Optimal Models

 -22-

To describe the network model B = Θ,N , we need to encode both the graph N and

its parameters Θ . The description of the DAG N depends on the number of parents

each variable has in the network. If a variable iX has k parents, then k

p
 is the

number of possible combinations of parents iX could have from a set of p variables.

The description length for the graph structure is therefore given by:

 () ∑ +=
p

i i
graph Pa

p
pNMDL loglog , (5)

where the first term encodes the number of parents iPa while the second term

encodes the index of the set of parents for the variable [Friedman & Goldszmidt

1998].

Next, to describe the network parameters Θ , we store the conditional probability

distributions for each variable in tabular form. We assume that the dataset is

discretised so that each variable iX takes values from a finite domain. The encoding

length of a variable’s conditional probability table is given by:

 () ()() nPaXPaXMDL
k

iiiitable log1
2

1
, −= , (6)

where ()()k

ii XX 1− are the dimensions for each variable’s table, with iX

denoting the number of values taken by the variable. nlog2/1 is the number of bits

used to store each numeric parameter with n being the number of samples in the

dataset. The above encoding term is also referred as the penalty term since it penalises

the complexity of the network structure. For example, a simple network with fewer

edges is preferred over a network containing more edges.

To encode the training data, the probability distribution BP defined by the network B

is used to build an encoding scheme that assigns shorter codelengths to instances that

occur in the dataset with high probability. In effect, we encode the data D using

network B by calculating the marginal likelihood ()BDP | . The representation

length for encoding the marginal likelihood can be decomposed as a sum of terms that

Small Gene Networks: Finding Optimal Models

 -23-

are local to each variable’s conditional probability distribution. For a multinomial

distribution, we get

 () ∑∑∑
===

−=
ii v

l ij

ijl
ijl

r

j

p

i
data N

N
NBDMDL

111

log| . (7)

The equation above works out the number of bits necessary to encode each value of

iX given that we know the value of the variable’s parents. iv is the set of values

which variable iX can take while ir denotes the set of values that the parents of iX

can take on. The term ijlN denotes the number of instances found in the dataset where

variable iX takes on value l and its parents take on value j.

Finally, the MDL score for network structure B is the total description length and is

given by:

 () () () ()BDMDLPaXMDLNMDLBMDL dataii

p

i
tablegraph |, ++= ∑ (8)

The optimal model is the one that minimises the score. The MDL approach seeks a

class of network models that describe the data as accurately as possible, but also

considers the complexity of the models as a penalising factor, striving to strike a

balance between the two modeling aspects [Tabus & Astola 2001]. As the number of

samples in the dataset increase, the criterion has been shown to converge to the BDe

criterion described in section 2.1.1.1. Moreover, minimising MDL is equivalent to

maximizing another scoring function known as the Bayesian information criterion

(BIC) [Heckerman 1998].

2.1.1.3 BNRC

Both of the scoring mechanisms reviewed so far (Bayesian score with BDe priors and

MDL) require data to be discretised and assume multinomial distributions. Friedman

et al. [2000] reason that the number of discrete values allowed in the model, and the

thresholds used in discretization of the continuous data are unknown parameters

which have to be estimated from the data. Unsuitable parameters may therefore lead

to wrong results. For this reason Imoto et al. [2002] propose a scoring mechanism

Small Gene Networks: Finding Optimal Models

 -24-

called BNRC (Bayesian Network and Nonparametric Regression Criterion) that deals

with continuous variables.

As with the BDe score in section 2.1.1.1, the BNRC criterion is also derived from

Bayesian statistical methods. As before, the posterior probability of the network i.e.

the probability of the model B being correct given the observed data can be written

as:

 () () ()
() () () ()∫ ΘΘΘ== dBPBDPBP
DP

BPBDP
DBP |,|

|
| (9)

Instead of using a multinomial distribution, the joint probability distribution

()Θ,| BDP of the variables (Equation 1) is captured using nonparametric regression

models that are able to identify linear as well as non-linear dependencies between the

variables. Laplace approximations are then used to compute the integration. The

criterion is shown to be decomposable; the BNRC score for the network can be

computed as the sum of the local scores of each variable in the network. Finally, the

network that minimises the score is chosen to be the best model.

Imoto et al. [2002; 2003a; 2003b] apply their score on microarray expression data and

obtain promising results. Furthermore they show that the score can incorporate a

number of different types of biological knowledge into the prior probability ()BP of

the network. They conclude, “The balance between microarray information and

biological knowledge is optimised by the proposed criterion”. Nariai et al. [2004]

also use the BNRC score criterion on expression data in combination with protein -

protein interaction data, and attain accurate results that are comparable with earlier

studies.

2.2 Finding the Optimal Model: Search Strategies

As defined earlier, learning structures from data involves finding a network or an

equivalence class of networks that best fits the available data. To accomplish this, we

utilise a score based search algorithm that identifies high scoring networks over the

space of possible networks.

Small Gene Networks: Finding Optimal Models

 -25-

Finding the optimal gene network is a difficult task for two reasons. First, the number

of samples contained in gene expression datasets is relatively small compared to the

number of genes (Section 1.1.1). With a large number of samples, learning the ‘true’

network model is possible with high probability. The data that is currently available to

us is not informative enough to determine a single optimal model. Searching will

result in several different networks that equally fit the data reasonably well thereby

introducing uncertainty into model selection [Buntine 1996]. From a Bayesian

viewpoint, this means that the posterior probability over the search space is spread

and not dominated by a single network model. Friedman et al. [2000] deal with this

dimensionality problem by focusing on features such as pairwise relations that are

common to high scoring networks instead of looking for a single network or a single

equivalence class of networks. Pe’er et al. [2001] extend their work and consider

additional features, like activation, inhibition and mediation relations between the

variables.

Secondly, the number of possible Bayesian networks increases super exponentially

with the number of variables in the network (Table 1). The problem is NP-hard,

making computation intractable for networks containing a large number of variables.

Ott et al. [2004] remark, “Even for a gene network of 9 genes (search space roughly

1.21x1015), a brute force approach would take years of computation time even on a

supercomputer”.

Number of variables

 In network
Number of possible DAG

structures
1 1
2 3
3 25
4 543
5 2.9 x 104
6 3.7 x 106
7 1.1 x 109
8 7.8 x 1011
9 1.2 x 1015
10 4.2 x 1018
20 2.3 x 1072

Table 1: The search space of possible Bayesian networks increases super exponentially

with the number of variables in the network.

Small Gene Networks: Finding Optimal Models

 -26-

2.2.1 Heuristic Methods

To deal with the large number of gene variables found in microarray datasets,

researchers have so far used local heuristic searches to learn Bayesian Networks from

the data. Local searches work by making successive edge changes to the network,

taking advantage of the decomposability property of scoring functions (Section 2.1.1)

to evaluate the gain made by each change. Changes made at each step could be

adding, removing or reversing the direction of a single edge. All changes ensure that

the resulting network structure does not contain directed cycles. Popular heuristic

search algorithms are greedy-hill climbing, greedy random search, simulated

annealing, and Monte-Carlo methods.

The simplest heuristic method is the greedy hill-climbing search, and has been

adopted by Pe’er et al. [2001] for learning gene networks. The method starts with an

initial network structure B , which could be an empty graph, a random graph, or a

domain specific prior network. Local search proceeds through the set of eligible

changes 'B that can be made to the graph, and keeps the change ''B for which the

gain in score is largest. The algorithm is terminated when the structure cannot be

improved further i.e. there is no structure with a better score (Figure 6).

Figure 6: Pseudo-code for greedy hill-climbing search algorithm.

Although greedy hill-climbing search has been commonly used for learning network

purposes, it encounters several problems. Firstly, local search might find a set of edge

changes that have the same high score. Which edge change does the method pick to

improve the structure? Secondly, the method can get stuck in local optima, meaning

that there might be another network structure with a higher score that hasn’t been

discovered by the search algorithm.

Choose initial network B
FOR each change B i in B’

Compute S(B i)
END

B” = argmax Bi S(B i)
IF S(B”) > S(B) THEN

B:= B”
ELSE return B

Small Gene Networks: Finding Optimal Models

 -27-

To avoid the above problems, Imoto et al. [2003a] use greedy random search for

inferring gene networks. They apply the greedy hill-climbing method until it hits a

local maximum. Then, they randomly perturb the network structure by permuting the

computational order of the genes and repeat the greedy search for a number of

iterations. Hartemink et al. [2002] try to prevent local maxima by using a search

algorithm called simulated annealing.

Simulated annealing starts with an initial network structure B and picks an edge

change e from the set of eligible graph changes 'B at random. The change e is

accepted as an improvement to network B if it obtains a higher score. If it obtains a

lower score, it is accepted with probability () ()()0/exp TBSeSp −= where 0T is a

temperature parameter. We repeat the process, and lower the value of the temperature

parameter gradually after a select number of iterations (Figure 7). Initially, when the

temperature is high, a lot of edge changes are accepted. The method explores a lot of

search space, and hence has a higher chance of finding the global optimal network. As

the temperature decreases, few edge changes are accepted and a stable network is

obtained.

Figure 7: Pseudo-code for the simulated annealing method.

The results from heuristic methods vary depending on the network used at

initialisation and the order in which computations are made. Despite the

improvements made by simulated annealing or random greedy hill-climbing searches,

we cannot be confident about the accuracy of the approach.

Initialise T 0
Choose initial network B
WHILE T 0 < T
FOR x = 1 to N
 Pick random change B i from B’
 Compute S(B i)
 Change = S(B i)-S(B)
 IF Change>0 OR exp(Change/T 0)>random
 THEN

B:= B i
END FOR
Reduce T 0

END WHILE

Small Gene Networks: Finding Optimal Models

 -28-

2.2.2 Ott’s Approach

Avoiding heuristic methods, Ott et al. [2004] propose an algorithm that uses dynamic

programming to search through the super exponential space of possible networks,

obtaining the optimal model in exponential time. The authors focus on real-valued

continuous gene expression data and utilise the BNRC scoring criterion (Section

2.1.1.3) for learning the network structure. They apply their method on microarray

datasets that studied the response of yeast to various stress conditions, and obtain

biologically plausible results.

