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Abstract

Since the advent of microarray technology, the large amount of gene expression data

leads to statistical and analytical challenges. One challenge area in the studies of gene

expression data is the classification of the expression dataset into correct classes. The

dissertation is addressing multiclass classification which has been shown to be more

difficult than the binary classification. The main difficulties in solving microarray clas-

sification are the availability of very small amount of samples compared to the number

of genes in the sample and the extremely large search space of solutions. Moreover,

the variation in microarray experiment also causes noise in the gene expression data.

This makes classification task more difficult in order to be able discover the underlying

pattern in noisy gene expression data.

The dissertation aims to implement and evaluate an evolutionary algorithm de-

scribed in Deutsch (2003) for microarray multiclass classification. Starting with nor-

malization on gene expression data to reduce the variance and noise in microarray data.

Next step, some genes are used to build the initial gene pool. The evolutionary algo-

rithm is implemented to explore the large search spaces to discover the best solution

with optimal number of predictive genes in the initial gene pool. Performance of the

solutions is evaluated using the k-nearest neighbour classifier to identify the class on

training samples with the leave-one-out cross validation technique. Furthermore, the

dissertation aims to evaluate the parameters that may affect the performance of the

evolutionary algorithm: population size, feature size, and initial gene pools built by

various ranking methods. Finally, the best parameters will be tested again using the

0.632 bootstrap estimation method to give effective performance.
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Chapter 1

Introduction

1.1 Multiclass Classification for microarray experiments

Microarray technology has provided biologists with the ability to measure the expres-

sion levels of thousands of genes in a single experiment. The vast amount of raw gene

expression data leads to statistical and analytical challenges. One challenge area in

the studies of gene expression data is the classification of the expression dataset into

correct classes. The goals of classification are to identify the differentially expressed

genes that may be used to predict class membership for new samples. First, supervised

classification identifies a set of genes that can differentiate different classes of samples

by using the training dataset with known classes. Then, the selected set of discrim-

inative genes, or predictive genes, is used to identify the class of unknown samples.

This project is addressing multiclass classification which has been shown to be more

difficult than the binary classification. The main difficulties in solving microarray clas-

sification are the availability of very small amount of samples compared to the number

of genes in the sample and the extremely large search space of solutions. Moreover,

the variation in microarray experiments can affect the gene expression levels measure-

ment. It also causes a problem for the identification of predictive genes from noisy

gene expression data.

There are two main procedures in gene expression data classification task: feature

selection and classification. The feature selection method, or gene selector, identifies

and selects the set of predictive genes (that are relevant for distinguishing classes) in

order to reduce the number of genes to be considered as a feature of the sample for use

in the classification task. Several gene selection methods have been developed to se-

lect these predictive genes, such as t-statistics, information gain, twoing rule, the ratio

1



Chapter 1. Introduction 2

of between-groups to within-groups sum of squares(BSS/WSS), Principle Component

Analysis, and Genetic Algorithm(GA). Currently, the interesting issue in gene selector

is the how to determine the optimum number of predictive genes for each dataset in

order to gain better performance in multiclass classification. In the classification task,

both supervised and unsupervised classifiers have been used in order to build classi-

fication model from the selected set of predictive genes. The dissertation will focus

on only supervised classifiers which classify samples using training samples of known

class. Many classifiers have been used for this task such as Fisher Linear Discrimina-

tion Analysis, Maximum Likelihood Discriminant Rules, Classification Tree, Support

Vector Machine(SVM), K Nearest Neighbour(KNN), and the aggregating classifiers.

1.2 Evolutionary algorithms

In general, problem solving can be perceived as a search through a space of potential

solutions. The task to find the best solution can be called optimisation process (Das-

gupta and Michalewicz, 1997). Many search and optimisation techniques have been

developed and used in the search problems such as random search, simulation-based

optimization, simulated annealing, and Markov chain Monte Carlo.

Evolutionary algorithms(EAs) are also stochastic search and optimisation tech-

niques which have been developed during the last 30 years. The evolutionary algo-

rithms are based on the same principles of evolution in the biological world involving

natural selection, and survival of the fittest. EAs provide the optimization techniques

that differ from other traditional optimizations in that they involve a search through a

population of solutions, not from a single point. Evolutionary algorithms can be di-

vided into three main areas of research: Genetic Algorithms (GA) mainly developed

by J.H. Holland in 1975, Evolution Strategies (ES) developed by I. Rechenberg and

H.-P. Schewefel in 1981 and Evolutionary Programming. There are several variants of

the different types of EAs but the basic structure of any evolutionary method is similar

to each other. A common structure is shown in Figure 1.1.
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Initialize the population of solution

Evaluate initial population

While (not termination-condition) do

begin

Perform competitive selection

Apply genetic operators to generate new solutions

Evaluate solutions

end

Figure 1.1: A structure of Evolutionary Algorithms

1.3 Evoluationary algorithms in microarray multiclass

classification

In microarray classification, the gene selection problem is an optimization problem,

with a performance measure for each subset of genes to measure its ability to classify

the samples into a correct category. The problem is to search through the space of gene

subsets to identify the optimal or near optimal one with respect to the performance

measure. Focusing on datasets gathered from microarray experiments, the number of

genes is relatively large compare to the number of samples. Searching for the optimal

gene subset in a large space is a difficult task. The evolutionary approach has been

brought into this search area with the hope that it can improve the searching perfor-

mance which will lead to the better performance in other machine learning techniques

such as classification and clustering. The evolutionary algorithm uses a wrapper tech-

nique to integrate gene selection into a classification algorithm. Each subset of genes is

evaluated using a learning algorithm in order to progressively generate new and better

subsets.

Evolutionary algorithms(EAs) have been implemented in microarray classification

in order to search the optimal or near-optimal solutions on complex and large spaces

of possible solutions. EA is mostly used as a gene selector which is embedded into the

classification task to search for the optimal genes set that gives high accuracy predic-

tion. Several studies have implemented different types of EAs with different classifiers:

KNN, Neural Network , and Maximum Likelihood(MLHD). Furthermore, EAs have

been applied in the aggregated classification method to search for the optimal ensem-

ble of feature selection-classifier pairs (Park and Cho, 2003). The report showed that
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the EAs improved the classification result by giving the good combination between

gene selectors and classifiers.

1.4 Aims

The aim of this dissertation is to implement and evaluate an evolutionary algorithm

described in Deutsch (2003) for microarray multiclass classification. Two real datasets

are used to test the performance of the algorithm: the leukemia and NCI60 dataset.

Before any data analysis the data, noisy gene expression data is transformed and nor-

malized. Next step is to build initial gene pool using the ranking methods in the

RankGene software. The evolutionary algorithm is implemented to explore the large

search spaces of initial gene pool to discover the best solution with optimal number

of predictive genes in the initial gene pool. Performance of the solutions is evaluated

using the k-nearest neighbour classifier to identify the class on training samples based

on the leave-one-out cross validation. The best solution within each generation is eval-

uate with the test dataset to give the true error rate. Furthermore, the dissertation aims

to investigate the parameters that may affect the performance of the evolutionary al-

gorithm: population size, feature size, and initial gene pools built by various ranking

methods. After the exploring on various parameters, the appropriate parameters are

chosen to evaluate the performance again using 0.632 bootstrap estimation method to

give effective performance.
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Literature Review

Since the advent of microarray technology, one important use for the large amount of

gene expression data is to classify the samples in microarray dataset into the correct

class. The samples may be types of disease, tumor tissue, or cell line. Many ma-

chine learning methods have been introduced into microarray classification to attempt

to learn the gene expression data pattern that can distinguish between different classes

of the sample. Before the data given from microarray can be analysis with any statistic

methods, the gene expression data has to be normalized to reduce noise that may occur

during the experiment in the laboratory. In classification task, the studies of multi-

class classification have investigated many combinations between gene selectors and

classifiers. There are also many datasets that are used to evaluate the performance of

classification. Here, the 2 popular datasets are used with in this dissertation.

2.1 The Datasets

The two common datasets which have been frequently used in the literature for evalu-

ating the multiclass classification are: the 3-class leukemia dataset (Golub et al., 1999)

and 8-class cell lines tumor NCI60 dataset (Ross et al., 2000). Both will be used in

the present study. The leukemia dataset is available at http://www.genome.wi.mit.edu/

MPR. In the dataset, gene expression levels were measured using Affymetrix high-

density oligonucleotide arrays containing 6,817 genes. This dataset comes from a

study of gene expression into two type of acute leukemia: acute lymphoblastic leukemia

(ALL) and acute myeloblastic leukemia (AML). The ALL part of the dataset comes

from two types, B-cell and T-cell. Golub et al. (1999) studied the data for binary clas-

sification between AML and ALL. However, many researchers treated this dataset as a

5
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three-class dataset (B-cell, T-cell, and AML) for multiclass classification. The dataset

consists of 47 samples of ALL (38 B-cell and 9 T-cell) and 25 samples of AML. Golub

et al. (1999) already divided into a training set of 38 samples and a test set of 34 sam-

ples.

The second dataset, NCI60 dataset, is available at http://genome-www.stanford.edu/

sutech/download/nci60. The NCI60 dataset contains the gene expression profiles of 64

cancer cell lines measured by cDNA microarrays. The dataset contains 9,703 genes.

The single unknown cell line and two prostate cell lines were excluded from anal-

ysis due to their small number. The number of cell lines was reduced to 61 with

9 classes of samples: breast (7), central nervous system(5), colon(7), leukemia(6),

melanoma(8), non-small-cell-lung-carcinoma or NSCLC(9), ovarian(6), renal(9) and

reproductive(4). This dataset is quite difficult to evaluate the performance of the mul-

ticlass classifier because there is no test set available.

