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Abstract. This paper describes an ontology for process representation.
The ontology provides a vocabulary of classes and relations at a level
above the primitive event-instance, object-instance and timepoint de-
scription provided by ontologies such as the Process Specification Lan-
guage. The design of this ontology balances two main concerns: to pro-
vide a concise set of useful abstractions of process, and to provide an
adequate formal semantics for these abstractions. The aim of concise-
ness is to support knowledge authoring - ideally a domain expert should
be able to author knowledge in the ontology - providing a sufficiently
advanced toolset and interface has been implemented to support this
task.

1 Introduction

The Rapid Knowledge Formation project (RKF) [8] aims to develop powerful
tools to enable domain experts to author knowledge directly. Ideally, the role of
the knowledge engineer is confined to the design of generic templates for complex
patterns of knowledge, such as processes. The design of specific tools, such as
those for process knowledge, is complemented by tools supporting the more
typical types of knowledge specified in the ontology, namely, classes, relations
and rules. These tools also require knowledge-engineering knowledge in order
to function adequately. In practice, the use of the two types of tools is inter-
connected, e.g. defining a new process will involve defining a new collection to
represent the event-type.

This paper describes an ontology for process representation which allows pro-
cesses to be described purely at the type-level. The semantics of these relations
is expressed in terms of more primitive event-to-object relations in the Cyc on-
tology[6,7]. A similar semantics in terms of the Process Specification Language
(PSL)[11] types and relations has also been developed in the course of this work
showing the (relative) independence of the type level and the ground level.



The process ontology aims to provide a concise set of useful abstractions
of process which apply across numerous domains. The first domain studied was
processes in cell biology, where models were derived from a textbook [1]. Latterly,
we are considering military courses of action. The process ontology augments an
existing theory of scripted events in Cyc, which is the theory behind the powerful
user interface tools developed and tested in RKF. And with the release of an
open-source version of the the Cyc system, the design of Cyc ontologies and tools
becomes more relevant to the Al community.

The connection between the ontology and the user tools is the subject of
Section 2, we then outline the existing Script vocabulary and then present the
extensions to it. The theories of participants, conditions and effects and of re-
peated processes are documented in Section 3. An example of a complex process
represented in this framework is given in Section 4. Finally, we consider related
work in Section 5, and draw some conclusions in Section 6.

2 The RKF Tools and Ontology

The Cyc knowledge base currently contains more than 100,000 concepts, and
1.4 million axioms and rules [9]. Cyc’s knowledge is represented using CycL,
a highly expressive language based on second order logic. Assertions are made
in a specific context, known as a Microtheory. The Cyc tools developed in the
RKF project provide the core functionality of the KRAKEN knowledge-entry
system. KRAKEN incorporates powerful natural language tools that allow the
user to interact with the system through simple questions and statements in
English. As CycL is natural-language independent, the parsing components of
the interface use Cyc’s lexical and syntactic knowledge to produce intermedi-
ate logical representations; these record many of the syntactic features of the
English input strings needed to resolve various semantic issues, such as quan-
tifier scope. The resulting underspecified representation must be ‘finalised’ to
construct valid CycL. This ’finalisation’ process proceeds via both syntactic and
semantic (knowledge-driven) transformation rules. The interface also acquires
lexical knowledge from the user as new concepts and facts are entered. More
details of the NLP components can be found in [9].

The User Interaction Agenda (UIA) provides tools for the following tasks:
creating concepts, predicates and individuals; classifying concepts; identifying
and asserting relations applicable to new (and existing) concepts; and formulat-
ing rules for the use of these concepts in reasoning.

The UIA tools include the precision suggestor for placing a concept appropri-
ately in the hierarchy. This tool identifies a small set of possible generalisations
and specialisations of a new concept and suggests these to the user. The user
can select from these alternatives - a more effective technique than browsing the
entire ontology. In order to facilitate the entry of assertions at the right level of
generality, this tool can also be applied to any assertion proposed by the user.