The method has a sound theoretical basis, and can be made to work with different

scoring functions, and any kind of gene expression measurements. The method is

feasible for studying only small gene networks of up to 30 genes, although techniques

such as limiting the number of parents for each gene can increase the scalability of the

approach. Biological information such as protein-protein interaction data, binding site

information can also be incorporated into the method as prior information.

In this thesis, we implement the above method but concentrate on using discretised

data, searching for networks using the MDL score (Section 2.1.1.1). We evaluate the

algorithm’s performance on both synthetic and real microarray datasets, and

investigate the effects of increasing sample size, and noise in the dataset on the

method’s accuracy. The next chapter gives a description of how the algorithm works

and discusses implementation.

Small Gene Networks: Finding Optimal Models

 -29-

3 Optimal Search Model

Inferring a gene network using a Bayesian framework involves finding a set of parent

genes for each gene in the network such that the resulting network is acyclic and that

the score of the network is minimal. The naïve approach for finding the best model is

to search through the whole search space of possible networks, and return the network

or equivalence class of networks that gives the minimal score. As explained in Section

2.2, this is computationally infeasible. Additionally, a lot of time would be wasted on

investigating networks that relate very poorly with the given data. The optimal search

algorithm by Ott et al. [2004] finds the optimal gene network model for a set of genes

using a dynamic programming strategy.

Dynamic programming is applied to our gene network inference problem since it

helps us to effectively prune the huge search space. Information gained from

searching aids in making decisions about which subspace needs to be searched next,

that is we are able to avoid or eliminate poor network models from being investigated.

The idea is to find the subspace within the super-exponential search space that

contains the optimal network. Once we know the subspace, we can exhaustively

search and determine the network.

3.1 Formal Definition

The method uses the concept of π -linearity and ordering of the variables in the graph

to define network subspaces. In a network B consisting of a set of genes

G { }pgg ,...,1= we can define an ordering of a set GA ⊆ as a permutation

{ }→A,...,1:π A. We would like a network to have an ordering such that all edges in

its acyclic graph are oriented in the direction of the ordering. In other words, the each

gene g in the network should be positioned earlier on in the ordering than its parents.

Such an ordering would result in a network that is π -linear.

Definition 1: π - linearity

Let GA ⊆ and A∏∈π where A∏ is the set of all permutations of A. Let AAB ×⊆

be a network. B is π -linear iff for all () Bhg ∈, () ()hg 11 −− < ππ holds.

Small Gene Networks: Finding Optimal Models

 -30-

Given a fixed ordering or permutation π of a network, we can define a subspace as

the set of all networks that comply with the given ordering i.e. the set of all networks

that are π -linear. Two functions, namely F and QA have been defined that search

through the space of π -linear networks given a permutation π and calculate the score

of each network.

Definition 2: F

ℜ→× GGF 2: , where () ()BgsAgF ABdef ,min, ⊆= for all Gg ∈ and GA ⊆ .

The function F returns the optimal choice of parents for a gene g when parents have to

be selected for it from the subset A. It works by scoring each set of possible parents in

A with gene g using some kind of scoring criterion, be it MDL, BNRC, BDe or indeed

any score mechanism that can be decomposed (Section 2.1.1). The optimal parent set

is the one that returns the minimal score.

Definition 3: QA

Let GA ⊆ . For all A∏∈π , ℜ→∏ AAQ : can be defined as:

() () (){ }()∑
∈

−− <∈=
Ag

def
A ghAhgFQ 11|, πππ

Given a permutation π on a set of genes A, function QA calculates the score of each

π -linear network by summing the score of each gene g, and its optimal parents using

the information obtained from the F function. The best π -linear network is the one

that returns the minimal score. The authors Ott et al. [2004] argue that if they are able

to find the best π -linear network for a given permutation π , then in order to find the

optimal network, all that needs to be done is to find the optimal permutation π . This

is defined by function M.

Definition 4: M

For all GA ⊆ , we define U
GA

AGM
⊆

∏→2: as:

() ()ππ
A

def QAM A∏∈
= minarg

The above function returns the optimal permutation for a set of genes A by selecting

the permutation π that returns the minimal Q value.

Small Gene Networks: Finding Optimal Models

 -31-

3.2 The Algorithm

The goal of the optimal search model is to find ()()GMQG i.e. we want to know the

optimal permutation for all genes G in the network, and build the optimal network

according to this permutation. Since both Q and M functions require values of F, we

compute ()AgF , for all g and all A, and also ()AM for all A. In other words, for each

gene g and each set A, we compute the optimal selection of parents for g from A, and

for each set A, we compute the optimal permutation for π - linear networks on A.

Dynamic programming allows us to divide the task into stages and calculate the F, Q

and M functions for a set of genes recursively.

Compute
F(g,A)

|A| = m

Compute
Q(A)

|A| = m + 1

Remove F(g,A)

|A|=m

m = |G|
Yes

No

Optimal
 Parents of g

m=m+1

for each g in G

m=0

Recover
Gene Matrix

 g*

Figure 8: The Optimal Search Algorithm

The above figure shows how the algorithm functions. For each gene g in the set of

genes G, we start by computing the F score, with A being the empty set (0=A), i.e.

we calculate the score for each gene assuming that it has no parents. This allows us to

compute the scores for all possible π - linear networks containing only one gene, i.e.

we compute ()AQ for 1=A . The remaining F and Q scores are calculated recursively

by increasing the cardinality of set A. At each stage, the Q score for a subset GA ⊆

of cardinality mA = will require the ()AgF , score values of each gene g and all

subsets A of cardinality 1−= mA . We stop recursion once A reaches the set of all

genes G, i.e. when GA = .

Small Gene Networks: Finding Optimal Models

 -32-

The remainder of this section describes how we implement the algorithm to obtain an

optimal gene network model. The program was written in C++, and the full code

listing can be seen in Appendix B.

3.2.1 Input

The program receives as input a set of discrete valued data that has been generated

from a network of a number of genes. For any given data, we need to specify three

parameters, the number of genes in the network (nvar), the number of samples present

in the dataset (ns), and the number of values that each variable in the network can

have (cs). For binary data, this value would be 2, whereas for ternary data containing

for instance the gene expression values -1, 0 and +1, the value would be 3.

Our program uses the Standard Template Library in C++, and uses sets as the basic

data structures. We use the function generate () that takes as parameters an integer k

and the number of variables nvar, and creates subsets of cardinality k from a set of

nvar integers.

3.2.2 Computing F-scores

The function ()AgF , that takes as input a gene g and a set of parents A of cardinality

m is computed as follows:

 () () { }(){ }aAgFAgsAgF Aa −= ∈ ,min,,min, (10)

It basically computes the score of gene g, and parents A and compares it to previously

stored score values of gene g with the number of parents being one less than those

contained in set A. The optimal parent set for gene g is the set with the minimal score.

As mentioned before, the formula is recursive. F scores for gene g and set A of

cardinality m need to lookup F scores for gene g and the set of parents A of cardinality

m – 1. To store the score values and the set of optimal parents, a class named Fset was

created. To speed lookups of the score values and optimal parents, each Fset was

directly indexed by the pair ()Ag, for which it was calculated.

The score criterion ()Ags , for computing the F scores was MDL. We defined an

mdl() function that took a gene g, the set A, and the given dataset as input and

Small Gene Networks: Finding Optimal Models

 -33-

calculated the score using the equations defined in Section 2.1.1.2. As explained, the

total description length consists of summing up the description length of the graph,

the conditional probability table of the variable g given its parents in set A, and the

length of encoding the data. Calculating graphMDL (Equation 5) and tableMDL

(Equation 6) is fairly easy, since we know the number of variables (nvar), the number

of values the data can take (cs), and the number of parents contained in the set A. To

calculate dataMDL is a little more complex. We record the frequencies of all possible

value combinations of gene g with parents in set A occurring in the dataset, and use

them for calculating the likelihood of g given its parents in set A (Equation 7). Taking

logs of this likelihood gives us the description length for the data.

3.2.3 Computing Q-scores

The function ()AQ takes as input a set A and returns g*, an element that is considered

to be the last element in the permutation of all elements of set A.

 { }() { } { }()()()gAMQgAgFg gA
Ag −+−= −

∈ ,minarg* (11)

Therefore, for a set A of cardinality m, the Q function involves looking up both F

scores and Q scores for subsets of cardinality m-1. Another class named Qset was

created to store the Q score values and g* element for a given set A. We also stored

the optimal parents of the g* element by looking up { }()**, gAgF − .

3.2.4 Output: Gene Matrix

By incrementing the cardinality of set A, we eventually compute the F and Q scores of

all Gg ∈ and all possible subsets GA ⊆ in the network. We now have all the

information we need to build the optimal gene network for the set of given genes. We

can figure out the optimal permutation or ordering of the variables in the network by

looking at the g* element stored in ()GQ . To find the next last element in the

ordering, we decrease the cardinality of set G and lookup the g* element in

{ }()*gGQ − . We do this repeatedly until we reach the empty set. To find the optimal

parents for each gene g in the ordering, we simply lookup the optimal parents

associated with each g* element stored in the Qset. The optimal permutation and the

Small Gene Networks: Finding Optimal Models

 -34-

optimal set of parents for each gene are used to compute an nvar x nvar gene matrix

that specifies child – parent relations between the gene variables.

3.3 Small Example

For a clear understanding of how the algorithm works, we present a small example.