2.2 The Normalization method for cDNA microarray

The concept underlying cDNA microarray analysis is that the measured intensities for

each arrayed gene represent its relative expression level. The relevant patterns of ex-

pression are identified by comparing measured expression levels of mRNA between

different samples on a gene-by-gene basis. The relative expression from each array

is usually measured as the ratio of the red and green intensities for each spot. Al-

though the ratio, or fold-changes, provides an intuitive measure of expression level

changes, they have the disadvantage of treating up- and down- regulated genes dif-

ferently. Genes up-regulated by factor of 2 have an expression ratio of 2, whereas

those down-regulated by the same factor have an expression ratio of -0.5. The most

widely used of the ratio is the logarithm base 2, which has the advantage of producing

a continuous spectrum of values and treating up- and down-regulated genes in a similar

fashion. Furthermore, using log base 2 scale is preferred for a number of reasons such

as variation of log-ratios is less dependent on absolute magnitude, and taking the log

of the ratio evens out the highly skewed distribution, providing a more realistic sense

of variation. The log-ratio for each spot can be written M whereM = log2(R/G) or

M = log2(R)− log2(G).

Many sources in microarray experiment may cause the systematic variation, and

affect gene expression level measurement. Many variations in the experiment that can

be found are the biases associated with unequal quantities of starting RNA, differences
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in labelling or detecting fluorescent dyes, and systematic biases in the expression level

measurements (Quckenbush, 2002). Many of these factors make distinctions between

differentially and constantly expressed genes difficult. The normalization process must

be done on with the log-ratio values before performing any statistical analysis. The

normalization step plays an important role in order to minimize these systematic vari-

ations, eliminate low-quality measurements, and adjust the measured intensities to fa-

cilitate comparisons. Biological differences can be more easily distinguished as well

as to allow the comparison of expression level across slides.

The simplest and most widely used within-array normalization method is called

global normalization which assumes that the red-green bias is constant on the log-

scale across the array. The log-ratios are corrected by subtracting a constant c to get

normalized valuesM − c where the global constant c is usually estimated from the

mean or median of the log-ratios(M-value) for a specified set of the genes assumed to

be not differential expressed. There are also other estimation methods for the constant

c that have been proposed.

At the next level of complication, the location normalization method is often neces-

sary to allow the correction c to vary between spots in an intensity-dependent manner.

The log-ratios can be normalized byM−c(A), wherec(A) is a function of average spot

intensity A. Several intensity-dependent methods have been proposed for location nor-

malization cited in Yang and Thorne (2003) such as local weighted regression (loess)

and iterative linear normalization.

2.3 Classification of gene expression data

2.3.1 Gene Selectors

In the classification of tumors using gene expression data, there are two main steps of

this problem: gene(feature) selection and classification. The first step is identification

of predictive genes that characterize the different tumor classes, this step called feature

or gene selection. Data from microarray experiments present a”large p, small n”

problem; that is, a very large number of features (genes) relative to the number of

samples. Feature reduction in microarray data is necessary, since not all genes are

relevant to tumor sample distinction. Usually, statisticians determine whether or not

a gene is differentially expressed via methodologies known as hypothesis tests. A

hypothesis test builds a probabilistic model for the observed data known as a null
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hypothesis. The null hypothesis is that there is no biological effect which means the

gene is not differentially expressed between different classes. If the null hypothesis

were true, then variability in the data does not represent the biological effect under

study, the result is from the differences between individuals or measurement error.

The two-sample t-test This is a commonly used method, based on the hypoth-

esis test, for selecting discriminative genes. For each gene, a t-value is computed and

genes are ranked by t-value. The t-statistics measure was first used in Golub et al.

(1999) to measure class predictability of genes for two-class problems. The proba-

bilistic model known as the p-value can be calculated using t-statistics. This p-value

can determine the significance of differentially expressed genes. The gene with lowest

p-value is a most predictive gene. But the problems with t-test are it requires that the

distribution of data being tested is normal, and since typical microarray data consist of

thousands of genes, a large number of t-tests are involved. Moreover, a t-test depends

on strong parametric assumptions that may be violated and are difficult to verify with

small sample size.

The Correlation between a gene and a class distinction This method identi-

fies informative genes based on their correlation with the class distinction. The corre-

lation between a gene and a class distinction can be measured in a variety of ways such

as Pearson correlation or Euclidean distance. Golub et al. (1999) measured correlation,

P(g,c), that emphasizes the signal-to-noise ratio in using the gene as a predictor.

P(g,c) =
µ1(g)−µ2(g)
σ1(g)+σ2(g)

whereµ1(g),σ1(g) andµ2(g),σ2(g) denote the mean and standard deviation of the

log-ratio of gene g for the samples in class 1 and class 2. P(g,c) reflects the difference

between the classes relative to the standard deviation within the classes. Large values

of ‖P(g,c)‖ indicate a strong correlation between the gene expression and the class

distinction.

The ratio of their between-group to within-group sums of squares (BSS/WSS)

The BSS/WSS ratio was introduced by Dudoit et al. (2000) For a gene j, the ratio

is

BSS( j)
WSS( j)

=
∑i ∑ j I(yi = k)(xk j −x j)2

∑i ∑ j I(yi = k)(xi j −xk j)2

where I(.) denotes the indicator function, equaling 1 if the condition in parentheses

is true, and 0 otherwise. Thex j andxk j denote the average expression level of gene j
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across all tumor samples and across samples belonging to class k only. The predictors

were built using the p genes with the largestBSS/WSSratios.

Principle Components Analysis (PCA) This is a well known dimension re-

duction method and has been used to reduce the high dimension data to only a few

gene components which explain as much of the observed total gene expression varia-

tion as possible. In PCA, orthogonal linear combinations are constructed to maximize

the variance of the linear combination of the gene variables. Generally, the genes are

standardized to have mean zero and standard deviation of one. Although the PCA

method can handle a large number of genes, only a subset of genes is of interest in

practice. Nguyen and Rocke (2002) applied a simple t-statistics of all genes spaces to

construct the top p rank genes and then performed PCA to reduce genes from p to K

gene components.

The Rankgene software This software has been proposed by Su et al. (2003)

for use in gene selection. Eight feature selection methods are supported in the pro-

gram: information gain, twoing rule, sum minority, max minority, Gini index, sum

of variances, one-dimensional SVM, and t-statistics. The first six of these have been

widely used either in machine learning (information gain and Gini index) or in statis-

tical learning theory (twoing rule, max minority, sum of variances). They quantify the

effectiveness of a feature by evaluating the strength of class predictability when the

prediction is made by splitting the full range of expression of a given gene into two

regions, the high region and the low region. The split point is chosen to optimize the

corresponding measure.

Genetic algorithm(GA) The GA, first described by John Holland in the 70’s

(Holland, 1975), is a stochastic search and optimization technique that is derived from

the principles of evolution and natural genetics. A GA maintains a population of en-

coded solution candidates that are competitively manipulated by applying some varia-

tion operators to find a global optimum. It starts with a random population of chromo-

somes which are usually represented by a set of strings, either binary or non-binary,

constituting the building blocks of the encoded candidate solutions. The better the fit-

ness of a chromosome, the larger its chance of being passed to the next generation. The

genetic operators such as selection, mutation and crossover are carried out to introduce

new chromosomes into the population. Through evolution, a near optimal solution

evolves in the run. Many studies have attempted to use different GA approaches to

solve the problem of large search spaces and noisy gene expression data. Several ap-

proaches have successfully discovered the optimal gene sets that can correctly classify
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100% on some datasets.

Evolutionary algorithm The evolutionary algorithm is based on the same prin-

ciple of the genetic algorithm but it focuses on a single parent-single offspring search

(Fogel, 1994). The crossover operator between two parents is not performed on the

algorithm. Initially, a population of chromosome is randomly constructed. Then off-

springs are created by randomly mutating each parent with some probability. The

offsprings are evaluated and selected into the next generation proportional to its fitness

value. The best optimal solution come from the solution with the highest fitness value

in the run. Many researches also have been shown the success in applying an evolu-

tionary algorithm to select the small set of genes that can distinguish the classes of

samples in microarray dataset correctly (Deb and Reddy, 2003).

2.3.2 The Classification Methods

Once the predictive genes are constructed by gene selection, the second step is to iden-

tify samples into known classes using predictive genes as properties of those samples.

In general, classification methods can be divided into two categories: supervised and

unsupervised. An unsupervised, or clustering, approach has a goal to group together

the samples with similar properties. A supervised method is a technique using set

of samples with known classification to develop to classifier. Here, the focus is on

multiclass classification of gene expression data into known classes. The supervised

classifiers that have been used in this field of study include neighbourhood analysis

(Golub et al., 1999), support vector machine (SVM) (Ramaswamy et al., 2001), k-

nearest neighbours (KNN) (Li et al., 2001), and linear discriminant analysis (LDA)

(Dudoit et al., 2000).

The weighted voting This scheme for binary classification was one of the first

applications of a gene expression data classification proposed by Golub et al. (1999).

It uses a fixed subset of the predictive genes and makes a prediction on the basis of

the expression level of these genes in a new sample. Each predictive gene casts a

”weighted vote” for one of the classes, with the magnitude of each vote dependent

on the expression level in the new sample and the degree of that gene’s correlation

with the class distinction. The votes were summed and calledprediction strength(PS)

in order to determine the winning class. The prediction strength is a measure of the

margin of victory ranges from 0 to 1. A sample was assigned to the winning class if

PS exceeded a predetermined threshold, and was otherwise considered uncertain. The
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threshold of 0.3 was chosen for their prediction.

Support Vector Machines (SVM) The SVM has been shown to give superb

performance in binary classification tasks. Intuitively, SVM aims at searching for a

hyperplane that separates the two classes of data with largest margin (the margin is

the distance between the hyperplane and the point closest to it). For multiclass SVM,

there are many decomposition techniques that can adapt SVM to identify non-binary

class divisions such as one-versus-the rest, pairwise comparison, and error-correcting

output coding. SVM was used in the Park and Cho (2003) and Li et al. (2004) studies.