The salient descriptor aims to add a minimal, appropriately general set of
relevant assertions about new (or existing, but under-ontologized) concepts. This



tool queries the user, in English, for the additional information using general,
context-dependent knowledge-acquisition rules. For example, on entering knowl-
edge about a new type of cellular process, the user will be asked to identify
the kinds of cells that are involved in this process, and where in these cells the
process takes place. Prompting these queries are knowledge-acquisition rules of
the form, if P(a), it is useful to know Q(a). Again, the precision suggestor can
be used against the output of any salient descriptor interaction, to help ensure
that the right level of generality has been achieved.

The process descriptor assists the user to enter descriptions of structured
event types, or Scripts. A Script is a typical pattern of events that can be ex-
pected to re-occur - ‘dining in a restaurant’ and ’brushing one’s teeth’ being well
known examples. The tool allows the various steps of a process to be defined
and ordered, and for the types of actors and roles in the various steps to be
identified. The precision suggestor and salient descriptor tools are called upon
as necessary. For example, if a process-step is defined as a kind of creation event,
the precision suggestor will ask the user whether it might, in fact, be a kind of
physical creation event. On confirming this suggestion, the user will be asked by
the salient descriptor to identify a class of tangible things that are created in any
such event. If the process-step in question has been defined as a process, the pro-
cess descriptor will use the knowledge gained during the precision suggestor and
salient descriptor interactions to propose new candidate roles and actor types.
The tools thus interact in concert, with new and existing knowledge determin-
ing the applicability of each interaction: The knowledge in the Cyc Knowledge
base drives the interactions that create and refine new knowledge. In turn, the
knowledge gained during these interactions drives additional knowledge creation
and refinement steps.

The relevance of a process ontology becomes all the more evident when one
realizes that knowledge creation and refinement is itself a process, describable
as a Script in CycL. Thus a rich and inferentially powerful theory of Scripts is
potentially useful beyond giving the KRAKEN system the resources to guide the
user in defining new processes. With the knowledge that every UTA knowledge-
entry session is itself an instantiation of a kind of Script, Cyc will be able to
follow’ the Script, anticipating decision points and user actions, and, overall,
more effectively guide knowledge-entry sessions from start to finish, in much the
way a genuinely intelligent agent would. Though this use of a process ontology
in Al-driven knowledge entry will not be discussed in the scope of this paper, it
is a goal worth keeping in mind. It is notable that some portion of RKF year 2
resources have been allocated for ATAI and Cycorp to do serious research in this
area. Thus one way to interpret the results reported here is to think of them as
important stepping stones towards the larger goal of using a process ontology as
a core component of knowledge-entry tools, generally.



3 The Process Theory: An Extension of Scripts

This section presents three extensions to the Script theory: Participants, Condi-
tions and Repetition. The Participants theory extends the existing vocabulary
for identifying the objects that play a role in a scripted event or a Scene. The
Conditions theory is a new theory for specifying the preconditions and effects of
a Scene. The Repeated Scripts theory provides the semantics for the repetition of
an Event type, within the Process theory. These theories all provide a type-level
vocabulary, and are grounded at the instance-level which provides the semantics.
As a consequence of the type-level definitions, the problem of identity arises, i.e.
which instance plays a given role in an event, given that only its type is specified.
Vocabulary for stating identity properties is also presented. An example of the
use of the Process theories is presented in Section 4.

3.1 The Script Theory

The existing approach to participants in Scripts can be summarised as follows. A
Script is an event-type whose instances have subevents, i.e. Scripts are composite
events. A number of relations are defined which state that a Type plays a role
in a Scene (within a Script). These assert that some instance of an Object- Type
plays a role in a Scene. More accurately, the object-instance plays a role in an
event-instance of type Scene, which is a subevent of (an instance of) the Script.
The relation typePlaysRoleInScript holds of a Script, Type and role, with the
interpretation given above.

As Scripts are specified as a conjunction of type-level assertions, some of
which assert the existence of some object, the problem of identifying those ob-
jects across Scenes arises. The object acted on by the process as a whole may be
acted on by one or more subprocesses, or the output of one subprocess may be
identified with (be the same object as) input to another subprocess. More for-
mally, several models of identity are defined, including: 1) All objects of Object-
Type playing a role in the Script are identified with all objects of that type
playing any role in any Scene, 2) In Scenes 1 and 2 in a Script, any object
playing role-1 in Scene-1 plays role-2 in Scene-2.