Let’s say for instance that we have a network of three genes, a, b, and c. To find the

optimal model, we perform the following computations:

1. Compute ()AgF , for all subsets A of cardinality 0:

{ }() { }()
{ }() { }()
{ }() { }(),,

,,

,,

cscF

bsbF

asaF

=
=
=

2. Generate all possible subsets A of cardinality 1: { } { } { }cba ,,

3. Compute ()AQ for all subsets A of cardinality 1:

() { }()
() { }()
() { }() cgcFcQ

bgbFbQ

agaFaQ

=→=
=→=
=→=

*,

*,

*,

4. Compute ()AgF , for all subsets A of cardinality 1:

{ }() { }() { }(){ }
{ }() { }() { }(){ }
{ }() { }() { }(){ }
{ }() { }() { }(){ }
{ }() { }() { }(){ }
{ }() { }() { }(){ },min,,min,

,min,,min,

,min,,min,

,min,,min,

,min,,min,

,min,,min,

cFbcsbcF

cFacsacF

bFcbscbF

bFabsabF

aFcascaF

aFbasbaF

=
=
=
=
=
=

5. Generate all possible subsets A of cardinality 2: { } { } { }bcacab ,,

6. Compute ()AQ for all subsets A of cardinality 2:

() { }() () { }() (){ }
() { }() () { }() (){ }
() { }() () { }() (){ } cbgbQbcFcQcbFbcQ

cagaQacFcQcaFacQ

bagaQabFbQbaFabQ

|*,,,min

|*,,,min

|*,,,min

=→++=
=→++=
=→++=

Small Gene Networks: Finding Optimal Models

 -35-

7. Compute ()AgF , for all subsets A of cardinality 2:

{ }() { }() { }() { }(){ }{ }
{ }() { }() { }() { }(){ }{ }
{ }() { }() { }() { }(){ }{ }bcFacFabcsabcF

cbFabFacbsacbF

caFbaFbcasbcaF

,,,min,,min,

,,,min,,min,

,,,min,,min,

=
=
=

8. Generate all possible subsets A of cardinality 3: { }abc

9. Compute ()AQ for all subsets A of cardinality 3:

() { }() () { }() () { }() (){ } cbagabQabcFacQacbFbcQbcaFabQ ||*,,,,,min =→+++=

By increasing cardinality of the subset A, we have been able to recursively calculate

both the functions F and Q. No more computations needed to be carried out once the

cardinality of set A reached 3, the number of genes in the network. It should also be

noted that for computational reasons, we are able to remove the cached F score values

once they have been used up in calculating the Q scores.

In order to build the gene network from the above calculated scores, we do the

following:

1. Find ()abcQ and lookup the corresponding g* and optimal parents value. If

{ }() ()bcQbcaF +, is minimal, then ag =∗ , and its optimal parents are from the

set { }bc .

2. Find ()bcQ and lookup the corresponding g* and optimal parents value. If

{ }() ()bQbcF +, is minimal, then cg =∗ , and its optimal parents are from the set

{ }b .

3. Finally lookup ()bQ . The corresponding bg =∗ and optimal parents are from the

empty set { }.

The algorithm displays the optimal permutation as being acb ,, where a has parents

from the set { }bc and c has parents from the set { }b .

Small Gene Networks: Finding Optimal Models

 -36-

4 Results and Discussion

Most studies on inferring genetic networks assess the accuracy of their results on real

gene expression data by comparing predicted regulatory interactions with those

known from biological literature. Although we are able to estimate the number of true

interactions, there is yet no reliable way of quantifying the number of false edges

detected in the network. As Husmeier [2003] says, “It is impossible to decide without

doing more experiments whether an algorithm has discovered a new, previously

unknown interaction or whether it has flagged a spurious edge”. For this reason, it has

become increasingly necessary to test the viability of any genetic inference method on

synthetic data as well as real data.

The aim of the results and discussion presented in this chapter is two-fold. First, we

assess the effect of changing sample size and noise in the dataset using artificially

constructed networks. Can the method cope with noisy data and low number of

samples, features that are characteristic of microarray data? Secondly, we apply the

algorithm to real data, selected from the study by Kim et al. [2000] and compare the

results with those presented in the paper.

4.1 Synthetic Data

Two synthetic datasets have been used to see how much information from a known

network can be recovered under the varying conditions (number of samples, noise).

The first was a benchmark Bayesian network known as the ‘Asia Network’ consisting

of 8 variables while the other was a constructed network of 11 variables.

4.1.1 Asia Network

This is a very small Bayesian network proposed by Lauritzen et al. [1988] to help

diagnose patients arriving at a chest clinic (Figure 9). Each variable in the network

corresponds to some condition of the patient. The network consists of 8 discrete

variables with binary values (true, false) connected by 8 edges. The links between the

nodes indicate how the relationships between the nodes are structured. The two top

nodes, A and S are for predispositions which influence the likelihood of the diseases.

Small Gene Networks: Finding Optimal Models

 -37-

They link to nodes T, L, E, and B that represent internal conditions or failure states.

They in turn link to the nodes for observables i.e. the symptoms X and D.

Figure 9: The Asia Network

The set of conditional probability distributions for the network are described in Netica

[Norsys], the software that was used to generate the datasets. We chose to experiment

with nine sample sized datasets, ranging from 10 to 1000 in the number of samples.

For each sample size, the algorithm was applied to 5 different datasets, running a total

of 45 experiments on this network.

4.1.2 11-Node Network

Figure 10: 11-node Network

The second set of experiments was performed on the above artificial network (Figure

10). Unlike the Asia network, this network is not generated from a set of probability

distributions. To generate data, we specified a set of functions where the value of each

variable depends on the values of its parents in the network. Variable nodes 1, 2, 3

A: Visit to Asia
S: Smoking
T: Tuberculosis
L: Lung Cancer
B: Bronchitis
X: X-Ray
D: Dyspnea
E: Tuberculosis or Cancer

 T L

 A

 X

 B

 S

 D

 E

 1 3 2 11

 4
 5 7 6

 10

 8

 9

Small Gene Networks: Finding Optimal Models

 -38-

and 11 are independent, while the rest of the variables have at most three parents. The

functions describe linear as well as non-linear relationships among the variables. An

‘R’ script [Appendix C] provided by Sascha Ott used the set of functions to generate

continuous valued data for the network. Since we were using the MDL criterion to

score networks, we had to modify the script to output discrete data values. This was

done by normalisation – variable values within one standard deviation of the mean

were set to value 0. Values above and below this range were set to +1, and -1

respectively.

Two sets of experiments were performed on this network. First, we ran the algorithm

on 10 different sized datasets containing between 10 and 1000 samples. Secondly, to

try and simulate real microarray data, we introduced noise into the network. In order

to solely study the affect of noise, the experiments were run on large datasets each

containing 1000 samples. Seven different noise levels in the range of 0.01 and 0.5

were introduced into the data. We did not choose to experiment with levels greater

than 0.5 since that would mean that the values were being generated randomly. To

ensure validity, each experiment was repeated thrice, each time on a different dataset.

4.1.3 Performance Measures

Synthetic data allows us to quantify accuracy by looking at the similarities and

differences between the inferred network and the known network. There are four

possible outcomes when comparing the true network with the predicted model. If an

edge exists in the known network and is recovered by the model, it is counted as a

true positive (TP); if it is not recovered it is considered as a false negative (FN).

When both the network and inferred model agree on the absence of an edge, we have

a true negative (TN), while if the model infers an edge that does not exist in the

known network, we count the edge as false positive (FP). Figure 11 encapsulates the

above observations as a confusion matrix.

 Predicted Model

 Actual

 Network

Figure 11: Confusion matrix for gene network inference

 Edge No Edge

Edge True Positive False Negative

No Edge False Positive True Negative

Small Gene Networks: Finding Optimal Models

 -39-

We used receiver operator characteristics (ROC) graphs, the evaluation method

suggested by Husmeier [2003] to assess the efficiency of our gene network inference

method. It is as important to determine the number of true edges predicted as it is to

quantify the number of false edges predicted by the model. ROC graphs enable us to

judge the performance of a method on both these measures. The accuracy or

sensitivity of a model is defined as the proportion of recovered true edges, also known

as true positive rate.

True Positive Rate = ()FNTP

TP

+

Similarly, the proportion of recovered spurious edges is known as false positive rate

or complementary specificity of a model.

False Positive Rate = ()FPTN

FP

+

To assess our network inference algorithm, we analysed its output i.e. the matrix

denoting the predicted network. For each experiment, we plotted the model’s true

positive rate against its false positive rate to produce a single point located in two-

dimensional ROC space (Figure 12).

 Figure 12: An ROC graph showing three different network predictors

In the ROC graph above, Point A at location (1, 0) produces the optimal network.

Point B at location (0, 0) represents a method that is unable to infer any edges, while

Small Gene Networks: Finding Optimal Models

 -40-

point C at (0.5, 0.5) represents a method that infers true edges randomly. In general, a

model that produces a point located in the north-west region of the graph is said to be

a good network predictor. The idea is to maximise the number of true edge

predictions (high TP rate), while minimising the number of spurious edge predictions

(low FP rate) at the same time.

In Chapter 2, we had mentioned that networks belonging to the same equivalence

class cannot be distinguished by data alone. This means that our method could

possibly infer a network structure that is not the true known network, but belongs to

its equivalence class. For this reason, we decided to construct the PDAG (partial

DAG) matrix for both the Asia and 11-node network. Conversion of a DAG to a

PDAG was relatively easy and is explained by Chickering [1995] in his study on

Equivalent Bayesian Network structures.

For each experiment performed on both sets of synthetic data, the predicted model’s

DAG, or network matrix was compared with the DAG and PDAG matrices of the

actual network. For the 11-node network, we compared the predicted graph with an

additional matrix that considered justifiable inferences as true edges. For instance, if

we have a CBA →→ relationship in the network, a justifiable inference would be

that A is the parent of C, i.e. we considered indirect relationships as being true. This

new matrix was termed JDAG (justifiable DAG).

4.1.4 Results

This section presents the results of testing the performance of our method on synthetic

data. The effect of sample size was studied using both networks, while the noise

parameter was varied on the 11-node network. Complete set of results can be

consulted from Appendix A.

4.1.4.1 Effect of Sample Size

Figure 13 shows the ROC graph of the algorithm’s performance on the Asia network

dataset. The graph shows the average true positive and false positive rates since we

repeated the experiment on 5 different datasets for each sample size. The gene matrix

of the predicted model was compared to the directed acyclic DAG matrix of the

Small Gene Networks: Finding Optimal Models

 -41-

known network. As explained in the previous section, we had also compared the

predicted graph with the partial DAG structure of the known network. The true

positive and false positive rates for both the DAG and PDAG structures were almost

identical. Hence, we only present the results of the DAG structure here. As can be

seen from the graph below, there is a clear correlation between the number of samples

in the dataset and the accuracy of the algorithm. As the number of samples increase,

the models being inferred move closer towards the point location (1, 0) which denotes

the optimal model. We observe a steady rise in the true positive rate as the size of the

dataset increases, i.e. the proportion of true edges being recovered.