Maximum Likelihood Discriminant Rules This method is used in Dudoit

et al. (2000) research. In a situation where the tumor class conditional densities are

known, the maximum likelihood (ML) Discriminant rule predicts the class of a sam-

ple with set of predictive genes by assigning class with the largest likelihood to that

sample. In practice, however, even if the forms of the class conditional densities are

known, their parameters must be estimated from a training set. The computation of the

discriminant function for any class is based upon two parameters: the class mean and

the common covariance matrix of data for all training samples belonging to that class.

Decision Tree The decision tree takes as input an object described by a set of

attributes and returns a decision as a predicted output value. A decision tree reaches its

decision by performing a sequence of tests in each node which corresponds to a binary

predicate on one attribute. A branch corresponds to the possible values of the test. Each

leaf is labelled by a class. To predict the class label of an input, a path to a leaf from the

root is found depending on the values of the predicates at each node that are visited.

The predicates are chosen by calculating the information gain of each attribute from

root to leaf. The decision tree prevent overfitting by using a post-pruning technique.

The decision tree has been used in two papers: Dudoit et al. (2000) in aggregating

classification and Li et al. (2004) to compare the performance with other classification

methods.

K Nearest Neighbour(KNN) The method is based on a distance function for

pairs of tumor samples, such as the Euclidean distance, Pearson’s correlation, or one

minus the correlation of their gene expression profiles. Each sample is classified ac-

cording to the class memberships of its k nearest neighbours, as determined by one

of the distance functions mentioned above. KNN has been involved in much research

because of its simple calculation and it also has been shown to perform better than

complex methods in many applications (e.g. Dudoit et al. 2000). The KNN classifier

defines nonlinear decision boundaries. That is, the KNN can improve the performance
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in the case that the sample has small nonlinear fluctuations around the decision bound-

ary result.

Aggregating approach The aggregating classifiers technique includes the bag-

ging approach (Dudoit et al., 2000) and ensemble using voting scheme (Park and Cho,

2003). One way to gain accuracy in classification is to aggregate several classifiers

built from perturbed versions of the training dataset. The aggregating technique tends

to give benefit to an unstable classifier (e.g. the decision tree) more than a stable one

(e.g. the KNN). With the aggregating method, the predicted class for a sample is ob-

tained by a weighted voting schema. There are two types of method for generating

perturbed versions of the training set: bagging and boosting. For bagging (non para-

metric bootstrap) method, the perturbed training sets of the same size as the original

training set are formed by drawing at random with replacement from the training set.

Classifiers are built for each perturbed dataset and aggregated by plurality voting. A

general problem of the bagging for small datasets is the discreteness of the sampling

space. Dudoit et al. (2000) performed two methods for solving this problem: the para-

metric bootstrap and the convex pseudo-data. For boosting method, the training set are

re-sampled adaptively so that the weights in the re-sampling are increased for those

cases most often misclassified. The aggregation of predictors is done by weighted

voting.

2.4 Multiclass classification

In the multiclass classification problem, many combinations between gene selector and

classifier have been proposed to improve classification performance.

The research by Dudoit et al. (2000) compared different multiclass classifiers using

the BSS/WSSratio as a gene selection method. The number of the predictive genes

was chosen differently in every dataset. There is no specific rule for selecting the size

of these predictive gene sets. The comparison between different classifiers is based on

random divisions of each dataset into learning set (LS) and test set (TS). The test size

was one-third of the dataset. The result from the study in gene selection for leukemia

dataset showed that the performance of classifier did not alter greatly when the num-

ber of genes increased. For the NCI60 dataset, the error rates were generally lower

when the number of predictive genes was equal to 200. The main conclusion of these

experiment was that simple classifiers such as DLDA and KNN performed remarkably

well compared with more sophisticated ones, such as aggregated classification trees.
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The performances of some classifiers were not very sensitive to the number of predic-

tive genes, even though they improve slightly with an increasing number of variables.

The reason might be because the predictive genes ranked from this ratio are not really

effective.

PCA, which is a well known dimensional reduction method, has been performed

on the pre-ranked genes based on a simple t-statistics. For each dataset, Nguyen and

Rocke (2002) defined the number of pre-ranked genes to be 50. Following the pre-gene

selection using t-statistics and dimension reduction by PCA, the two classifiers were

chosen to identify the class of samples: Logistic Discimination (LD) and Quadratic

Discriminant Analysis (QDA). The error rate of leukemia dataset was evaluated by the

re-randomization method. The result for NCI60 dataset was assessed using Leave-out-

one Cross Validation method due to a few numbers of samples in the dataset.

Genetic algorithms were introduced into multiclass classification in many researches

as a gene selector. The GA/KNN, proposed by Li et al. (2001), used a GA to find many

such gene subsets, and then assessed the relative importance of genes in predictor by

submitting the predictor to the KNN classifier in order to identify training samples.

The importance give better performance in classification. The subset of genes that

give good performance were analysed for the frequency of membership of the genes

in these near-optimal predictors. The most frequently selected genes are presumed to

be most relevant to sample distinction. The sensitivity of gene selection results was

examined by dividing each data set into a training set and a test set in three different

ways randomly. In the study, 10000 set of near-optimal chromosomes corresponds to

a set of d genes that can jointly discriminate between different classes of samples in

training set. The genes were ranked according to the frequency of selection with the

top-most gene assigned a rank of 1. In order to validate the result of this method,

the dataset was divided into three different ways: the original, random, and discrepant

which resulted from multiple splitting of the same training dataset. For the lymphoma

dataset provided by Alizadeh et al.(2000), there are only 2 samples misclassified out of

13 samples. For the colon dataset from the study of Alon et al.(1999), there is only one

misclassified sample out of 17 samples. Unfortunately, this method was not performed

on the datasets that we focus on: leukemia and NCI60 dataset.

The Genetic algorithms and maximum likelihood (GA/MLHD) approach has achieved

very high classification accuracies on the multi-class test dataset. The method gave

only 5% percent of error rate of the NCI60 dataset while others gave a minimum test

error rate of 19%. Although the authors claimed a successful result from this study, it
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obviously was an expensive computational technique. The algorithm consists of many

parameters to assess for each dataset such as selection methods: stochastic universal

sampling or roulette wheel selection and crossover operations: one-point or uniform.

The overall strategy consists of two main components: a GA-based gene selector and a

maximum likelihood (MLHD) classifier. The GA method finds a set of R genes that is

used to classify the samples, where R lies in a pre-specified range. Each chromosome

in population represents a subset of these predictive genes. The fitness function was

used to determine the classification accuracy of a subset of genes in chromosome by

building the function of cross validation error rate and independent test error rate. De-

spite the high performance result on NCI60 dataset, the error rate estimation method

that was used to determine the performance is different from the common error rate

estimators. There appeared to be a consistent trade-off between cross validation and

test error rate, so they had to apply the sorting technique to look at the most optimal

predictor set that represents the best compromise between two types of the error rate.

Therefore, the error rate of 5% was got from using only one training/test set compared

to 33.4% error given in Dudiot et al.(2000) experiment evaluated with more than one

different training/test set. The problem of combining gene selector and classifier is still

interesting and challenge in microarray multiclass classification.

Recently, the evolutionary algorithm has been developed by Deutsch (2003) to find

the optimal set of predictive genes. The approach embedded the gene selection method

into the classifier. The concept of this evolutionary algorithm is that chromosomes, or

predictors, in the population was constructed using the subset of genes it utilized in

making a prediction. The fitness function, or scoring function, was built by calculating

the LOOCV plus an additional mark for the predictor that does a good job of grouping

the data into well separated clusters, each cluster corresponding to the same type of

cancer. Deutsch also provided the method for searching through a large number of

different subset of genes to come up with a population of the highest scoring predic-

tors. The random mutations of genes and the replications of a particular chromosome

depending on how the mutation effect the scoring function were the methods for evolv-

ing chromosomes in the population. The most successful predictor was the one giving

the fewest mistakes on test data. The algorithm was applied on the leukemia dataset

to solve three-class problem. The chromosomes with higher fitness can survive in the

next generation. Deutsch reported that the algorithm was lack of convergence to near

perfect predictors is a problem of this dataset. However, the average number of pre-

dictive genes that was found by using this approach is nine with none misclassified
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sample of the test dataset.

Table 2.1 summarises the results of the performance in different microarray clas-

sification studies reported above on three data sets: 2-class Leukemia dataset, 2-class

Leukemia dataset, Lymphoma dataset, and 9-class NCI60 dataset. Most of these ap-

proaches have been successful in classification on the leukemia datasets. The methods

report on accuracy on the test sample of more than 85%. But for NCI60 dataset, the

accuracy is still not impressive due to the small set of samples that makes the perfor-

mance evaluation difficult. The performance of NCI60 dataset from different studies

was evaluated using different resampling techniques. For example, the study by (Ooi

and Tan, 2003) used one training set and one test set randomly divided to evaluate the

performance whereas Dudoit et al. (2000) used 150 training/test set randomly divided

to evaluate the performance of classification.

author dataset method no. genes accuracy[%]

gene selector classifier

Golub et al. (1999) Leukemia(2) t-statistics weighted voting 50 85.29

Dudoit et al. (2000) Leukemia(3) BSS/WSS KNN 40 97.06

NCI60 30 86.67

Dudoit et al. (2000) Leukemia(3) BSS/WSS DLDA 40 97.06

NCI60 30 88.33

Nguyen and Rocke (2002) Leukemia(2) PCA LD 50 97.06

QDA 50 95.40

Park and Cho (2003) Lymphoma Majority voting: IG-KNN(P), 50 100.00

MI-KNN(C), PC-KNN(C),

SN-KNN(P), and SN-SASOM

Li et al. (2004) NCI60 sum-minority SVM 50 66.70

Ooi and Tan (2003) NCI60 GA MLHD 13 95.00

Keedwell et al.(2002) Leukemia(3) GA NN 50 88.00

Li et al. (2001) Leukemia(3) GA KNN 50 97.06

Deutsch (2003) Leukemia(3) EA KNN 9 100.00

Leukemia(2) = 2-class Leukemia dataset (ALL,AML)

Leukemia(3) = 3-class Leukemia dataset (ALL B-cell, ALL T-cell, AML)

Lymphoma = Lymphoma cancer dataset available at: http://genome-www.standford.edu/lymphoma

IG-KNN(P) = Information Gain - K nearest neighbour (Pearson’s correlation)

MI-KNN(C) = Mutual Information - K nearest neighbour (Cosine coefficient)

PC-KNN(C) = Pearson’s correlation - K nearest neighbour (Cosine coefficient)

SN-KNN(P) = Signal to noise ratio - K nearest neighbour (Pearson’s correlation)

SN-SASOM = Signal to noise ratio - Structure Adaptive Self Organizing Map

Table 2.1: The result of classification tasks from many researches
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Research by Li et al. (2004) has studied and compared the result of multiclass

classification using many feature selections and classification methods. The RankGene

software (Su et al., 2003) was used to select the predictive genes on the training set

with eight methods supported in this software: information gain, twoing rule, sum

minority, max minority, Gini index, sum of variances, one-dimensional SVM, and t-

statistics. For the number of predictive genes used in classifier, they decided to use

the 150 top rank genes of each sample in every dataset. The multiclass classifiers

that have been tested were: SVM, KNN, and Decision Tree. They discussed that

the SVM was the best classifiers for tissue classification based on gene expression.