The general approach is to associate an instance of an Object-Type with an
instance of an Event-Type (by an existential quantification), and to state identity
conditions by additional assertions. These are equivalent to rules of the form:
(implies “?OBJECT plays role in event-1” “?OBJECT plays role in event-2”)

3.2 Participants in Processes

Processes are formalised as Scripts. However, the representation of participants
is modified for Processes. Firstly, an explicit count of objects of the given type
which play a role in the event must be specified. Secondly, it is necessary to know
which objects of that type play a role in a specific event: the existing Cyc pred-
icate actors is used for this purpose. The resulting models are compatible with
the original Script models, and due to the explicit count of participants, the new



formulation contains the information required for process instances to be cre-
ated. As the process description is really a specification, we cannot immediately
derive a ground instance of the process (a model in terms of event-instances
and objects) from it, but can validate a ground model against the type level
description.

The relations actor TypeInScriptCount and actor TypeInSceneCount state the
number of things of a given type that play any role in a Script or Scene. These
relations have the following rules which conclude with the Cyc relation relation-
InstanceExistsCount, specifying the number of instances of ?TYPE for which
(actors ?EVENT instance) holds. actors is used as the most general predicate
relating events and instances, it will be specialised during process modelling.

F: (implies (and (actorTypeInScriptCount ?7TYPE 7SCRIPT 7INT)
(instantiatesScript ?EVENT 7SCRIPT))
(relationInstanceExistsCount
actors 7EVENT ?TYPE ?7INT)).

The rule given below shows that it is the ?OBJECT identified in the actors
assertion that the role holds of, in addition to the ?OBJECT being of Type.

F: (implies
(and (instantiatesScript ?7EVENT 7SCRIPT)
(isa 70BJECT 7TYPE)
(actors ?7EVENT ?70BJECT)
(allInstances0fTypePlaysRoleInScript ?SCRIPT 7TYPE 7ROLE))
(?ROLE ?EVENT ?0BJECT)).

The relation alllnstancesOf TypePlaysRoleInScript is a specialisation of type-
PlaysRoleInScript. The following KE suggestion rules are defined to encode the
knowledge acquisition requirements as they apply to Processes. This type of in-
formation is important as it drives the suggestion mechanisms of the GUI tools.
For a ScriptedEventType, an actorTypelInScriptCount is expected, for which a
specific Role is also expected, therefore the following two rules are defined:

F: (implies (isa ?SCRIPT ScriptedEventType)
(keStrongSuggestion 7SCRIPT
(thereExists ?TYPE (thereExists 7INT
(actorTypeInScriptCount ?TYPE 7SCRIPT 7INT))))).

F: (implies
(and (actorTypeInSceneCount 7TYPE 7SCRIPT2 7SCRIPT1 7INT)
(isa 7SCRIPT1 PrimitiveEventType))
(keStrongSuggestion ?SCRIPT2
(thereExists 7ROLE
(and (isa 7ROLE BinaryRolePredicate)
(typePlaysRoleInScene 7SCRIPT2 7TYPE ?SCRIPT1 ?ROLE))))).

The suggestion for a typePlaysRoleInScene assertion may be followed by spe-
cialisation to allInstancesOfTypePlaysRoleInScript where applicable.



Aggregate Processes When describing processes at an aggregate level, which,
in the cell biology domain, is a process at a level above that of a single DNA-
RNA transcription episode, the types of the participants will be known but
the exact number may be unimportant. In order to be able to describe the
numbers of participants in an action where there are an unspecified number,
we make use of the the Cyc type NonNegativelntegerExtent in the definition
of actorTypeInScriptCount. This type can be instantiated by positive integers,
ranges of integers, and qualitative values. The latter allowing us to state that
few or many objects of Type participate.

Identity Explicit assertions that the object(s) playing a role in one Scene is(are)
the same as those in another Scene, or in the Script as a whole, are required.
The problem of identifying instances from subevent to subevent arises from the
type-level approach where properties of Scenes are stated in the context of Script,
but otherwise in isolation from each other. For example, the following rule states
that the objects playing role-1 in the Script also play role-2 in subevents of type
Scene. The rule illustrates the Script/Scene model as the variable EVENT is
the instance of the Script, and SUBEVENT is the instance of the Scene.