Figure 13: ROC graph for the Asia network, results being averaged over 5
runs. The graph shows the effect of varying sample size in the dataset.
Predicted model was compared with the directed acyclic graph (DAG) of the
known model.

In the above graph, we hardly notice a difference in the false positive rates. This could

be explained by the fact that the underlying model of the Asia network is itself a

Bayesian network. The optimal search algorithm is therefore highly unlikely to infer

spurious edges since it also is designed under the same framework. For interest, we

plotted the TP and FP rates for the five different datasets on which each sample size

was tested. The results are displayed in Figure 14, with the ROC graph zoomed in.

We can still observe the general pattern of larger sample sizes giving more accuracy.

Small Gene Networks: Finding Optimal Models

 -42-

For instance, the graph clearly demonstrates that a dataset of 10 samples is not at all

sufficient for recovering the true network. At the same time, we notice a fair amount

of variance in the performance of the large datasets. The true positive rate of a 400

sample large dataset for instance ranges between 0.5 – 0.9.

Figure 14: ROC graph for the Asia network. For each sample size tested, the
algorithm was applied to five different datasets. The graph shows the variance
in performance over the 5 datasets.

Figure 15: ROC graph for the 11-node network, results being averaged over
3 runs. The graph shows the effect of varying sample size in the dataset.
Predicted model was compared with the PDAG of the known model.

Small Gene Networks: Finding Optimal Models

 -43-

Figure 15 and 16 show the effect of sample size on the performance of the 11-node

network. The former is the ROC graph when comparing the predicted model to the

PDAG structure of the known network, while the latter compares it to the justifiable

directed acyclic graph (JDAG).

The performance of the method on the second synthetic dataset is not as good as the

performance on the Asia network. In general, most of the datasets have both the true

positive rates and false positive rates below 0.5. Datasets of size 10, 20, 40 and 60 are

clustered together in the south western region of the graph and are poor performers,

which is intuitive. Increasing the dataset size does improve performance in general

but there is no clearly defined pattern. Furthermore, the optimal search method seems

to be inferring a large amount of edges that are not present in the actual network. In

fact, larger sized datasets induce a higher number of spurious edges into the network,

causing the false positive rate to be high.

4.1.4.2 Effect of Noise in Data

The 11-node network was used to assess the effect of noise present in datasets

containing 1000 samples. Figure 17 shows the average results plotted in ROC space

Figure 16: ROC graph for the 11-node network, results being averaged over
3 runs. The graph shows the effect of varying sample size in the dataset.
Predicted model was compared with JDAG of the known model.

Small Gene Networks: Finding Optimal Models

 -44-

for the datasets with varying levels of noise incorporated. The first thing we notice is

that adding noise really only affects the proportion of true edges being recovered. The

proportion of false edges being inferred is almost constant over all the datasets.

Figure 17: ROC graph for the 11-node network, results being averaged over
3 runs. The graph shows the effect of varying noise levels in the dataset.

Figure 18: ROC graph for the 11-node network. Depicts the variance in
performance of the algorithm on datasets containing varying noise
parameters.

Small Gene Networks: Finding Optimal Models

 -45-

Secondly, we observe that the performance of the method actually increases when we

amplify the noise in the dataset. In fact, the best results are provided by the dataset

where the noise level is set to 0.2. This is somewhat puzzling. We plot the true

positive and false positive rates of each of the individual datasets tested (See Figure

18) and observe the variance in performance. We now observe that noisy datasets do

not always give better performance than datasets containing a lower level of noise.

Most if not all of the datasets show a large variance in performance, and it might just

be necessary to average the performance of the method over a larger number of

datasets than used in this study.

4.2 Microarray Data

After several experiments on artificially constructed data, we ran the algorithm on a

microarray dataset. Since our focus was on discretised data, we chose a dataset that

had already been discretised by Kim et al. [2000] in their study on gene networks.

This option was easier than obtaining continuous microarray data, selecting a subset

of genes using clustering and then discretising the values ourselves using some

arbitrary threshold.

Kim et al. [2000] used real microarray data from known gene response pathways of

ionizing radiation and downstream targets of inactivating gene mutations and

converted it into ternary expression data by thresholding the changes at the transcript

level. They used a perceptron network to predict relations among the genes, providing

a measure of confidence with their prediction. Several relations had been found that

were known from previous biological knowledge. Our program was provided with the

discretised dataset of 12 genes, and 30 samples. The resulting gene matrix obtained

was highly sparse and inferred a total of only nine relationships, some of which were

mentioned in the study.

Small Gene Networks: Finding Optimal Models

 -46-

4.3 Discussion

The results presented in the previous sections indicate that the optimal search

algorithm implemented in this project is indeed capable of inferring a network from a

given dataset. The algorithm was successful in reconstructing 7 out of 8 edges in the

Asia network from a dataset of 1000 samples, and reasonably successful at

reconstructing the network of the 11-node network. When applied to real microarray

data, the method constructed a highly sparse gene matrix, but inferred some

biologically meaningful gene relations.

Effect of Sample Size

Increasing the sample size of data generated from the Asia network showed very good

results. The method clearly demonstrated that large datasets increase the proportion of

true edges being inferred from the data. The results from experiments run on the 11-

node network were not as profound but still indicated that a large sample size would

result in higher accuracy. The findings are not surprising. In small datasets, the

number of edges being inferred in total is low since the dependencies encoded in the

data are statistically too insignificant to be picked up. In a large dataset however, we

have enough data to estimate the likelihood of a particular variable having another

variable as a parent in the network.

Several important observations were noted from the above experiments on sample

size. First of all, the method performed a lot better on the benchmark Bayesian

network than the self-constructed 11-node network. This can partly be explained by

the fact that both the network (Asia) and the algorithm used to infer the network (our

method) are defined using a Bayesian framework. Secondly, we observed that the

models inferred for the 11-node network consisted of a high number of false edges.

Moreover, for large datasets, this number of spurious edges increased further. The

high false positive rate was probably the main reason why we couldn’t get a strong

correlation between accuracy and sample size in the second test set (11-node

network). One explanation for the above could be that we had encoded linear as well

as non-linear relationships into the 11-node network. The MDL scoring criterion used

Small Gene Networks: Finding Optimal Models

 -47-

in the algorithm might have been unable to pickup the non-linear relations from the

network and instead introduced spurious edges to try and explain the relationships.

Effect of Noise in Data

The results obtained from introducing noise into the data were unexpected. At first

glance, we came to the conclusion that increasing the noise parameter somehow aids

the process of structural learning resulting in a higher number of true edges being

inferred. However, on performing more detailed analysis, it was revealed that the

results varied in their accuracy by a great deal. While some datasets performed

extremely well in very noisy conditions, others performed equally bad. Nevertheless,

we were unable to define a correlation between noise and accuracy. Intuition tells us

that noisy data distorts the actual values, and introduces errors into the learning of

network structure. Our results show otherwise. The problem could be due to the

method by which noise is incorporated in the dataset. Further analysis is required to

assess the affect of noise.

Small Gene Network

It must be noted that the method described in this project can only yet infer a gene

network for a small number of genes. Knowing that a real genetic network consists of

a large number of interacting genes, is this approach really justifiable?? We think it is.

First of all, in Section 1.1.2, we learnt about the properties of real biological networks.

Modularity is a key characteristic of genetic networks - genes tend to operate in small

clusters. An approach which looks at a small subset of genes in the network and

defines their interactions to a fine level of detail will always be more useful than an

approach which infers a small number of interactions among a large sparsely

connected network. Secondly, microarray datasets contain expression measurements

for a large number of genes, but a large proportion of them are not useful in

determining a gene network. The expression levels of several genes do not change, or

give enough information to infer a network, the genes that do relay information form

a small subset and can be used for further analysis. Finally the work of Ott & Miyano

[2003] relates the present work and provides methods of extending it to work with

larger gene subsets.

Small Gene Networks: Finding Optimal Models

 -48-

5 Conclusion

We now provide a summary of what has been achieved in this thesis. Our goal has

been to model the relationships among genes that exist in our biological systems. A

Bayesian network framework was used to learn the structure of a network from a

given dataset. Bayesian network models were found to be appropriate due to their

probabilistic approach. They are known to be good at dealing with the stochastic

nature of real biological systems and noisy characteristics of gene expression

measurements.

A dynamic programming technique was used to infer the optimal gene model. The

algorithm performed well on synthetic datasets, and gave biologically plausible

results when applied to real microarray data.

Small Gene Networks: Finding Optimal Models

 -49-

References

[Akutsu et al., 1999] Akutsu, T., Miyano, S., and Kuhara, S. Identification of Genetic

Networks from a Small Number of Gene Expression Patterns Under the Boolean

Network Model, Proc. Pacific Symposium on Biocomputing, 4: 17 – 28, 1999

[Alon 2003] Alon, U. Biological Networks: The Tinkerer as an Engineer, Science,

301: 1866 – 1867, 2003

[Brazhnik et al., 2002] Brazhnik, P., Fuente, A., and Mendes, P. Gene Networks: How

to put the Function in Genomics, Trends in Biotechnology, 20: 11: 467 – 472, 2002

[Brazma et al., 1998] Brazma, A., Jonassen, I., Vilo, J., and Ukkonen, E. Predicting

Gene Regulatory Elements in Silico on a Genomic Scale, Genome Res. 8: 1202 -

1215, 1998

[Brazma & Vilo 2000] Brazma, A., and Vilo, J. Minireview: Gene expression data

analysis, Federation of European Biochemical Societies, 480, 17-24, 2000.