However, the best decomposition method for SVM appears to be problem-dependent.

The KNN classifier gave good performance on most of the datasets which means it is

not problem-dependent. Other interesting discussions of their report were that it was

difficult to choose the best feature selection method, and the way that feature selection

and classification methods interact seems very complicated. Due to the separating of

the gene selector part from classifier, there is no learning mechanism to learn how those

two component interact with each other and no way to select only the predictive genes

from the original set that the RankGene software provided.

Many researches have concluded that feature selection should not be treated sepa-

rately from classification because gene expression levels in the different samples gives

different values, and therefore it would be difficult for the feature selection method

to specify genes that are effective to the classifier for each dataset. Using only the

RankGene software to filter for the predictive genes without combining it with the clas-

sifier may decrease the performance of the classification task. Some research applied

both filter method and wrapper method to build the hybrid feature selection method

which improve the performance of classification (Xing et al., 2001).

This dissertation will apply the wrapper technique in order to include the gene

selection method into an evolutionary algorithm to determine classification perfor-

mance. The different sets of genes constructed by different gene selection methods

in the RankGene software will also be explored.

2.4.1 Evaluation Method

Performance on the microarray classification task is evaluated based on the prediction

error rate. The most commonly reported method to evaluate the performance of clas-

sifier is the test set error rate estimation. The data set is divided into two sets:training
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set and test set. The training set is used to build the classifier. The test set is used to

evaluate the performance of the classifier. The error rate is computed by the misclassi-

fication on the test set. This training/test set error rate estimation is widely used in the

case that the size of dataset is big enough, but in the case of microarray classification,

the number of samples collected in the experiments is remarkably small compare to

other studies such as digital image classification.

Many evaluation methods has been studied to use for the small-sample error esti-

mation. Typically, the microarray experiment provides a dataset of small size, the most

commonly used method for error estimation for a small dataset is leave-one-out cross

validation (LOOCV). That is, one of the samples is left out to be a pseudo test data and

the classifier is built based on all but the left out sample. The LOOCV is used for each

of sample in training dataset. The LOOCV error rate estimator is a straightforward

technique for estimating error rates and it is also an almost unbiased estimator. But it

is still possible that classifier using LOOCV estimator may accidentally select a model

that fits the training data especially due to capitalizing on chance and can give large

variance. Another drawback is that it requires expensive computation.

The recent paper by Braga-Neto and Dougherty (2004) compared and discussed

various error estimation methods:the resubstitution estimator, k-fold cross-validation,

leave-one-out estimation, and bootstrap methodology. These methods were tested with

many classifiers: linear discriminant analysis(LDA), 3-nearest-neighbour (3NN), and

decision trees(CART)). The leave-one-out (LOOCV) method which has been popular

in estimating small-sample error rate is almost unbiased but it has high variance which

leads to unreliable estimates. For the over all performance, Braga-Neto and Dougherty

(2004) has shown that the bias-corrected bootstrapping is slightly better than cross-

validation. The .632 bootstrap proved to be the best overall estimator in their simula-

tions, but the draw back of this method is their computational cost is relatively high

compare to LOOCV method.
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The methodology

3.1 The overview

As outlined in chapters 1 and 2, there are some parameters to be determined on the

evolutionary algorithm developed by Deutsch (2003). This dissertation focuses on the

investigation some parameters that may affect to the performance and effectiveness of

the evolutionary algorithm. Then, uses the best parameters to find the subset of genes

that gives a high performance in classification and clustering. The methodology is im-

plemented mainly following the methodology in the research by Deutsch (2003) using

java programming language. The data preprocessing method was done before further

analysis by cutting off the missing values, computing the log-ratios for cDNA dataset,

and applying global normalization to the dataset. The algorithm begins with building

the initial genes pool containing the more informative genes. Then the evolutionary

algorithm builds the initial population of the subsets of genes called the predictor.

Compared to the common evolutionary algorithm, a predictor represents the solution

that the algorithm try to optimise. The evaluation method for each predictor is imple-

mented using the K nearest neighbour classifier. The performance is determined by

counting the number of samples that are correctly classified. The mutation operators

that were applied into the algorithm consist of keeping the same, adding a new gene,

and removing a gene in the predictor. The selection process is done using the statis-

tical replication algorithm. The termination condition is met when the all predictors

are the same over a specific number of generations. An overview of the evolutionary

algorithm is shown in figure 3.1.

The main different from genetic algorithm is the evolutionary algorithm focuses on

a single parent-single offspring search approach. A single offspring is created from a

18
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Build the initial genes pool

Initialize the population of the predictor

Evaluate initial population

:using KNN classifier and clustering performance

While (the maximum fitness is still changing)

begin

Apply mutation operator to generate new predictors

Evaluate new predictors

Perform statistical replication of the new predictors

end

Figure 3.1: Evolutionary Algorithms for microarray multiclass classification

single parent using mutation operator and both are placed in competition for survival,

with selection eliminating the poorer solution (Fogel, 1994).

3.2 The data preprocessing

The dataset that I used in this thesis is the leukemia dataset reported by Golub et al.

(1999). The leukemia samples were taken from bone marrow and peripheral blood

using oligonucleotide microarray technique. It contains an initial training set com-

posed of 27 samples of acute lymphoblastic leukemia(ALL) and 11 samples of acute

myeloblastic leukemia(AML), and an independent test set composed of 20 ALL and

14 AML samples. Originally, the dataset was built and analyzed for binary classifica-

tion: ALL and AML. However, it can be separated into three or four classes by using

sub types of the two main classes. To perform a multiclass classification task, 72 sam-

ples in the dataset are divided into three classes: ALL B-CELL(38), ALL T-CELL(9),

and AML(25). The numerical value of the gene expression data is corresponding to

the absolute intensity level. Golub et al. (1999) have normalized the dataset by re-

scaling intensity values to make the overall intensities for each chip equivalent and

Golub et al. also fitted the data with a linear regression model. From 6,817 genes, the

baseline genes were cut off before further analysis. The number of genes that will be

used in the multiclass classification is 6,129.

The NCI60 dataset, constructed using cDNA microarray technique, is provided

without normalization. The gene expression data value is the relative intensity level of
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the mRNA samples and their references. The NCI60 contains 61 samples of 9 classes:

breast (7), central nervous system(5), colon(7), leukemia(6), melanoma(8), non-small-

cell-lung-carcinoma or NSCLC (9), ovarian(6), renal(9) and reproductive(4). Cutting

off the missing value (-intensities), and the background intensities value which is much

larger than the foreground intensities, the number of genes is reduced from 9,703 to

7,375 genes.

Due to the noisy nature of dataset provided by microarray experiment, preprocess-

ing is an important step in the analysis of microarray data. The raw intensities have

a wide dynamic range. Both dataset have to be normalized to decrease the variation

before submitting the dataset to the evolutionary algorithm. The global normalization

method to the gene expression data to eliminate the systematic variance. For NCI60

dataset built by cDNA microarray technology, the analysis of relative gene level is

done by using the log-ratios between a certain gene (labelled in red or Cy5) and a ref-

erence gene (labelled in green or Cy3) before the normalization is applied to the data.

From (3.1), the red and green intensities are computed to form the log-ratios.

M′ = log2(R/G) (3.1)

The method of global normalization is applied to the dataset. Then, the normaliza-

tion is calculated using the constantc estimated from the mean for the log-ratioM, as

shown in (3.2).

M = M′−c (3.2)

After the preprocessing, the dataset is written into file in order to perform the evo-

lutionary algorithm in multiclass classification in the following step. The data format

used in the project is showed in table 3.1 and 3.2.

gene description gene access number sample#1 . . . sample#N

Transcription factor Stat5b (stat5b) mRNA U48730 at 10.30 . . . 30.30

Breast epithelial antigen BA46 mRNA U58516 at 12.67 . . . 18.19

. . . . . . . . . . . . . . .

Table 3.1: The training dataset and testing dataset file format
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sample no class label

1 B-CELL

2 AML

N . . .

Table 3.2: The label file format

3.3 The evolutionary algorithm for microarray multiclass

classification

The algorithm can be divided into several steps. First step is to build the initial gene

pool. In this step, the number of genes is reduced from thousands to hundreds, ranked

by their predictive values. This will narrow the search spaces and let the evolutionary

algorithm search on the more significant genes in the next step.