F: (implies (and

(sameInstancePlaysRoleInScene ?TYPE ?SCRIPT ?SCENE ?7ROLE1 7ROLE2)
(instantiatesScript 7EVENT ?SCRIPT)
(subEvents ?7EVENT ?SUBEVENT)
(isa ?SUBEVENT ?SCENE)
(isa 70BJ ?TYPE)
(?ROLE1 ?EVENT ?70BJ))

(?7ROLE2 7SUBEVENT ?70BJ)).

F: (implies (and
(sameInstancePlaysRoleInScene 7TYPE 7SCRIPT1 ?7ROLE1 ?SCENE1 ?7ROLE2)
(sameInstancePlaysRole ?TYPE ?SCENE1 ?SCENE2 ?7ROLE2 7ROLE3))
(sameInstancePlaysRoleInScene 7TYPE 7SCRIPT1 7ROLE1 7SCENE2 ?7ROLE3)).

The second rule above shows that the Script-to-Scene identity relation can
be inferred, therefore it need not be exhaustively enumerated in the modelling
exercise.

In aggregate processes, the objects participating in one sub-process in a
script must also be identified with objects participating in another. We intro-
duce somelInstancePlaysRole to mean that of the set of things playing role-1 in
Scene-1 some play role-2 in Scene-2. This allows for a process to produce Many
things of ?Type, and for some to be consumed by one subsequent process, some
by another.



F: (implies
(and (someInstancePlaysRole ?TYPE ?SCENE1 ?7ROLE1 7SCENE2 ?ROLE2)
(instantiatesScript 7EVENT 7SCRIPT)
(subEvents 7EVENT ?SUBEVENT1)
(isa ?SUBEVENT1 ?SCENE1)
(subEvents ?EVENT 7SUBEVENT2)
(isa ?SUBEVENT2 ?SCENE2)
(isa 70BJ1 ?TYPE)
(?ROLE1 ?SUBEVENT1 70BJ1))
(thereExists ?70BJ2 (and (isa 70BJ2 ?TYPE)
(?ROLE1 ?SUBEVENT1 70BJ2)
(?ROLE2 ?7SUBEVENT2 70BJ2)))).

In the general case, a set of instances is associated with a Scene. However,
additional facts about identity can be derived when it is known that only one
instance of ObjectType plays a role in a Scene. If we have an instantiation of
a Scene where a particular instance, Object-1, plays this role, then in this case
the set of instances is just the singleton set containing Object-1. These facts can
be used in the Conditions theory, which is described below.

3.3 Conditions in Processes

The conditions and effects of scenes are also defined at the type-level. Only
Scenes are treated as it is assumed that the conditions of Scripts are derivable
from those of the constituent Scenes, and that the knowledge of conditions may
also be used to construct new plans/process models from primitive components
only.

preconditionOfScene holds of a Scene, a predicate, and a specification term.
The semantics at the instance level are expressed in terms of the existing Cyc
predicate preconditionFor-PropSit which holds of an ELSentence-Assertible and
an Event. The predicate and the specification of preconditionOfScene determine
the ELSentence-Assertible. The specification term selects among the objects that
have been defined to play a role in the Scene, that is, all objects that are referred
to in the conditions must be declared to play a role in the Scene. This is done
using the Participant vocabulary.

Before considering the specification term, it is worthwhile to note that this
term necessarily identifies a set of objects that are associated with the Scene
as it is a type-level expression. We assume that the precondition of the event is
satisfied if the predicate holds of a single member of this set. In the rule below,
?ROLE and ?SUBEVENT define the set of objects, of which ?F is a member.
(?PRED ?E) holds prior to the Scene.

F: (implies (and (preconditionOfScene 7SCENE ?PRED ¢‘7ROLE’’)
(isa 7ROLE BinaryRolePredicate)
(isa 7PRED UnaryPredicate)
(isa ?SUBEVENT 7SCENE))
(thereExists ?E (and (7ROLE ?SUBEVENT 7E)
(preconditionFor-PropSit (7PRED 7E) 7SUBEVENT)))).