[Buntine 1996] Buntine, W. A guide to the literature on learning probabilistic

networks from data, IEEE Transactions on Knowledge and Data Engineering, 8: 195

– 210, 1996

[Chen et al., 1999b] Chen, T., Hongyu, L. H., and Church, G. M. Modeling Gene

Expression with Differential Equations, Proc. Pacific Symposium of Biocomputing, 4:

29 - 40, 1999

[Chickering 1995] Chickering, D. M. A Transformational Characterization of

Equilavent Bayesian Network Structures, UAI’95: 87 – 98, 1995

[Cooper & Herskovits 1992] Cooper, G. F., and Herskovits, E. A Bayesian Method

for the Induction of Probabilistic Networks from Data, Machine Learning, 9: 309 –

347, 1992

Small Gene Networks: Finding Optimal Models

 -50-

[D’Haeseleer et al., 1999a] D’Haeseleer, P., Liang, S., and Somogyi, R. Tutorial:

Gene Expression Data Analysis and Modeling, Session on Gene Expression and

Genetic Networks, Proc. Pacific Symposium on Biocomputing, 1999

[D’Haeseleer et al., 1999b] D’Haeseleer, P., Liang, S., and Somogyi, R. Genetic

Network Inference: From Co-Expression Clustering to Reverse Engineering, Proc.

Pacific Symposium on Biocomputing, 1999

[De Hoon et al., 2002] De Hoon, M. J. L., Imoto, S., and Miyano, S. Inferring Gene

Regulatory Networks From Time-Ordered Gene Expression Data Using Differential

Equations, Lange, S., Satoh, K., Smith, C. H. (editors): Fifth International Conference

on Discovery Science, Germany, 2002

[De Hoon et al., 2003] De Hoon, M. J. L., Imoto, S., Kobayashi, K., Ogasawara, N.,

and Miyano, S. Inferring Gene Regulatory Networks From Time-Ordered Gene

Expression Data Of Bacillus Subtilis Using Differential Equations, Proc. of the

Pacific Symposium on Biocomputing, 8: 17 – 28, 2003

[De Jong 2002] De Jong, H. Modeling and Simulation of Genetic Regulatory

Systems: a Literature Review, Journal Of Computational Biology, 9-1: 67 – 103,

2002

[Dejori 2002] Dejori, M. Analyzing Gene Expression Data with Bayesian Networks,

Masters Thesis, Graz University of Technology, 2002

[Dutilh & Hogeweg 1999] Dutilh, B.E. and Hogeweg, P. Gene Networks from

Microarray Data, Report Bioinformatics, Utrecht University: (http://www-

binf.bio.uu.nl/dutilh/gene-networks), 1999

[Friedman & Goldszmidt 1998] Friedman, N., and Goldszmidt, M. Learning Bayesian

Networks with Local Structure, In Jordan, M. I. (Ed.), Kluwer Academic Publishers,

pp. 421 – 459, 1998

Small Gene Networks: Finding Optimal Models

 -51-

[Friedman et al., 2000] Friedman, N., Linial, M., Nachman I., and Pe’er, D. Using

Bayesian Networks to Analyze Expression Data, Journal of Computational Biology,

7: 601 – 620, 2000

[Fuente et al., 2002] Fuente, A., Brazhnik, P., and Mendes, P. Linking the Genes:

inferring quantitative gene networks from microarray data, Trends in Genetics, 18: 8:

395 – 398, 2002

[Golub et al., 1999] Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek

M., Mesirov J. P., Coller H., Loh M. L., Downing J. R., Caligiuri M. A., Bloomfield

C. D., and Lander E. S. Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring, Science, 286: 531-537, 1999

[Greenbaum et al., 2003] Greenbaum, D., Colangelo, C., Williams, K., and Gerstein,

M. Comparing protein abundance and mRNA expression levels on a genomic scale,

Genome Biology, 4:117, 2003

[Hartemink et al., 2001] Hartemink, J., Gifford, D. K., Jaakkola, T. S., and Young, R.

A. Using Graphical Models and Genomic Expression Data to Statistically Validate

Models of Genetic Regulatory Networks, Proc. Pacific Symposium on Biocomputing,

422 – 433, 2001

[Hartemink et al., 2002] Hartemink, J., Gifford, D. K., Jaakkola, T. S., and Young, R.

A. “Combining Location and Expression Data for Principled Discovery of Genetic

Regulatory Network Models”, Proceedings of Pacific Symposium on Biocomputing,

7: 437 – 449, 2002

[Heckerman 1998] Heckerman, D. A Tutorial on Learning with Bayesian Networks,

in M.I. Jordan ed., Kluwer Academic Publisher, 301 – 354, 1998

[Hunter 1993] Hunter, L. AI and Molecular Biology, Chapter 1: 1 - 46, AAAI Press,

1993 :(http://www.aaai.org//Library/Books/Hunter/01-Hunter.pdf)

Small Gene Networks: Finding Optimal Models

 -52-

[Husmeier 2003] Husmeier, D. Sensitivity and specificity of inferring genetic

regulatory interactions from microarray experiments with dynamic Bayesian

networks, Bioinformatics, 19 – 17: 2271 – 2282, 2003

[Imoto et al., 2002] Imoto, S., Goto, T., and Miyano, S. Estimation of Gene Networks

and Functional Structures between Genes by using Bayesian Networks and

Nonparametric Regression, Proc. Pacific Symposium on Biocomputing, 7: 175 – 186,

2002

[Imoto et al., 2003a] Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara,

S., and Miyano, S. Bayesian Network and Nonparametric Heteroscedastic Regression

for Nonlinear Modeling of Genetic Network, Journal of Bioinformatics and

Computational Biology, 1:231 - 252, 2003

[Imoto et al., 2003b] Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., and

Miyano, S. Combining Microarrays and Biological Knowledge for Estimating Gene

Networks via Bayesian Networks, Proc. Computational Systems Bioinformatics, 2003

[Kerr et al., 2001] Kerr, M. K. and Churchill, G.A. Statistical design and the analysis

of Gene Expression Microarrays, Genet. Res, 77: 123 – 128, 2001

[Kim et al., 2000] Kim, S., Dougherty, E.R., Chen, Y., Sivakumar, K., Meltzer, P.,

Trent, J. M., and Bittner, M. Multivariate Measurement of Gene Expression

Relationships, Genomics, 67: 201 – 209, 2000

[Lauritzen et al., 1988] Lauritzen, S. L. and Spiegelhalter, D. J. Local computations

with probabilities on graphical structures and their application to expert systems,

Journal Royal Statistics Society B, 50(2): 157-194, 1988

[Nariai et al., 2004] Nariai, N., Kim, S., Imoto, S., and Miyano, S. Using protein-

protein interactions for refining gene networks estimated from microarray data by

Bayesian Networks, Proc. Pacific Symposium on Biocomputing, 9: 336 – 347, 2004

[Norsys] Network library of Norsys Software Corp. http://www.norsys.com/netlib/

Small Gene Networks: Finding Optimal Models

 -53-

[Ott et al., 2004] Ott, S., Imoto, S., and Miyano, S. Finding Optimal Models for Small

Gene Networks, Proc. Pacific Symposium on Biocomputing, World Scientific,

Singapore, 556 – 567, 2004

[Ott & Miyano 2003] Ott, S., and Miyano, S. Finding Optimal Gene Networks Using

Biological Constraints, Genome Informatics, 14: 124 – 133, 2003

[Pearl 1988] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, pages 116 – 131, Morgan Kaufmann, San Francisco, CA, 1988

[Pe’er et al., 2001] Pe’er, D., Regev, A., Elidan, G., and Friedman, N. Inferring

subnetworks from perturbed expression profiles, Bioinformatics, 17, Suppl. 1 (ISMB

2001): S215-224, 2001

[Segal et al., 2002] Segal, E., Barash, Y., Simon, I., Friedman, N., and Koller, D.

From promoter sequence to expression: a probabilistic framework, Bioinformatics,

Proc. 6th Annual International Conference on Research in Computational Molecular

Biology (RECOMB), 6: 263 – 272, 2002

[Szallasi 2001] Szallasi, Z. Tutorial: Genetic network analysis - From the bench to

computers and back, Proc. 2nd International Conference on Systems Biology, 2001

[Tabus & Astola 2001] Tabus, and Astola, J. On the Use of MDL Principle in Gene

Expression Prediction, Journal of Applications for Signal Processing, 4: 297 - 303,

2001.

[Weaver et al., 1999] Weaver, D. C., Workman, C. T., and Stormo, G. D. Modelling

Regulatory Networks with Weight Matrices, Proc. Pacific Symposium on

Biocomputing, 4: 112 – 123, 1999

Small Gene Networks: Finding Optimal Models

 -54-

Appendix A : Results Tables

DAG
 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
Numbe

r of
Sampl

es
TP

rate
FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

Avera
ge TP
Rate

Avera
ge FP
Rate

10 0.000 0.000 0.125 0.000 0.125 0.036 0.000 0.036 0.000 0.000 0.050 0.014
20 0.250 0.000 0.250 0.054 0.000 0.036 0.125 0.000 0.000 0.036 0.125 0.025
40 0.250 0.018 0.250 0.018 0.500 0.036 0.250 0.000 0.125 0.036 0.275 0.021
80 0.500 0.018 0.250 0.054 0.500 0.054 0.500 0.000 0.250 0.054 0.400 0.036
100 0.250 0.036 0.625 0.018 0.500 0.018 0.625 0.000 0.625 0.000 0.525 0.014
200 0.500 0.054 0.625 0.036 0.750 0.000 0.625 0.054 0.500 0.036 0.600 0.036
400 0.625 0.054 0.875 0.000 0.625 0.036 0.625 0.036 0.500 0.054 0.650 0.036
800 0.625 0.036 0.875 0.000 0.625 0.036 0.500 0.054 0.875 0.000 0.700 0.025
1000 0.750 0.018 0.500 0.054 0.875 0.000 0.875 0.000 0.875 0.000 0.775 0.014