Next step, the evolutionary algorithm is applied as a gene subset optimization pro-

cess. The population of the gene selector(or predictors) is constructed randomly. Each

predictor is represented in the form of a subset of genes selected from the initial gene

pool from the first step. The evolution is performed to determine the performance

of the predictors. The performance of a predictor can be distinguished by the degree

of goodness of classifying and clustering task. The goodness can be defined by fit-

ness function. In this task, the fitness value is calculated following the method used

in Deutsch (2003), the leave-one-out cross validation (LOOCV). Moreover, Deustsch

suggested to add an additional score to a fitness function. The suggested score was

introduce in order to reflects the clustering performance of the predictor. If the subset

of genes in a predictor can group the data into well separated clusters, a predictor will

be given the additional score. A predictor that gives higher correctly classified will be

given a higher fitness value. For each generation, The basic idea is a predictor with

higher fitness will have more chance to be survive in the next generation.

The selection and evolution process is mostly based on the statistical replication

described in Deutsch (2003). The termination criteria is defined using both the max-

imum number of generation and the criteria of no improvement of maximum fitness

value of the population. The predictor with highest fitness will be the one that give the

best subset of genes for the classification task.
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3.4 The initial gene pool

The initial gene pool was build to reduce number of genes or features in a data. Many

researches have revealed that when the number of features is large, the performance

of the learning methods degrades. Constructing the initial genes pool can get rid of

some genes that have low predictive value are noisy to the system. Only genes with

high predictive value will be selected into the initial set. Many methods have been

devised to construct the initial genes pool. Deutsch (2003) applied the filter method

suggested by Xing et al. (2001) to build the primary gene set. Next, these filtered genes

are ranked using the method that is similar to Ben-Dor et al.(2000).

In this dissertation, two steps described in Deutsch (2003) are combined into only

one step. The initial gene pool will be built using different gene ranking methods

in RankGene software provided by Su et al. (2003). The RankGene is a program

that has been developed for computing a predictive power of gene expression data in

distinguishing between different classes of samples. There are six widely used methods

that can be applied for multiclass dataset: information gain, twoing rule, sum minority,

max minority, gini index, and sum of variances. All ranking methods are applied to

rank the genes and select the top ranked genes into the initial gene pool in order to

investigate the most suitable method for each dataset. The aim of the investigation is

to account for different characteristics of the data such as the up- or down-regulated

genes can vary between datasets.

3.5 The predictor

The initial gene pool contains a complete set of genesGt which is a collection of genes

1 throughN. The terminology of Deutsch (2003) is used to explain how the algorithm

work. We denoted the samples of microarray dataset asD ≡ {D1,D2, . . .}. Each

sampleD consists ofN genes. A set of possible types in dataset is denotedT . Each

sample D can be classified into typeT which can take from one of| T |. A predictor

P is built using a subset of genes selected as a feature of classification task. Deutsch

definedP as a function that takes sample dataD and calculate the output as a classified

typeT. That isP (D)→ T.

The initial population of predictors is constructed by selecting genes from the initial

gene pool randomly. For leukemia dataset, the initial number of gene(feature dimen-

sion) in a predictor is 10 (10 dimensions). The k-nearest neighbor(KNN) classifier
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is applied to determine the performance of the predictor with k=3 differently from

Deutsch. The number of k is from the research by Li et al. (2001) who perform genetic

algorithm and k-nearest neighbour with gene expression data, and suggest the way to

find the k value by using the learning curve of the training data to see that which num-

ber of k gives best performance in classification task. Li et al. found that setting k to be

3 gave best result among other numbers. Moreover, the discussion in the paper showed

that k = 3 is large enough to form tight clusters even if the dataset has subtypes and

the sample size is limited.

In the evolutionary algorithm process, the KNN classifier uses the Euclidean dis-

tance function to calculate the distance between the target sample D and the rest of

the training dataDt . The Euclidean distance can be computed using the formula in

equation (3.3) wherepi ,qi is the feature value of target sample(Dp) and another train-

ing sample(Dq) in dimensioni. The sample will be classified according to the class

membership of its k nearest neighbors. With the use of the majority vote scheme to

KNN, the sample will be classified to the class that has the more membership in the k

nearest samples. If there is no class has more membership than the others, the sample

is considered unclassifiable.

Euclidean Distance(Dp,Dq) =

√
n

∑
i=1

(pi −qi)2 (3.3)

3.6 The scoring function

Choosing the scoring function is an essential step for an application based on an evolu-

tionary algorithm. The scoring function consists of two scoring schemes corresponding

to classification and clustering performance. The first one is using the LOOCV result

of the KNN. Every sample in the training data will be selected and tested by the KNN

classifier using the rest of the samples as a training dataset. If KNN assigns correct

class to that sample, the predictor will be added 1.

In additional to the LOOCV of training data, another component of the score is

given by the term that maximizes the separation between different classes. Following

Deutsch’s approach, the shortest distance of every pair of samples within the same type

is computed. For each type, we get the shortest distances calledd1,d2, . . . ,d|T |. With

all these distances, the two shortest distances are selected,di andd j and addC|d2
i −d2

j |
where C is a constant chosen to make the value of these term less than 1.



Chapter 3. The methodology 24

This scoring function depends on the predictor and can determine the performance

of predictor according to the training data and the subspace of genesG .

3.7 The statistical replication

To determine rules to evolve a predictor to a new generation, a measure of the goodness

of a predictor is calculated using scoring function described above. The statistical

replication method will use the score value to decide which predictors are kept, which

are mutated, and which are eliminated. The statistical replication has to ensure the

diversity of predictors in a population and also try to get rid of local minima problem

in predictor space by allow the less fit survive occasionally.

Let the system start with an ensemble of n predictors, or n gene subspaces,E ≡
{G1,G2, . . . ,Gn}, the replication algorithm described in Deutsch’s work to replicate

and modify each of theGi ’s is implemented with some changes. The replication ap-

proach is modified by introducing an elitist strategy. The elitist strategy is a mechanism

that guarantees that some number of the fittest solutions will be retained at each genera-

tion. Here, only one predictor with highest score is duplicated into the next generation.

The pseudo code is described here:

1. For each predictor G∈ E , a new predictor is produced as follows.

(a) A predictor G has subset of genes {g1,g2, . . . ,gm}. For all predictors, those genes in a

subset will be randomly mutated according to the three possibilities:

i. Add an additional gene chosen randomly from the initial gene pool Gi , producing

new predictor G′ of genes {g1,g2, . . . ,gm,gr}.
ii. Delete a gene: a gene in the subspace of predictor is randomly deleted, producing

a new set with total gene equals to m−1.

iii. Keep G the same.

(b) The scoring function of new predictor G′ is computed: SG′ .

(c) The difference of the score value between the new predictor and old predictor is com-

puted δS = SG′ −SG

(d) The weight for G′ is computed: w = exp(β ·δS) where β is the inverse temperature.

2. Let Z is the sum of these weights. The weights is normalized by multiplying them by n/Z.

3. All predictors are replicated according to their weights after normalization. With a weight w,

the predictor is replicated [w] times and additional time with probabilities w− [w] where [w]
is the largest integer that less than w.

4. Using the elitism technique, the worst predictor of the population in new generation is replace

by the best predictor from the previous generation.
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The statistical replication described above makes the evolutionary algorithm differ-

ent from the genetic algorithm. One major different is there is no crossover process be-

tween the solutions. The evolutionary believes that the mutation operator within each

solution itself can improve performance of the solution. In best case, mutation may

help move a predictor away from local minima by the replacement of the new genes

into the predictor (Ghanea-Hercock, 2003). Using this statistical replication method,

every predictor in the system is mutated and replicated in accordance with how much

fitter it was than its predecessor. The each generation can be guaranteed that the best

predictor from the previous generation will survive into the next generation because

of the elitism rule. The number of predictors in system can also be varied in every

generation but with the step of normalization in the pseudo code, this helps the number

of predictor in the system stays close ton theory. However, in practice, the number of

predictor can vary fromn depending on the method of setting the temperature variable

described below.

3.8 Annealing

The expected behavior of this evolutionary algorithm is that the scoring function will

give similar scores for all predictors in the populations. In order to lead the system into

convergence process, the measure of temperature is defined. The temperature tech-

nique is applied to the predictor and by looking at the fluctuation between predictors.

The original work by Deutsch (2003) suggested that after exploring many calculation

methods to the system, the evolutionary algorithm works well when the temperature

scale is set to be proportional to the standard deviation of score value of all predictors

in each generations adaptively. Despite of the use of temperature variable directly, the

β variable appeared as the inverse temperature in the statistical replication algorithm

is used. The standard deviation of the score value of predictors in each generation is

used to determine the value ofβ variable adaptively. The formula in equation (3.4)

which is similar to Deutsch but it is changed to be more suitable for the system. The

SDdonates the standard deviation of the scores for all predictors, and theβlast refers

to theβ from the previous generation. This temperature scheme gives the diversity to

the evolutionary algorithm. So, the system does not get trapped in the local minima.

β =

√
βlast∗

1
SD

(3.4)
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Due to the temperature factor in the algorithm, the system always changes in order

to keep diversity in the population. The original termination condition is changed from

looking at an unchanged system for ten consecutive iterations to looking at standard

deviation of the overall score of the system. When the standard deviation is less than

0.01 for ten consecutive iterations, the algorithm is terminated. Furthermore, the addi-

tional termination condition is added to the algorithm to reduce the cost of computation

time. That is the maximum generation of algorithm is set to 200. If the algorithm can

not meet the standard deviation criteria, it has to stop at 200 generations.

3.9 The evaluation method

In this dissertation, two resampling evaluation techniques are used to evaluate the per-

formance of the predictor: leave-one-out cross validation(LOOCV) and .632 bootstrap.

The LOOCV has been recommended for problems where relatively small sample sizes

are available. In the evolutionary algorithm process, only the training set is used to

evaluate the performance. For a given training sample size, n, a KNN classifier classi-

fies on the single samples by comparing the distance with (n-1) samples. After getting

the best predictor with the best performance on training set, the classifier is applied

on test set to determine the performance by comparing the Euclidean distance of each

sample in test set with all samples in training set to find the class with highest mem-

bership according to the majority scheme.