A Scene may have several preconditions. These are stated independently of
each other, and have the interpretation that the conjunction of these precondi-
tionOfScene assertions must hold for the event to be executable. The conditions
may be unary, binary or ternary relations. When there is only one instance of
an actor in the Scene, additional facts about the existentially quantified variable
?7E can be derived - namely that it equates to the actor instance.

Analogously, the predicate postconditionFor-PropSit is introduced to repre-
sent the instance-level relation between the postcondition (formula) and the
event. Postconditions of a Scene are similarly specified by postconditionOfScene.
These assertions represent conditions (assertions) that hold after the Scene.

In order to construct the specification term, a number of functions are intro-
duced. To show their use by example, the rules below cover the cases where a
unary postcondition predicate, ?PRED, is specified by the set of objects playing
?ROLE, and where a binary predicate is specified by the collections COLL1
and ?COLL2.

F: (implies

(and (postconditionOfScene 7SCENE ?PRED (TypeArgSpec-UnaryFn 7ROLE))
(isa 7ROLE BinaryRolePredicate)
(isa 7PRED UnaryPredicate)
(isa 7SUBEVENT 7SCENE))

(thereExists 7E
(and (7ROLE 7SUBEVENT 7E)

(postconditionFor-PropSit (?PRED 7E) 7SUBEVENT)))).

F: (implies
(and (postconditionOfScene 7SCENE ?PRED
(TypeArgSpec-BinaryFn 7COLL1 ?COLL2))
(isa ?COLL1 Collection)
(genls 7COLL1 SomethingExisting)
(isa ?COLL2 Collection)
(genls 7COLL2 SomethingExisting)
(isa ?SUBEVENT 7SCENE))
(thereExists ?E (thereExists 7F
(and (actor 7?SUBEVENT <?E)
(isa ?E ?7COLL1)
(actor 7SUBEVENT ?F)
(isa 7F 7COLL2)
(postconditionFor-PropSit (?PRED ?7E ?F) ?SUBEVENT))))).

All permutations of unary, binary and ternary predicates specified by roles
and/or collections in any argument position are permitted. The predicate may
also be negated in the pre/postcondition.

Identity The problem of establishing identity between the arguments of the
pre/postconditions again arises. The predicate identityInConditionsOfScene-Arg1Argl
is introduced. It states that, for a given Scene, arg-1 of predicate ?P1 is equal to



arg-1 of predicate ?P2, where both predicates occur in a pre or a postcondition
relation (?SREL1 ?SREL?2).

F: (implies
(and (identityInConditionsOfScene-ArglArgl ?SCENE 7SREL1 ?7P1 7SREL2 7P2)

(isa 7SUBEVENT ?7SCENE)
(isa 7P1 UnaryPredicate)
(isa 7P2 UnaryPredicate)
(?SREL1 (?P1 70BJECT1) ?SUBEVENT)
(?SREL2 (?P2 ?0BJECT2) ?SUBEVENT))

(equals ?0BJECT1 ?0BJECT2)).

Similarly, predicates specifying identity for argl-arg2, argl-arg3, arg2-arg2,
arg2-arg3 and arg3-arg3 are defined. These relations provide the means to express
at the type level the information that would be more usually encoded by bindings
between variables. In the example below, a Strips-like action description for
(connect X ?Y) is followed by the equivalent argument identity assertions for
the Connect Scene:

Strips-like description:

Action: (connect ?X 7Y)
Preconditions: (mear 7X 7Y)
Postconditions: (connectedTo 7X ?7Y)

Type-level description of identity:

(identityInConditionsOfScene—ArgiArgl Connect
preconditionFor-PropSit near
postconditionFor-PropSit connectedTo)

(identityInConditionsOfScene-Arg2Arg2 Connect
preconditionFor-PropSit near
postconditionFor-PropSit connectedTo)

The identity conditions simply state that the ?X and ?Y in mear in the
preconditions must be the same ?X and ?Y in connectedTo in the postconditions.