PDAG
 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
Numbe

r of
Sampl

es
TP

rate
FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

TP
rate

FP
rate

Avera
ge TP
Rate

Avera
ge FP
Rate

10 0.000 0.000 0.091 0.000 0.091 0.038 0.091 0.019 0.000 0.000 0.055 0.011
20 0.182 0.000 0.182 0.057 0.000 0.038 0.091 0.000 0.000 0.038 0.091 0.026
40 0.182 0.019 0.182 0.019 0.364 0.038 0.182 0.000 0.091 0.038 0.200 0.023
80 0.364 0.019 0.182 0.057 0.545 0.019 0.364 0.000 0.182 0.057 0.327 0.030
100 0.182 0.038 0.545 0.000 0.364 0.019 0.455 0.000 0.455 0.000 0.400 0.011
200 0.455 0.038 0.545 0.019 0.545 0.000 0.636 0.019 0.455 0.019 0.527 0.019
400 0.636 0.019 0.636 0.000 0.636 0.000 0.545 0.019 0.545 0.019 0.600 0.011
800 0.636 0.000 0.636 0.000 0.636 0.000 0.545 0.019 0.636 0.000 0.618 0.004
1000 0.545 0.019 0.545 0.019 0.636 0.000 0.636 0.000 0.636 0.000 0.600 0.008

Performance of Asia Network

DAG
 Rep 1 Rep 2 Rep 3 Average
Number

of
Samples

TP
Rate

FP
Rate

TP
Rate

FP
Rate

TP
Rate

FP
Rate

Averag
e TP
Rate

Averag
e FP
Rate

10 0.273 0.027 0.182 0.018 0.091 0.036 0.182 0.027
20 0.364 0.082 0.182 0.136 0.364 0.100 0.303 0.106
40 0.455 0.118 0.000 0.136 0.091 0.164 0.182 0.139
60 0.182 0.109 0.455 0.109 0.182 0.164 0.273 0.127
80 0.545 0.127 0.364 0.145 0.455 0.100 0.455 0.124
100 0.455 0.236 0.636 0.255 0.364 0.182 0.485 0.224
200 0.455 0.345 0.364 0.309 0.455 0.336 0.424 0.330
400 0.364 0.245 0.455 0.273 0.273 0.309 0.364 0.276
800 0.364 0.264 0.545 0.255 0.273 0.264 0.394 0.261
1000 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252

Small Gene Networks: Finding Optimal Models

 -55-

5000 0.636 0.218 0.636 0.218
10000 0.455 0.273 0.455 0.273

PDAG
 Rep 1 Rep 2 Rep 3 Average
Number

of
Samples

TP
Rate

FP
Rate

TP
Rate

FP
Rate

TP
Rate

FP
Rate

Averag
e TP
Rate

Averag
e FP
Rate

10 0.250 0.028 0.167 0.018 0.083 0.037 0.167 0.028
20 0.417 0.073 0.167 0.138 0.333 0.101 0.306 0.104
40 0.500 0.110 0.083 0.128 0.167 0.156 0.250 0.131
60 0.250 0.101 0.417 0.110 0.167 0.165 0.278 0.125
80 0.583 0.119 0.333 0.147 0.417 0.101 0.444 0.122
100 0.417 0.239 0.583 0.257 0.333 0.183 0.444 0.226
200 0.417 0.349 0.333 0.312 0.500 0.330 0.417 0.330
400 0.417 0.239 0.583 0.257 0.250 0.312 0.417 0.269
800 0.417 0.257 0.500 0.257 0.333 0.257 0.417 0.257
1000 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251
5000 0.583 0.220 0.583 0.22
10000 0.417 0.275 0.417 0.275

JDAG
 Rep 1 Rep 2 Rep 3 Average
Number

of
Samples

TP
Rate

FP
Rate

TP
Rate

FP
Rate

TP
Rate

FP
Rate

Averag
e TP
Rate

Averag
e FP
Rate

10 0.222 0.019 0.111 0.019 0.056 0.039 0.130 0.026
20 0.222 0.087 0.167 0.136 0.222 0.107 0.204 0.110
40 0.333 0.117 0.000 0.146 0.167 0.155 0.167 0.139
60 0.167 0.107 0.389 0.097 0.111 0.175 0.222 0.126
80 0.444 0.117 0.444 0.117 0.444 0.078 0.444 0.104
100 0.333 0.243 0.611 0.233 0.389 0.165 0.444 0.214
200 0.556 0.320 0.500 0.282 0.500 0.320 0.519 0.307
400 0.222 0.262 0.278 0.291 0.444 0.282 0.315 0.278
800 0.278 0.272 0.611 0.223 0.389 0.243 0.426 0.246
1000 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243
5000 0.611 0.194 0.611 0.194
10000 0.444 0.262 0.444 0.262

Performance of 11-node Network (number of samples)

DAG
 Rep 1 Rep 2 Rep 3 Average

Noise
TP

Rate
FP

Rate
TP

Rate
FP

Rate
TP

Rate
FP

Rate

Averag
e TP
Rate

Averag
e FP
Rate

0 0.273 0.264 0.364 0.255 0.545 0.236 0.394 0.252
1 0.545 0.236 0.545 0.236 0.364 0.255 0.485 0.242
2 0.455 0.245 0.364 0.255 0.273 0.264 0.364 0.255
5 0.091 0.282 0.364 0.255 0.455 0.236 0.303 0.258
10 0.273 0.273 0.545 0.236 0.636 0.227 0.485 0.245

Small Gene Networks: Finding Optimal Models

 -56-

20 0.545 0.236 0.455 0.245 0.727 0.209 0.576 0.230
50 0.273 0.264 0.545 0.236 0.545 0.236 0.455 0.245

PDAG
 Rep 1 Rep 2 Rep 3 Average

Noise
TP

Rate
FP

Rate
TP

Rate
FP

Rate
TP

Rate
FP

Rate

Averag
e TP
Rate

Averag
e FP
Rate

0 0.250 0.266 0.417 0.248 0.500 0.239 0.389 0.251
1 0.500 0.239 0.500 0.239 0.333 0.257 0.444 0.245
2 0.417 0.248 0.333 0.257 0.333 0.257 0.361 0.254
5 0.167 0.275 0.417 0.248 0.500 0.229 0.361 0.251
10 0.250 0.275 0.500 0.239 0.583 0.229 0.444 0.248
20 0.500 0.239 0.500 0.239 0.667 0.211 0.556 0.229
50 0.333 0.257 0.500 0.239 0.429 0.243 0.421 0.246

JDAG
 Rep 1 Rep 2 Rep 3 Average

Noise
TP

Rate
FP

Rate
TP

Rate
FP

Rate
TP

Rate
FP

Rate

Averag
e TP
Rate

Averag
e FP
Rate

0 0.333 0.252 0.278 0.262 0.556 0.214 0.389 0.243
1 0.611 0.204 0.444 0.233 0.333 0.252 0.463 0.230
2 0.444 0.233 0.611 0.204 0.278 0.262 0.444 0.233
5 0.056 0.301 0.556 0.214 0.444 0.223 0.352 0.246
10 0.167 0.291 0.500 0.223 0.500 0.223 0.389 0.246
20 0.500 0.223 0.556 0.214 0.722 0.175 0.593 0.204
50 0.278 0.262 0.667 0.194 0.444 0.233 0.463 0.230

Performance of 11-node Network (noise)

Small Gene Networks: Finding Optimal Models

 -57-

Appendix B – Source Code

Ott.cpp
#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <algorithm>

#include "Scores.cpp"
#include "GenSubset.cpp"
#include "MDL.cpp"
#include "Results.cpp"

using namespace std;

int nvar = 11;
double ns = 1000; // no: samples
double cv = 3; // 2 values
int cal = 2;

int AsiaMat[8] [8];
int SynMat[11] [11];

string Data[] =
{
""
};

map < set < int >, Qset > QMap;
map < Fpair, Fset > FMap;

vector < set < int > >::iterator it;
vector < set < int > >::iterator it2;
set < int >::iterator sit;
set < int >::iterator sit1;
map < set < int >, Qset >::iterator iter;
map < Fpair, Fset >::iterator iter2;

void display(map < set < int >, Qset > a)
{
 for (iter = a.begin(); iter != a.end(); iter++)
 {
 display("QSet =", iter->first);
 cout << ", Score = ";
 display(iter->second);
 }
}

void display(map < Fpair, Fset > b)
{
 for (iter2 = b.begin(); iter2 != b.end(); iter2+ +)
 {
 cout << "F=";
 display(iter2->first);
 cout << ", Score= ";
 display(iter2->second);
 }
}

Small Gene Networks: Finding Optimal Models

 -58-

void minF(float mval, Fpair mm1, int & mres)
{
 if (mval <= FMap[mm1].get_Fval())
 {
 mres = 1;
 }
 else
 {
 mres = 2;
 }
}

int main()
{
 int mres;
 float mval;
 float mqval = 1000000;
 float mqval1;
 set < int, less < int > > s; //geneset
 set < int > tset; //temp set
 set < int > dset; //difference set
 set < int > res; //result set
 set < int > res1; // intern result set
 set < int > mmres; // mdl result set
 set < int > eset; //empty set
 vector < set < int > > SetList;
 vector < set < int > > SList;
 vector < set < int > > S1List;
 Qset Qrec;
 Fset Frec;

 for (int i = 1; i <= nvar; i++) s.insert(i);
 display("S = ", s);
 cout << endl;

 // Compute F(g,{}) for each gene g: cardinality 0
 cout << "Generating sets of cardinality 0:" << en dl;
 cout << "Adding F-scores for each (g,{})" << endl ;
 for (int i = 1; i <= nvar; i++)
 {
 tset.insert(i);
 float r = mdl(tset, res, nvar, ns, cv, Data);
 Frec.sFval(r);
 Frec.sFpar(res);
 FMap[Fpair(tset, res)] = Frec;
 tset.clear();
 }
 cout << "Adding Q({})" << endl;
 QMap[res] = Qrec;
 // display(FMap);

 // Compute F(g,A) for each gene g and subset A: c ardinality 1
 cout << "Generating sets of cardinality 1:" << en dl;
 cout << "Adding F-scores for each (g,{})" << endl ;
 for (int i = 1; i <= nvar; i++)
 {
 tset.insert(i);
 set_diff(s, tset, dset);
 int kk = dset.size();
 int * string = new int[kk];

Small Gene Networks: Finding Optimal Models

 -59-

 generate(string, 0, 1, kk, dset, & SList);
 delete[] string;
 dset.clear();