The newer resampling method, bootstrapping, has shown to be the better per-

formance estimator in many papers. According to the research by Braga-Neto and

Dougherty (2004), the .632 bootstrap introduced by Efson(1979) has proved that it

perform well in error estimation technique because of its low variance estimation in

comparing with the LOOCV that has a high variance for small samples. Given a

dataset of size n, the n training samples are created by sampling with replacement

from the data. Sampled with replacement means that the training samples are drawn

from the dataset and placed back after they are picked, so their repeated use is allowed.

Since the dataset is sampled with replacement, the probability of any given instance

not being chosen after n samples is(1−1/n)n≈ e−1≈ 0.368 and the expected number

of distinct instances from the original dataset appearing in the test set is thus 0.632n.

The .632 bootstrap estimate is defined as the equation (3.5).
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accbootstrap=
1
b

n

∑
i=1

(0.632∗ ε0i + .368∗accs) (3.5)

Where theε0 accuracy estimate is the error rate on the test data. Theaccs is the

resubstitution accuracy estimate on the full dataset. The estimated error rate is the

average of the error rates over a number of iterationsb. Usually, the bootstrap esti-

mators need about 200 iterations to obtain a good estimate (Bao, 2004). Thus, this is

computationally considerably more expensive compare to the LOOCV estimator. With

this reason, the bootstrap is not suitable in order to use for investigate the performance

of the algorithm given by different parameters that will be tested on the evolutionary

algorithm. The bootstrap estimator will be performed on the evolutionary algorithm

with the selected parameters given after the LOOCV performance analysis is applied

to various parameters. The final performance of the multiclass classification on both

leukemia and NCI60 dataset will be reported by using .632 bootstrap estimator with

200 iterations of data sampling.

3.10 Experimental Setup

The study aims to evaluate the performance of the evolutionary algorithm combined

with the ranking methods provided by RankGene software. Some evolutionary algo-

rithm’s parameters are fixed. The probability of the predictor will be mutated is set

to 0.7. The probability of adding new gene to the chromosome and the probability to

delete any random gene from any random position in predictor are set to 0.5. This will

give the equal chance for adding and deleting gene into/within predictor.

Since the evolutionary algorithm is a stochastic search, it is impossible to report

the performance of the algorithm with in one trial. The results from the evolutionary

algorithm are the average accuracy over a number of trials. We have to limit the trial

number to balance the cost of the computational time of the algorithm because the

experiment has to perform on many parameters. Here, the performance reported by an

average of the accuracy rate within 10 trials.

Some parameters are varied to determine the effects of them on the evolutionary

algorithm in classification task. The parameters are tested on the leukemia dataset with

the initial gene pool that is built using information gain ranking method which is the

popular method which is used in many researches. Here is the list of a number of

parameters that will be varied: (i) population size (10,30,50) , (ii) the number of initial
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genes (100,200,500), (iii) the feature size(10,30,50), and (iv) 6 rank methods. In the

parameter analysis phase, the performance is evaluated using LOOCV estimator on

training samples and test error on test samples.

Although the LOOCV is not the best error rate estimator for the small size sample,

an advantage of using LOOCV is it give almost unbias estimation and the most impor-

tant thing is its computational time is faster than the .632 bootstrap. The LOOCV also

has been used in many studies in microarray classification. It is acceptable to perform

the LOOCV for parameter analysis.

Firstly, the experiment is performed using the three parameters with one ranking

method: information gain. After the analysis, the set of suitable parameters from the

analysis are used to determine the best ranking method for each dataset. In the final

step, parameters that give highest accuracy will be chosen to perform the evolutionary

algorithm again with the .632 bootstrap estimator in order to achieve more reliable

performance in multiclass classification task.



Chapter 4

Experimental Results

In this section we present and analyse the performance results on the leukemia and

NCI60 dataset for multiclass classification based on the evolutionary algorithm. The

experiments performed on 1.6GHz Redhat Linux machine with 256MB are following

this step:

• The baseline system is tested on the leukemia dataset without the use of any

ranking methods.

• Various parameter configurations are investigated using the initial genes pool

constructed by information gain ranking method. The performance results are

reported based on the leave-one-out error estimator.

• The range of parameters that give good performance will be selected to per-

form the performance comparison with other ranking methods provided by the

RankGene software.

• The reproducibility of the evolutionary algorithm is investigated to select the top-

ranked genes by z-score and evaluate the performance of the top-ranked gene set.

• The .632 bootstrap error estimator is applied to the evolutionary algorithm on

the datasets using the most appropriate parameters and ranking method to report

the final performance.

29
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4.1 Baseline

The evolutionary algorithm is run on the baseline system to see the basis performance

of the evolutionary algorithm without using the RankGene software. We will compare

the baseline system to the evolutionary algorithm with different ranking methods pro-

vided by the RankGene software later on. In baseline configuration, the evolutionary

algorithm has to search for subset of predictive genes from all genes set given by the

microarray experiment.

The baseline system is built on the leukemia dataset with 7,129 genes. The initial

predictors in population are built by randomly selecting 10 genes to be an initial feature

of the predictors. This means the evolutionary algorithm has to search for 10 optimal

predictive genes set from the7129!
(7129−10)! possible subsets. Performance of the predictors

is evaluated using KNN classifier to determine the LOOCV on training samples. After

the best predictor is found in each generation, it will be tested again on test samples

to give the performance based on the out-of-samples estimation manner. The KNN

classifier will classify the each sample in test data using all training samples for the

Euclidian distance comparison.

The first investigation is to determine the average score change as the solutions

evolve because the optimal predictive gene set may be found by chance. Figure 4.1

shows the average scores in each iteration from several trails of the experiment. The

maximum iteration for each trial is given by the termination condition. The evolu-

tionary algorithm will stop when the score of all predictors in the population give the

standard deviation less than 0.01 for ten consecutive generations or the evolutionary al-

gorithm reach the defined maximum generation(200 generations). We can see that the

score increases as iteration goes. This graph confirms that the evolutionary algorithm

can find the better solutions as the iteration increases. Especially at the first few gen-

erations, the graph shows that the average score increase the the larger scale compared

with the last few generations. Figure 4.1 also shows that predictors quickly reach the

perfect classification on training samples. The evolutionary algorithm converges and

terminates within less than 50 generations.

The performance of the evolutionary algorithm with different feature sizes and

population sizes is also addressed. Table 4.1 reports the maximum and average accu-

racy on 38 training samples and 34 test samples of the baseline system. The result

shows that the evolutionary algorithm gives predictors with perfect classification on

the training samples but those predictors can not classify the test data perfectly.
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Figure 4.1: The average score in each iteration for several trails of the evolutionary

algorithm on the leukemia dataset. Each trial starts with different population of the

predictors.

The average accuracy on test data is approximately 66 percent when the average

accuracy on training data is around 94 percent. By increasing the number of genes in

predictor(feature size) and population size, it does not greatly affect the performance

of the algorithm. These may be because of the large size of the initial gene pool give

large search space to the evolutionary algorithm. Some search spaces may never be

covered before the algorithm is terminated. Another reason may be because of the

overfitting problem which will be discussed in next chapter.

Population size Feature size Training data [%] Test data [%]

Max Average Max Average

10 10 97.37 81.84 76.47 61.18

30 100.00 88.95 79.41 66.76

50 97.37 88.16 79.41 66.47

30 10 97.37 97.11 76.47 67.64

30 100.00 98.42 70.59 68.53

50 100.00 97.10 76.47 64.70

50 10 100.00 99.73 79.41 71.18

30 100.00 97.89 79.41 68.53

50 97.37 98.42 76.47 66.17

Table 4.1: The accuracy of the base line system built by randomly selecting genes from 7,129

genes in the leukemia dataset.

Another analysis on the baseline system is the relationship between the training
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and test data performance. The relationship can be determined by plotting graph of the

average accuracies of training and test data as shown in figure 4.2. Although the accu-

racy on test data is lower than training data, the performance can increase respectively

to the improvement of the predictors on the training data regardless to different feature

sizes in the predictors or the initial population size the evolutionary algorithm uses.

Figure 4.2: The change of average accuracy on training and test set according to the

population size.

4.2 The evolutionary algorithm’s parameters on leukemia

dataset

The leukemia dataset is chosen to be tested on various parameters because it provides

both training and test samples. The proposed parameters are performed on the original

data structure of 38 training samples and 34 test samples: population size(10, 30, 50);

feature size(10, 30, 50); and initial gene set 100, 200, 500 constructed by information

gain ranking method. The KNN classifier uses the subset of gene in predictors to

classify the class of training samples. In each generation, the best predictor that give

highest score is selected calculate testing error on the test samples.

The classification results of all parameters are summarised in table 4.2. With ten

trials of each experiment, all methods predict classes almost 100% correctly for the

38 training samples using leave-one-out cross validation. With the new initial gene

pool constructed by the information gain ranking method, the accuracy on test data of

the predictor is higher than the all accuracy on the baseline system. The prediction

of the test samples using KKN classifier based on the training set varies on different
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parameters but it does not varies in the big scale. If we looking at the specific predictor,

there are some predictors discovered by the evolutionary algorithm that give 100%

correct classification is marked with (*) in the table.

Initial gene size Population size Feature size Training data Test data

(LOOCV)[%] (out-of-sample)[%]

100 10 10 100.00 84.11

30 100.00 92.35

50 100.00 94.41

30 10 100.00 84.12

30 100.00 93.23*

50 100.00 95.00*

50 10 100.00 89.71*

30 100.00 89.71

50 100.00 93.82

200 10 10 100.00 87.35*

30 100.00 90.00*

50 100.00 92.65

30 10 100.00 83.24

30 100.00 86.18

50 100.00 90.00

50 10 100.00 84.41

30 100.00 90.00

50 100.00 88.82

500 10 10 98.68 84.41

30 100.00 83.53

50 100.00 86.76

30 10 100.00 81.47

30 100.00 87.35

50 100.00 85.88

50 10 100.00 81.76

30 100.00 83.53

50 100.00 83.53

Table 4.2: The average accuracy measured in percentage on different parameters performed

by the evolutionary algorithm. The accuracy is computed using LOOCV to count the correct

classified samples within the original 38 training samples and out-of-sample prediction for the

34 test samples. The symbol (*) means that there is some perfect predictors found by the

algorithm.