Planning We have implemented translation procedures that transform the
type-level encodings of actions into PDDL and also construct a constraint the-
ory in Cyc [2]. The semantics of the constraint theory are equivalent to those of
the PDDL problem definition. Thus we have a dual representation of conditions:
a Process semantics which is consistent with Process models, and a constraint
semantics which is consistent with the PDDL action encoding. This allows us to
call an external planner to perform plan generation when this type of reasoning
is required. It is worth noting that the ability to plug in an external planner,
though desirable, is not necessary. Cycorp has developed a hierarchical planner
within Cyc, currently deployed as a part of their Cyc Secure (TM) product.
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Fig. 1. Ordering constraints on Repeated Processes

3.4 Repetition in Processes

Biological models commonly include processes that are repeated. The number of
repetitions may be known, or may be unspecified. Further, repetition may occur
until a specific condition is achieved. Repeated actions are a common feature in
descriptions of activity, for example, in Computer Science, many formalisations
of procedural languages have been proposed to describe the while loop construct.
The Repeated Process theory encapsulates the important features of activity
models which include repeated activities, formulated in terms of Scripts.

Repeated events are modelled as ScriptedEventTypes, whose instances ex-
pand into a set of instances of the event-type being repeated. A number of
properties of the expanded set of instances are identified. These include the or-
dering of the repeated instances, e.g. whether instances overlap, the number of
repeated instances, and whether the repeated activity terminates. The Repeated
Script extension is now described in detail. However, we do not give the CycL
definitions of these concepts in this paper.

Properties of Repeated Processes A number of properties on the order-
ing and constitution of repeated ScriptedEventTypes are defined by the follow-
ing collections. These properties capture important and distinguishing aspects
of repeated events. In general, ScriptedEventTypes do not have the restricted
properties defined below for repeated events.

Begin-OrderedProcess Subevent instances of a Begin-OrderedProcess start
at distinct time points. As time points are totally ordered, the start times of
subevent instances are also totally ordered. The constraints on subevent order
are shown diagrammatically in Figure 1.
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ScriptedEventType

Begin-OrderedProcess TerminatingProcess

End-OrderedProcess SequentialProce ™ UniformProcess

EndsBeforeEndsProce;

(repeatinOrderNTimes Event  (repeatUntilNTimes (repeatUnorderedNTimes
NonNegativelntegerExtent) Event EL-Sentence Event NonNegativelntegerExtent)
NonNegativelntegerExtent)

Fig. 2. Properties of Repeated Processes

End-OrderedProcess Subevent instances of a End-OrderedProcess end at distinct
time points.

EndsBeforeEndProcess Subevent instances of an EndsBeforeEndProcess end be-
fore or at the same time as subevent instances which start before them.
SequentialProcess A SequentialProcess has no overlapping subevent instances.
TerminatingProcess An instance of a TerminatingProcess has a lastSubEvents.
Le. there is a subevent instance after which no other subevent instance begins,
and as all activity instances have a begin and end point, there is a time point at
which the composite process ends.

UniformProcess All subevent instances of a UniformProcess are instances of the
same event-type, subScriptedEvent Types must be the same.

Figure 1 illustrates the three constraints Begin, End and EndsBeforeEnd, and
also their combination. This combination plus the sequential specification are
used to define the structure of repeated processes. The condition of uniformity
requires all subevent instances to be of the same type, and termination ensures
there is a last subevent instance.

Definitions of Repeated Processes Repeated Processes can now be defined
in terms of the properties introduced above. The approach taken is to introduce
functions which take event-types as arguments, and denote a new ScriptedE-
ventType which is the repetition of the argument Event. The repeated Script
is modelled as a new composite Script which expands into a uniform set of
subevents. For example, the RepeatInOrder function is used to create a new
composite Script, which itself consists of an overlapping sequence of events at
the instance-level. The instance level is specified intensionally, it is not intended
that the formalisation explicitly create large numbers of instances of repeated ac-
tivities. Three types of repetition are identified: unordered, ordered, and repeat
until a postcondition is achieved. The number of repetitions may be specified.
The properties of (Repeat* ) functions are given in Figure 2.

RepeatInOrder Each activity instance of (RepeatInOrder ?EVENT ?INT)
has a positive number of subevent instances which are ordered. The number of
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subevents may be specified by a positive integer, a range, or a qualitative value
(i-e. a NonNegativelntegerExtent). The subevent instances are Begin and End-
Ordered, EndsBeforeEnd, Terminating and Uniform.

RepeatUnordered Each activity instance of (RepeatUnordered YEVENT ?INT)
has a positive number of subevent instances and the only ordering requirement
is the existence of a last subevent. The event instances are Terminating and
Uniform. The specification in terms of the number of event-instances is similar
to that given above.