 {
 for (it = SList.begin(); it != SList.end(); it++)
 {
 res = * it;
 float r = mdl(tset, res, nvar, ns, cv, Dat a);
 // F(a,{b}) = min { mdl(a,{b}), F(a,{}) }
 minF(r, Fpair(tset, eset), mres);
 if (mres == 2)
 {
 Frec.sFval(FMap[Fpair(tset, eset)].get _Fval());
 Frec.sFpar(eset);
 }
 else
 {
 Frec.sFval(r);
 Frec.sFpar(res);
 }
 FMap[Fpair(tset, res)] = Frec;
 }
 SList.resize(0);
 }
 tset.clear();
 }
 //display (FMap);

 cout << "Adding Q{A} for A of cardinality 1" << e ndl;
 int * string = new int[nvar];
 generate(string, 0, 1, nvar, s, & SetList);
 delete[] string;
 //display("List: ", SetList);
 {
 for (it = SetList.begin(); it != SetList.end() ; it++)
 {
 // Q{a} = F(a,{})
 res = * it;
 Qrec.setQval(FMap[Fpair(res, eset)].get_Fv al());
 Qrec.set_optg(res);
 Qrec.setQpar(FMap[Fpair(res, eset)].get_pa rs());
 QMap[res] = Qrec;
 //display("Qset = ", res);
 //cout << "Score=";
 //display(Qrec);
 // Clear F values of sets cardinality 0
 FMap.erase(Fpair(res, eset));
 }
 }
 SetList.resize(0);

 for (int g = 1; g < nvar - 1; g++)
 // for (int g = 1; g < 2; g++)
 {

 // Compute F(g,A) for each gene g and subset A: cardinality g+1
 cout << "Generating sets of cardinality " << g + 1 << ":" <<
endl;
 cout << "Adding F-scores" << endl;

Small Gene Networks: Finding Optimal Models

 -60-

 for (int i = 1; i <= nvar; i++)
 {
 tset.insert(i);
 set_diff(s, tset, dset);
 int kk = dset.size();
 int * string = new int[kk];
 generate(string, 0, g + 1, kk, dset, & SList);
 delete[] string;
 {
 for (it = SList.begin(); it != SList.end() ; it++)
 {
 res = * it;
 int ss = res.size();
 float r = mdl(tset, res, nvar, ns, cv, D ata);
 // F(a,{b}) = min { mdl(a,{b}), F(a,{}) }
 int * string = new int[ss];
 generate(string, 0, g, ss, res, & S1List);
 delete[] string;
 mval = r;
 mmres = res;

 for (it2 = S1List.begin(); it2 != S1List .end(); it2++)
 {
 res1 = * it2;
 minF(mval, Fpair(tset, res1), mres) ;
 if (mres == 2)
 {
 mval = FMap[Fpair(tset, res1)].get_ Fval();
 //mmres = res1;
 mmres = FMap[Fpair(tset, res1)].get _pars();
 }
 }
 Frec.sFval(mval);
 Frec.sFpar(mmres);
 FMap[Fpair(tset, res)] = Frec;
 S1List.resize(0);
 }
 SList.resize(0);
 mmres.clear();
 }
 dset.clear();
 tset.clear();
 }

 //display(FMap);

 cout << "Adding Q{A} for A of cardinality:" << g + 1 << endl;
 int * string = new int[nvar];
 generate(string, 0, g + 1, nvar, s, & SetList);
 delete[] string;
 for (it = SetList.begin(); it != SetList.end() ; it++)
 {
 res = * it;
 for (sit = res.begin(); sit != res.end(); si t++)
 {
 tset.insert(* sit);
 set_diff(res, tset, dset);
 mqval1 = (FMap[Fpair(tset, dset)].get_Fv al()) + (
QMap[dset].get_Qval());
 if (mqval1 <= mqval)
 {

Small Gene Networks: Finding Optimal Models

 -61-

 mqval = mqval1;
 Qrec.setQval(mqval1);
 Qrec.set_optg(tset);
 Qrec.setQpar(FMap[Fpair(tset, dset)].g et_pars());

 }

 tset.clear();
 dset.clear();
 }
 mqval = 100000;
 QMap[res] = Qrec;
 //display("Qset = ", res);
 //cout << "Score=";
 //display(Qrec);
 }

 SetList.resize(0);

 // Removing F{g,{A}} for A of cardinality g
 cout << " Removing Fvalues for A of cardinality " << g << endl;
 for (int i = 1; i <= nvar; i++)
 {
 tset.insert(i);
 set_diff(s, tset, dset);
 int kk = dset.size();
 int * string = new int[kk];
 generate(string, 0, g, kk, dset, & SList);
 delete[] string;
 {
 for (it = SList.begin(); it != SList.end() ; it++)
 {
 res = * it;
 FMap.erase(Fpair(tset, res));
 }
 }
 tset.clear();
 dset.clear();
 SList.resize(0);
 }
 }

 cout << "Adding Q{A} for A of cardinality:" << nv ar << endl;
 int * sring = new int[nvar];
 generate(sring, 0, nvar, nvar, s, & SetList);
 delete[] sring;
 display("List: ", SetList);
 mqval = 100000;
 for (it = SetList.begin(); it != SetList.end(); it++)
 {
 res = * it;
 for (sit = res.begin(); sit != res.end(); sit+ +)
 {
 tset.insert(* sit);
 set_diff(res, tset, dset);
 mqval1 = (FMap[Fpair(tset, dset)].get_Fval ()) + (
QMap[dset].get_Qval());
 if (mqval1 <= mqval)
 {
 mqval = mqval1;
 Qrec.setQval(mqval1);

Small Gene Networks: Finding Optimal Models

 -62-

 Qrec.set_optg(tset);
 Qrec.setQpar(FMap[Fpair(tset, dset)].get _pars());
 }

 tset.clear();
 dset.clear();
 }
 mqval = 100000;
 QMap[res] = Qrec;
 //display("Qset = ", res);
 //cout << "Score=";
 //display(Qrec);
 }
 SetList.resize(0);
 // display(QMap);

 // Removing F{g,{A}} for A of cardinality nvar-1
 cout << " Removing Fvalues for A of cardinality " << nvar - 1 <<
endl;
 for (int i = 1; i <= nvar; i++)
 {
 tset.insert(i);
 set_diff(s, tset, dset);
 int kk = dset.size();
 int * string = new int[kk];
 generate(string, 0, nvar - 1, kk, dset, & SLis t);
 delete[] string;
 {
 for (it = SList.begin(); it != SList.end(); it++)
 {
 res = * it;
 FMap.erase(Fpair(tset, res));
 }
 }
 tset.clear();
 dset.clear();
 SList.resize(0);
 }

 // display(FMap);
 //Printing solution in gene matrix form
 {
 for (int i = 0; i < nvar; i++) {
 for (int j = 0; j < nvar; j++) {
 if (cal == 1) { AsiaMat[i] [j] = 0; }
 else { SynMat[i] [j] = 0; }
 }
 }
 }

 display("S = ", s);
 {
 for (int i = 0; i < nvar; i++)
 {
 sit = QMap[s].get_optg().begin();
 int l = * sit;
 cout << (l) < ",";
 for (sit1 = QMap[s].get_par().begin(); sit1 !=
QMap[s].get_par().end(); sit1++)
 {
 int k = * sit1;

Small Gene Networks: Finding Optimal Models

 -63-

 cout << k;
 if (cal == 1)
 { AsiaMat[l - 1] [k - 1] = 1; }
 else
 { SynMat[l - 1] [k - 1] = 1; }
 }
 cout << ")" << endl;
 set_diff(s, QMap[s].get_optg(), dset);
 s.clear();
 s = dset;
 dset.clear();
 display("S = ", s);
 }
 }
 cout << endl;

//Compare with others to get true positive and fals e positive rates
if(cal==1)
{
 roc(AsiaMat,AsiaD,nvar);
 roc(AsiaMat,AsiaPD,nvar);
}
else
{
 roc1(SynMat,SynD,nvar);
 roc1(SynMat,SynPD,nvar);
 roc1(SynMat,SynJD,nvar);
}

}

MDL.cpp
#include <iostream>
#include <stdio>
#include <math>
#include <set>
#include <vector>
#include <map>
#include <string>

#include "factorial.cpp"
#include "mclass.cpp"

using namespace std;

double lg2(double xx)
{
 if (xx==0.0) {
 return 0;
 }
 else{
 return log(xx) / log(2);
 }
}

void display(map < string, mclass > a)
{

Small Gene Networks: Finding Optimal Models

 -64-

 map < string, mclass >::iterator it0;
 for (it0 = a.begin(); it0 != a.end(); it0++)
 {
 cout << "(" << it0->first << " , ";
 display(it0->second);
 cout << ") " << endl;
 }
}

float mdl(set < int > first, set < int > last, int nvar,double
ns,double cv, string Data[])
{
// double ns = 10; // no: samples
 // double cv = 2; // 2 values

 map < string, mclass > MMap;
 map < string,mclass>::iterator it1;
 set < int >::iterator its1;
 set < int >::iterator its2;
 mclass mc;
 double cnt0 = 0.0;
 double cnt1 = 0.0;
 double cnt2 = 0.0;
 char psent;

 string hold = "";

 int P = last.size(); // no: parents of given vari able

 double bin = combination(nvar, P);
 double mdl_graph = lg2(nvar) + lg2(bin);
//double mdl_table = 0.5 * pow(cv, P) * (cv - 1) * lg2(ns);
 double mdl_table = 0.5 * P * (cv - 1) * lg2(ns);
 double mdl_data = 0.0;

 if (P == 0)
 {
 its1 = first.begin();
 int sres = * its1;

 for (int x = 0; x < ns; x++)
 {
 if ((Data[x]) [sres - 1] == '0')
 {
 cnt0 = cnt0 + 1;
 }
 else if ((Data[x]) [sres - 1] == '1')
 {
 cnt1 = cnt1 + 1;
 }
 else
 {
 cnt2 = cnt2 + 1;
 }

 }

 int temp = cnt0 + cnt1+ cnt2;
 mdl_data = -
1*((cnt0*lg2((cnt0/temp)))+(cnt1*lg2((cnt1/temp)))+ (cnt2*lg2((cnt2/te