The evolutionary algorithm gives low performance on the 500 initial genes because

of the search space is too large to cover all possible subset within the limited population

and feature size. The parameters that give optimal performance which mean it can
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balance between computational cost and the test error rate.

From the results on the leukemia dataset, the performance analysis is performed

in order to choose the set of parameters that perform well in classification task. The

chosen parameters will be applied the algorithm with other ranking methods in the

RankGene software.

4.2.1 Initial gene pool

The initial genes pool provides a search space to the evolutionary algorithm. If the

search space is too large, it is possible that the algorithm can not discover the predictive

genes with in the search space. On the other hand, if the initial gene size is too small, it

is possible that some predictive genes are not included in the search space. The small

search space decrease performance of the evolutionary algorithm before it performs its

work.

In order to distinguish the performance according to the size of the initial gene

pool, the graph according to different size of gene pool is plotted as shown in figure

4.3. Considering only the affect of the size of initial gene, all different feature sizes

are plotted by varying the size initial genes pool. The population size is fixed to 30 for

every curves. The graph shows that the performance of the evolutionary algorithm in

two cases out of three (feature size 10 and 30) are decreased when the size of initial

gene pool increases. For 100 initial genes, the accuracy rates are high compare to 200

and 500 initial genes. From the graph, the number of 100 genes seems to give better

performance for all predictors. The initial gene pool with size 100 will be chosen to

perform the further analysis.

Figure 4.3: The average accuracy on test data according to the size of the initial gene pool.



Chapter 4. Experimental Results 35

4.2.2 Feature size

The feature size is the number of genes included into the predictor. This parameter is

important for the optimal number of predictive genes that will be discover through the

evolutionary algorithm.

Due to the design concept of this evolutionary algorithm, the number of genes in

predictors or feature size can be varied across predictors and generations. There are

two probabilities that can affect the subset of genes in the predictor. The first prob-

ability determines whether the predictors will be kept the same across the generation

or will be mutated by changing the subset of genes within the predictor itself. In this

experiment, we want to evolve the predictors across generations. The predictors will

be randomly selected with the probability of 0.7 to be mutated, otherwise it will be

kept the same. The low probabilities is useful in such case that assigning the mutation

operator may destroy the good subset of genes that already found in the predictors in

the generation.

If the predictor is selected to be mutated, the next probability is assigned to the

predictor offering the choices of the mutation operators. Two mutation operators are

implemented and assigned to the predictor: adding a new gene into the predictor and

randomly deleting a gene from subset in the predictor. The evolutionary algorithm

is implemented with the fixed probability of 0.5 in order to give an equal chance in

selecting a mutation operator to the predictors.

To determine the effect of mutational probability, an average of feature size over

the generations is plotted as shown in figure 4.4.

Figure 4.4: The average feature size of best predictors in each generation. The initial feature

size and initial genes pool are set to 10 and 100 respectively.
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The evolutionary algorithm starts with the initial feature size 10 and the algorithm

is run until the terminate condition is met. The result shows that the number of genes

involved in the best predictor is not remarkably different from the initial gene size in

the starting point of the algorithm. However, the best predictors tend to increase the

number of genes in order to obtain the better classification result in the next generation.

The feature size is varied in three values(10, 30, 50). To select appropriate fea-

ture size that give the good classification result, the graph of an average accuracy with

different feature size is plotted to clearify the affect of the feature size on the classifica-

tion performance. Figure 4.5 shows the average accuracy when the initial feature size

is increased. The large feature size can improve the performance of the predictor. The

feature size 30 and 50 will be used to perform classification task using other ranking

methods.

Figure 4.5: The average accuracy on test data varying on the feature size.

4.2.3 Population size

The population size is one of the important choices faced by any use of evolutionary al-

gorithms. This parameter causes the balancing problem between the convergence time

and computational time. If the population size is too small, the evolutionary algorithm

may be converge too quickly. If it is too large, the evolutionary algorithm may waste

computational resources: the waiting time for an improvement might be too long. The

experiment determines three different sizes of population(10, 30, 50). Moreover, the

size of population in this evolutionary algorithm can be flexible according to the sta-

tistical replication technique described in chapter 3. The predictors with higher weight

will have a probability to be selected into the next generation more than one time.
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To compare the affect of population size to the test error rate and the computational

time, the graph is plotted as shown in figure 4.6. The number of the feature size and

initial genes set are fixed to shows the performance of the evolutionary algorithm on

different initial number of the population size. The results show that the average time

usage greatly increase exponentially as the population size increases but the test error

rate of the predictors does not significantly goes down. Some predictors in the experi-

ment give less performance when the population increases. This gives us the difficulty

to determine and select the most suitable parameters to determine the performance of

other ranking methods. For the graph, the experiment on the population size 10 and 30

is still acceptable to perform. Therefore, the number of predictors 10 and 30 will be

used in further analysis.

The population size 50 gives the less error rate among other population size but it is

not significantly different from the others. Theoretically, the expensive computational

cost comes with the diversity of the evolutionary algorithm. We wish to include the

population size 50 into the further analysis to determine the tradeoff between compu-

tational time and the convergence of the evolutionary algorithm. The population size

of 50 will be tested on only the feature size 50 which give the less error rate to reduce

the work load in the experiment.

Figure 4.6: The change of population size affects the computational time and accuracy of the

evolutionary algorithm on leukemia dataset

Finally, the analysis of all parameters gives us the range of suitable parameters that

are used to. We decide to choose only five subset of parameters to investigate on other

ranking methods in the next step.
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• The initial gene size100 top-ranked genes from ranking methods will be used.

• The feature size30 and 50 number of initial feature size are chosen.

• The population sizeThe population size 10 and 30 will be chosen on feature

size 30 and 50. The population size 50 will be run with 50 initial numbers of

feature.

4.3 The rank methods

Many ranking methods provided by the RankGene software are used to build the initial

gene pool and investigate that which method gives the best performance for leukemia

dataset. Using the experience with the information gain rank method, five sets of

parameters are performed to determine the performance given by other different rank

methods. All methods that are used to build the initial gene set are list below. The

details of each method can be found at http://genomics10.bu.edu/yangsu/rankgene/.

1. Information gain

2. Twoing rule

3. Gini index

4. Sum minority

5. Max minority

6. Sum of variances

4.3.1 The leukemia dataset

Table 4.3 shows the average accuracy on the test data of the leukemia dataset. With the

initial gene constructed by all rank methods, the performance is better than the baseline

system. The rank method that gives the best performance is the twoing-rule with the

population size 10 and feature size 50.
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Initial gene Population Feature The accuracy of different rank methods

size size size on the Test data (out-of-sample)[%]

#1 #2 #3 #4 #5 #6

100 10 30 92.53 93.53 88.24 86.18 94.41 89.70

50 94.41* 96.18* 96.18* 87.94 94.71* 93.82

30 30 93.23* 94.12* 85.59 90.00 90.59* 89.41

50 95.00* 94.71* 90.88 90.29 94.12* 92.06

50 50 93.82 91.47* 88.53 88.82 93.23 96.11

Table 4.3: The average accuracy on 5 sets of parameters with 6 ranking methods measured

by using out-of-sample prediction on the 34 leukemia test samples. The symbol (*) means that

there is some perfect predictors found by the algorithm. The highest accuracy is written in bold.

4.3.2 The NCI60 dataset

The same sets of parameters are given from the experience on the leukemia dataset

to perform on the NCI60 dataset. Six ranking methods are tested to determine which

method gives best performance in multiclass classification. Due to the very small

sample size of the NCI60 dataset, it is difficult to divide the data into training and test

set.

The accuracy of predictors in the table 4.4 is given by using the LOOCV error rate

estimation on the whole dataset. The aim of this investigation is only to find best pa-

rameters and ranking method. To assess more reliable performance of the evolutionary

algorithm on the NCI60 dataset, the .632 bootstrap estimator will be used later.

The results from the NCI60 is not very impressive for all the ranking methods. The

computational time for the experiment is also significantly expensive compare to the

same set of parameters on the leukemia dataset. To complete the run, each trial takes

approximately 1 minute for population size 10, 25 minutes for population size 30, and

1 hours for population size 50.

No predictor classifies all data 100% correctly. The best performance found in the

comparison comes from the use of the information gain technique at the population

size and feature size are equal to 30.
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Initial gene Population Feature The accuracy of different rank methods

size size size on all dataset (LOOCV)[%]

#1 #2 #3 #4 #5 #6

100 10 30 66.72 63.77 60.00 54.43 62.78 69.34

50 67.86 62.78 61.63 52.62 62.62 65.90

30 30 76.23 72.29 72.02 65.90 74.26 75.41

50 73.44 72.46 71.15 63.11 73.44 73.93

50 50 75.08 72.29 71.96 71.97 73.77 74.16

Table 4.4: The average accuracy on 5 sets of parameters and 6 ranking methods measured by

the LOOCV on 61 samples of the NCI60 dataset. The highest accuracy is written in bold.

4.4 Discrimination method

To assess the reproducibility of the algorithm, the frequency of the specific genes that

are members of the best predictor across 100 independent trials with different initial

populations. The number of genes that are consistently preferentially chosen by the

evolutionary algorithm, suggesting that the gene selection operation executed by the

algorithm is highly reproducible despite the initial solutions are generated randomly.