RepeatUntil A Script is repeated until the ELSentence-Assertible is achieved,
i.e. it becomes the postconditionFor-PropSit of the last subevent. Each activ-
ity instance of (repeatUntil YEVENT ?PROP ?INT) has a positive number of
subevent instances which are ordered but may overlap. The subevent instances
are Begin, End, EndsBeforeEnd ordered, Terminating and Uniform. Again, the
number of repetitions is specified by a positive integer or a range.

An additional relation, (sceneHasDefinition ?SCENE ?SCRIPT), is defined
to allow an event-type to be modelled as a Scene in one process model, but
to have an expansion (a Script) in another context. This relation allows the
‘modularisation’ of process models within the knowledge base.

Inferred Constituent and Identity Relations As repeated Scripts have a
uniform composition, and are composed of event-types that have already been
defined, their constituents, type-plays-role and identity properties can be derived
from existing assertions. This is possible where the repeated event it itself a
ScriptedEventType.

Two identity models are allowed: 1. inheritIdentity ToSubscenes Event-Type
holds, or 2. inheritldentityToSubscenes Event-Type does not hold. In case 1,
the same things play a role in the Script and in all Scenes. Additionally, the
number of things playing a role in the Script is the same as the number playing
a role in the Scenes. An example is the repeated elongation of RNA in RNA-
transcription, where the same RNA molecule is modified in each step. In case 2,
the things playing a role in each of the repeated events differ (each subevent has
its own instances of the Object-Type). An example is the generation of many
RNA molecules in the virus life cycle model: each instance of RNA-transcription
outputs a different RNA molecule.

4 An Example Process: The Virus Life Cycle

The vaccinia virus life cycle is an example which makes use of all aspects of the
Process ontology. The model describes the attachment of a virus to a cell, the
movement, of the core of the virus into the cell, and the RNA transcription and
translation processes that occur as the virus replicates itself [10].

The temporal ordering of processes in the virus life cycle model was found to
require startsAfterStart, startsAfterEnd and endsAfterEnd orderings. These are
present in the Script vocabulary. There are two groups of subactivities of the
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VirusEntersCell
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Script:Virus doneBy
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| Post: spatial | ySubsumes Cel | VirusCore

| VirusCellAttachment
| ViralCoreEntersCell

‘ ViralUncoatingOuterMembrane ‘

c) Conditions

Fig. 3. The VirusEntersCell process

virus life cycle that can be distinguished ( VirusEntersCell and ViralTranscription-
Late), the remaining early and intermediate transcription activities are too inter-

related to be able to introduce any other intermediate-level groupings. Figure

3 a) shows the subactivities of the VirusEntersCell process and their temporal

ordering. The entire model was formalised in 144 type-level assertions relating

to 14 activity types, but only a small fragment can be presented here.

The objects involved in each activity and the roles played are shown in Figure
3 b). The strong identity model is applies here: the same Cell and Virus are
referred to in the Script and in all Scenes. The quantifier many is frequently
used in the life cycle model and, consequently, someInstancePlaysRoleInScene
is also required to describe the ‘flow of objects’. The temporal order can, in part,
be deduced from the input and output roles®.

The source document [10] describes the preconditions and effects of several
actions, and these are represented using the precondition relations, and existing
Cyc terms where possible, see Figure 3 ¢). The preconditions mainly refer to
spatial location. Some overlap between the concepts of precondition and role
were found in the text - the existence of something playing an input role was
often described as a precondition. We take the approach of not duplicating the
Object Type-plays-Role information in the conditions of an action.

3 However, Figure 3 does not illustrate this.
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A more detailed model of RNA transcription has also been specified in a
separate modelling exercise. This model describes the production of a single
object, a molecule of RNA. By using the repetition operators, this model can be
related to the MRNATranscription-Early process in the virus model:

F: (sceneHasDefinition MRNATranscription-Early
(RepeatUnordered DNARNATranscription Many-Quant)).
F: (unknownSentence (inheritIdentityToSubscenes
(repeatUnordered DNARNATranscription Many-Quant) DNAMolecule)).
F: (unknownSentence (inheritIdentityToSubscenes
(repeatUnordered DNARNATranscription Many-Quant) RNAPolymerase)) .
F: (unknownSentence (inheritIdentityToSubscenes
(repeatUnordered DNARNATranscription Many-Quant) MessengerRNA)).