Small Gene Networks: Finding Optimal Models

 -65-

mp))));
 }

 else
 {
 its1 = first.begin();
 int sres1 = * its1;

 for (int x = 0; x < ns; x++)
 {
 psent = (Data[x]) [sres1 - 1];
 for (its2 = last.begin(); its2 != last.end() ; its2++)
 {
 int sres = * its2;
 hold = hold + (Data[x]) [sres - 1];
 }

 if (psent == '0')
 {
 cnt0 = MMap[hold].gf1();
 MMap[hold].sf1(cnt0 + 1);
 }
 else if (psent == '1')
 {
 cnt1 = MMap[hold].gf2();
 MMap[hold].sf2(cnt1 + 1);
 }
 else
 {
 cnt2 = MMap[hold].gf3();
 MMap[hold].sf3(cnt2 + 1);
 }
 hold = "";
 }

 mdl_data = 0.0;
 for (it1 = MMap.begin(); it1 != MMap.end(); it 1++)
 {
 double m1 = it1->second.gf1();
 double m2 = it1->second.gf2();
 double m3 = it1->second.gf3();
 double m4 = it1->second.gsum();

 mdl_data = mdl_data + (m1*lg2(m1/m4))+ (m2*lg2(m2/m4))+
(m3*lg2(m3/m4));
 }

 mdl_data = -1 * mdl_data;
 }

 return mdl_graph + mdl_table + mdl_data;
}

Small Gene Networks: Finding Optimal Models

 -66-

Appendix C

Script for generating data for the 11-node network

#-- -----------------
generation of synthetic microarray data with R (i nclude module ggm)
author: Sascha Ott

two-dimensional list of functions as input for sy nthetic_data
single_valued_functions <- list(function(x) 33*(1/(5+exp(x))),
 function(x) 0.9*x,
 function(x)
sign(x)*(abs(1.4*x)^0.5),
 function(x)
1/(0.2+exp(5*x)))
two_valued_functions <- list(function(x,y) 0.7*x+y)
three_valued_functions <- list(function(x,y,z) x+1. 1*y+1.4*z)
function_list <-
list(single_valued_functions,two_valued_functions,t hree_valued_functions)
n-th item must be a list of n-ary functions

example graph input
network <- DAG(n1 ~ n1, n2 ~ n2, n3 ~ n3, n4 ~ n1, n5 ~ n2+n3,
 n6 ~ n2+n11, n7 ~ n2, n8 ~ n4+n6+n7, n9 ~ n 6, n10 ~ n5, n11
~ n11, order = FALSE)

function for generation of synthetic data
synthetic_data <- function(graph,functionlist,noise ratio,arraynumber) {
 topologicalsort <- topOrder(graph)
 num_genes <- length(topologicalsort)
 # assign functions to genes
 num_dim <- length(functionlist)
 positions <- vector('integer',num_dim)
 function_assignment <- vector('integer',num_genes)
 for (i in seq(1,num_genes,1)) {
 num_parents <- sum(graph[,i])
 if (num_parents>num_dim)
 stop("Number of parents too high for supplied
functions!")
 else
 if (num_parents!=0) {
 function_assignment[i] <-
positions[num_parents]+1
 positions[num_parents] <-
positions[num_parents]+1
 if
(positions[num_parents]==length(functionlist[[num_p arents]]))
 positions[num_parents] <- 0
 }
 }
 # apply functions
 arraydata <- matrix(0,num_genes,arraynumber)
 for (i in seq(1,num_genes,1)) {
 actualgene <- topologicalsort[i]
 num_parents <- sum(graph[,actualgene])
 parents <- vector('integer',num_parents)
 pos <- 1
 for (k in seq(1,num_genes,1)) {
 if (graph[k,actualgene]) {
 parents[pos] <- k

Small Gene Networks: Finding Optimal Models

 -67-

 pos <- pos+1
 }
 }
 for (j in seq(1,arraynumber,1)) {
 if (num_parents==0)
 arraydata[actualgene,j] <- rnorm(1,mean=0,sd=1)
 else {
 if (num_parents==1)
 arraydata[actualgene,j] <-
functionlist[[1]][[function_assignment[actualgene]]](arraydata[parents[1]
,j])
 else {
 if (num_parents==2)
 arraydata[actualgene,j] <-
functionlist[[2]][[function_assignment[actualgene]]](arraydata[parents[1]
,j],arraydata[parents[2],j])
 else {
 if (num_parents==3)
 arraydata[actualgene,j] <-
functionlist[[3]][[function_assignment[actualgene]]](arraydata[parents[1]
,j],

 arraydata[parents[2],j],

 arraydata[parents[3],j])
 else
 stop("This case is not
implemented.")
 }
 }
 }
 }
 if (num_parents>0) {
 # OLD sdthisgene <- (max(arraydata[actualgene,]) -
min(arraydata[actualgene,]))*noiseratio
 sdthisgene <- sd(arraydata[actualgene,])*noisera tio
 arraydata[actualgene,] <- arraydata[actualgene,] +
rnorm(arraynumber,mean=0,sd=sdthisgene)
 }
 }
 arraydata
}

function call
#data <- synthetic_data(network,function_list,0.5,1 0)

#-- ----------------------
-
normalise and add measurement error (above is onl y system error)
normalise_and_add_error <- function(data,measuremen tnoisesd) {
 for (i in seq(1,dim(data)[1],1)) {
 genemean = mean(data[i,])
 genesd = sd(data[i,])
 for (j in seq(1,dim(data)[2],1)) {
 data[i,j] = (data[i,j]-genemean)/genesd
 }
 }

Small Gene Networks: Finding Optimal Models

 -68-

 for (i in seq(1,dim(data)[1],1)) {
 for (j in seq(1,dim(data)[2],1)) {
 data[i,j] =
data[i,j]+rnorm(1,mean=0,sd=measurementnoisesd)
 }
 }
 data
}

function call
#normdata <- normalise_and_add_error(data,0.0)

#-- ----------------------
-
output data to BN-software-compatible file
write_data <- function(getdata,filename,geneorder) {
 data = matrix(0,dim(getdata)[1],dim(getdata)[2])
 for (i in seq(1,dim(getdata)[1],1)) {
 data[geneorder[i],] = getdata[i,]
 }

 write(t(data),file=filename,append=FALSE,ncolumns= dim(data)[2])
 rownames <- vector('character',dim(data)[1])
 for (i in seq(1,dim(data)[1],1)) {
 rownames[i] <- paste(sep="",'gene',i,"\t",'gene' ,i)
 }
 now_as_a_table <- read.table(file=filename,row.nam es=rownames)
 write.table(now_as_a_table,file=filename,col.names =FALSE,sep='\t')
 }

#function call
#write_data(data,'C:\\Documents and Settings\\Shiva \\My
Documents\\Edinburgh\\Project\\R_outputfile.txt',c(1,2,3,4,5,6,11,7,8,9,1
0)) # ggm orders nodes non-intuitively
#write_data(normdata,'C:\\Documents and Settings\\S hiva\\My
Documents\\Edinburgh\\Project\\R_normout.txt',c(1,2 ,3,4,5,6,11,7,8,9,10))
ggm orders nodes non-intuitively

#-- ----------------------
-
normalise for discrete data
norm_discrete <- function(data) {
 for (i in seq(1,dim(data)[1],1)) {
 genemean = mean(data[i,])
 genesd = sd(data[i,])
 for (j in seq(1,dim(data)[2],1)) {
 if (data[i,j]< (genemean-genesd))data[i,j] = -1. 0
 else {
 if (data[i,j]> (genemean+genesd)) data[i,j] =
1.0
 else data[i,j]=0
 }
 }
 }
 data
}

function call
#discretedata <- norm_discrete(normdata)
#write_data(discretedata,'C:\\Documents and Setting s\\Shiva\\My
Documents\\Edinburgh\\Project\\R_discout.txt',c(1,2 ,3,4,5,6,11,7,8,9,10))

Small Gene Networks: Finding Optimal Models

 -69-

ggm orders nodes non-intuitively

#-- ----------------------
-
build series of data sets
produce_data_sets <-
function(network,function_list,systemerror,variance _vector,array_number_v
ector,repetition_number,basicfilename,geneorder) {
 for (i in seq(1,length(variance_vector))) {
 for (j in seq(1,length(array_number_vector))) {
 for (k in seq(1,repetition_number)) {
 rawdata <-
synthetic_data(network,function_list,systemerror,ar ray_number_vector[j])

 normdata <-
normalise_and_add_error(rawdata,variance_vector[i]/ 100)
 data <- norm_discrete(normdata)
 filename =
sprintf("%s%s%s%s%s%s%s%s",basicfilename,"_var",toS tring(variance_vector[
i]),

"_num",toString(array_number_vector[j]),"_rep",toSt ring(k),".txt")
 write_data(data,filename,geneorder)
 }
 }
 }
}

#function call
produce_data_sets(network,function_list,0.5,c(0,1,2 ,5,10,20,40,50),c(10,2
0,40,50,60,80,100,200,400,600,800,1000,5000,10000), 10,

	
	
	
	
	Table of Contents

	Introduction
	Gene Networks
	Microarray Datasets
	Properties of Biological Networks

	Gene Network Models
	Weight Matrices
	Boolean Networks
	Differential Equations
	Clustering
	Bayesian Networks

	Aim and Structure of This Report

	Bayesian Networks
	Learning Bayesian Networks from Expression Data
	Scoring Mechanism
	Bayesian Score (BDe)
	Minimum Description Length (MDL)
	BNRC

	Finding the Optimal Model: Search Strategies
	Heuristic Methods
	Ott™s Approach

	Optimal Search Model
	Formal Definition
	The Algorithm
	Input
	Computing F-scores
	Computing Q-scores
	Output: Gene Matrix

	Small Example

	Results and Discussion
	Synthetic Data
	Asia Network
	11-Node Network
	Performance Measures
	Results
	Effect of Sample Size
	Effect of Noise in Data

	Microarray Data
	Discussion

	Conclusion
	Appendix A : Results Tables
	Appendix B Œ Source Code
	Appendix C