Li et al. (2001) suggested the way to determine the number of top-ranked genes that

found in predictors by using the statistical z-score based on normalizing the frequency

with which each of the initial genes was selected in all predictors that classify the

training and test data perfectly. The Z score can be calculated using the equation (4.1).

Z =
Si −E(Si)

σ
(4.1)

WhereSi denotes the number of times genesi was selected,E(Si) is the expected

number of time for genei being selected, andσ denotes the square root of the variance.

The calculating ofE(Si) can be done by: letA = number of perfect predictors found

in the experiment,Pi = (number of genes) / (number of genes in the initial gene pool).

Then,E(Si) = Pi ∗A.

For the leukemia dataset, the discrimination method performs 100 trials of experi-

ment using the best set of parameters: 100 initial genes constructed by the twoing rule

and feature size = 50. There are 511 predictors (ignoring the duplication) that classify

all training and test data correctly. Figure 4.7 shows a plot of z-score applied to the top

ranked genes that are frequently selected by the evolutionary algorithm.

The z-score decreases quickly for the first 5 to 10 genes. The decrease is much
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Figure 4.7: A plot of z-scores for 100 ranked genes on the leukemia dataset.

slower after 25 genes. In this case, it seems reasonable to choose 30 to 40 top-ranked

gene as the most discriminative genes. In this experiment, the 30 top-ranked based on

the statistic z-score analysis are selected to determine the performance by submitting

the top-ranked genes to KNN classifier and let it classifies the test data using training

data.

The results of the classification with the 30 top-ranked gene are correctly 100 % on

both training and test set on the leukemia dataset. Table 4.5 shows the 30 top-ranked

genes with its frequency found in 511 best predictors including the z-score value. This

set of genes will be used in the further evaluation using the .632 bootstrap estimator.
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Gene Index Gene Access Number Frequency z-score value

5543 D00749 s at 432 7.189

3773 U79274 at 405 6.740

1834 M23197 at 381 6.340

4951 Y07604 at 377 6.273

4177 X15949 at 376 6.256

1926 M31166 at 375 6.240

5552 L06797 s at 369 6.140

6803 M19045 f at 348 5.790

1247 L08177 at 340 5.657

3108 U36922 at 339 5.640

4913 X99584 at 335 5.573

5039 Y12670 at 325 5.407

1078 J03473 at 320 5.323

4586 X77094 at 320 5.323

412 D42043 at 317 5.273

4050 X03934 at 312 5.190

3072 U33839 at 311 5.173

6797 J03801 f at 309 5.140

5688 L33930 s at 308 5.123

5300 L08895 at 307 5.107

760 D88422 at 306 5.090

3281 U48251 at 305 5.073

4318 X58529 at 305 5.073

6225 M84371 rna1 s at 302 5.023

4484 X69398 at 302 5.023

1120 J04615 at 298 4.957

962 HG3998-HT4268 at 292 4.857

2050 M58297 at 290 4.823

4535 X74262 at 290 4.823

6218 M27783 s at 286 4.757

Table 4.5: The list of 30 top-ranked genes order by the frequency that gene is selected into the

predictors.

4.5 The .632 bootstrap error estimation

After the analysis various parameters, the most suitable parameters evaluated by the

LOOCV estimator will be tested again on the evolutionary algorithm using the .632

bootstrap error estimation. The results are shown in table 4.6.

For the leukemia dataset, the twoing-rule ranking method with population size 10

and feature size 50 gives the best performance. The evolutionary algorithm is applied

with these parameters for reporting the final performance. The algorithm takes approx-

imately 18 hours to complete a trial. The best predictor with 50 predictive genes found

in the algorithm gives 96.40% of accuracy. The .632 bootstrap estimator is also used to

determine the performance of the predictor which consists of top-ranked genes based
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on the discrimination method. This predictor gives 98.61% accuracy which is slightly

higher than the evolutionary algorithm with rank method.

The accuracy evaluated by the .632 bootstrap estimator

Rank method Initial gene Population Feature No. genes accuracy[%]

size size size

Twoing rule 100 10 50 50 97.40

discrimination 100 - 30 30 98.61

Table 4.6: The accuracies of the best predictor discover by the evolutionary algorithm on the

leukemia dataset. The performance is evaluated by the .632 bootstrap estimator.

4.6 The comparison of the evolutionary algorithm with

literatures

Table 4.7 presents the performance results on the leukemia dataset by the evolutionary

algorithm compare to results from other literatures. Although the results give less

performance than the original work by Deutsch (2003), the performance measure is

more reliable than the test set error rate. The accuracy on the leukemia dataset is

relatively high compare with several literatures. Furthermore, the predict with only

30 top-ranked genes getting from the discrimination method provides higher accuracy

than the use of the evolutionary algorithm with the RankGene software.

author method no. genes accuracy[%]

gene selector classifier

Keedwell et al.(2002) GA NN 50 88.00

Dudoit et al. (2000) BSS/WSS KNN 40 97.06

Dudoit et al. (2000) BSS/WSS DLDA 40 97.06

Li et al. (2001) GA KNN 50 97.06

EA EA+Twoing rule KNN 50 97.40

EA EA+Twoing rule+discrimination KNN 30 98.61

Deutsch (2003) EA KNN 9 100.00

Table 4.7: The comparison of the results on the leukemia dataset obtained from the disserta-

tion(written in bold) with other published results.
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Discussions

The results as given in chapter 4 are satisfactory, improving on several of the previously

published error rates especially on the leukemia dataset. However, there is room for

improvement. Furthermore, by use of the .632 bootstrap estimator, we get a better

performance measure in contrast with reports of a single best run of an algorithm found

in literature.

5.1 The baseline system

In the baseline system, the evolutionary algorithm easily discover the predictors that

can classify the the training samples 100% correctly. In contrast with the test error

which is relatively low. Because the evolutionary algorithm leads the predictors to

perfect classification on training set very quickly. This characteristic of the algorithm

causes the overfitting problem. The problem generally occurs when the classifier has

only small training dataset (Raudys, 2001).

The overfitting affects directly to the algorithm convergence mechanism. When

numbers of the predictor fit all training samples, the similar score will be given to

those predictors. Due to the additional score is in scale of 1, it does not significantly

affect the diversity of the predictors with in the generation. This will lead the algorithm

to the terminate condition quicker than expected. Finally, the test error rate can not be

improved within the short number of generation.

44
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5.2 The evolutionary algorithm

The evolutionary algorithm has been shown to give satisfactory performances on the

datasets with the different parameter configurations.

For the leukemia dataset, we have shown that the evolutionary algorithm finds some

predictors that can correctly classify 38 training samples and 34 test samples based on

leave-one-out cross validation (LOOCV) and out-of-sample estimation respectively.

The accuracy by using .632 bootstrap also high (97.40%). In spite of the high perfor-

mance on the leukemia data, the evolutionary algorithm does not give the impressive

performance on the NCI60 dataset.

The RankGene software helps the evolutionary algorithm by cutting off the less

predictive gene in the whole set of genes. The reduced size of initial genes also re-

duces the search space for the evolutionary algorithm. This creates more chance to the

algorithm in order to discover only the predictive in the small search space. From the

results of many experiments on different parameters, the initial size of 100 gives the

best performance on the leukemia dataset. Furthermore, the evolutionary algorithm

discovers some predictors that give 100% correctly classified on all dataset. The initial

gene pool constructed by the RankGene software lead to the improved classification of

the evolutionary algorithm. All ranking methods provided by the RankGene software

give similar performance results on leukemia and NCI60 datasets.

The different behaviour in the different dataset is that the algorithm converge more

slower on the NCI60 dataset. The reason is not only the larger size of training sam-

ples (61 samples in NCI60 vs. 38 samples in leukemia dataset), but also the difficulty

of classifying large number of classes(9 classes in NCI60 vs. 3 classes in leukemia

dataset). The KNN classifier can not classify all NCI60 samples correctly. This even-

tually helps the overall system to be more diversity. But the diversity in the system is

still not enough to improve the classification performance on the NCI60 dataset.
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5.3 The discrimination method

Another topic to address in the experiment is the number of genes to be included in a

predictor. Several research have tried to find the optimal predictive genes set. Due to

the large search space, different researches have obtained different optimal genes set.

The researches by Li and Grosse (2003) suggested that for the leukemia dataset

that contains only 38 training samples, the number of predictive genes included in a

predictor should be less than 50. The discrimination method is applied in order to

rank the frequently selected genes in the best predictors and use the statistical z-score

analysis. On the leukemia dataset, the 30 top-ranked genes are obtained to be included

to the predictor. The performance estimated by the .632 bootstrap confirms that these

top-ranked genes can distinguish different classes of the samples.

However, the use of z-score analysis still give the large number of genes compare

to the work by Deutsch (2003). Therefore, more genes added into the predictors might

be more useful because the predictor will be less sensitive to the quality of data, since

the current microarray technology still provides data with variances.
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Conclusion

The results of the microarray multiclass classification using an evolutionary algorithm

are satisfactory on two datasets used in the dissertation. The evolutionary algorithm

can improve the performance of classification when the RankGene software is used to

build the initial gene pool. With the concept of the evolutionary algorithm, the solu-

tions are lead to better performance over the generations. By use of the .632 bootstrap

estimation, the evolutionary give the satisfy result on the leukemia dataset. In contrast

with the NCI60 dataset where the classification performance has to be improved.

The number of genes included in a predictor is another issue that plays important

rule to classification task. The method presented in the dissertation is to use the z-

score analysis for ranking the most frequently selected genes that are found in the

best predictors over 100 trials of the experiment. The discrimination method reduce

the number of predictive genes in the predictor and also improves the classification

performance.

The improvement of the evolutionary algorithm may be done by tuning up the

parameters within the evolutionary algorithm such as designing new scoring function

that can lead the solution to the decided goal and examining the mutation probabilities

to give the flexibility to the algorithm.

The future work apart will investigate whether or not the predictors have biological

significance. The correlation between genes and the related concept of gene clusters

are also an interesting issue to study.
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