In this case, the repetition of DNARNATranscription does not have the in-
heritIdentity ToSubscenes property for any of its object-types. Therefore, many
MessengerRNA are involved in the repeated process as outputs, each repetition
producing one molecule (by the RNA transcription model). New properties of
the MRNATranscription-Early process can be derived as a result, and it becomes
possible to explore the structure and content of the transcription model.

The three perspectives on the process: temporal order, participants, and con-
ditions are useful views to distinguish in process modelling. The relation of the
perspectives through the types of participants that are involved in each process
is the feature which unifies the views.

5 Related Work

The Process ontology is closely related to the Process Specification Language,
in terms of both the intended area of application and formal approach. PSL
identifies four classes which form a partition: Activity, ActivityOccurrence, Ob-
ject and Timepoint. An ActivityOccurrence has a type (occurenceOf), can be
related to a timepoint, and can have an object associated with it. The PSL Core
is an instance-level theory of activity which can be mapped to the equivalent
event/object relations in Cyc (indeed we have specified four PSL theories in
CycL). While the predicates differ, equivalent instance-level models of events
can be created.

PSL has several theories which the Process ontology currently lacks. However,
PSL does not provide a well defined set of type-level relations for subevent
ordering, participants or conditions (fluents in PSL)%. Modelling using the core
PSL theories must be performed primarily at the event instance level. PSL does
define a theory of junctions in processes, i.e. it is possible to define or-splits and
and-splits. This theory is expressed in the way we advocate: a property of an
activity-type is defined in terms of constraints at the activity occurrence level.
Therefore, we can import junctions theory, after re-expressing it in Cyc terms.

4 Many of the type-level relations have no axioms and only a textual definition.
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DAML-S [4] contains a process ontology which contains many concepts found
in PSL, and in the ontology presented here. For example, types of process include
atomic, simple and composite, process parameters (properties) include inputs,
outputs and participants and these correspond to roles in our ontology. DAML-S
also has preconditions and effects, sequence, split+join and repetition. However,
DAML-S currently only defines the names of collections or properties so no
detailed comparison is possible.

IDEF3]5] is a process modelling methodology which primarily diagrammatic.
Processes, process products, and their connections are represented by a conven-
tion of boxes and arrows. The visual presentation is important in the modelling
process, and in explaining the model to the managers and employees in an or-
ganisation. IDEF3 models have several features which inform the interpretation
of the diagrams, including and/or/xor junctions. Processes may have attributes
such as triggers which are not shown in the diagram but are documented else-
where. None of these features have formal semantics. The informality allows a
single model to describe many complex phenomena, such as repetition, splits in
the flow of processes (junctions) and synchronisation, in a relatively intuitive
way. Naturally, IDEF3 models cannot be processed by machine without creating
an interpretation (explicitly or implicitly). Defining an underlying formal seman-
tics for informal modelling techniques allows the consistency and integrity of the
models to be maintained [3]. These practical benefits are important justifications
for formalisation in a business context.

The dominance of visual methods in process modelling is notable. While the
current Cyc GUI requires the user to fill-out a form with the names of event-types
and other classes, the same information could be obtained while the user labels
a process in a drag-and-drop panel. As is the case in the form-based interface,
the user need not be aware of the underlying type-level relations that are being
asserted: We consider the three views of a process illustrated in Figure 3 to be
the essence of such an interface.

6 Conclusions

Through pursuing the type-level approach, we have found there to be a relatively
small set of useful abstractions of processes. Consequently, the combination of a
type-level vocabulary with the associated knowledge-elicitation rules is a power-
ful technique for knowledge acquisition. An advantage of the Process vocabulary
is the ability to specify processes in an incremental fashion, as properties of
Scripts and Scenes are broken down to manageable fragments. The alternative
is to author complex rules at the event-instance level, a task which, when given
to domain experts, certainly requires them to become much more familiar with
the logical encoding - in addition to the semantics of the logical terms.
Supporting the user by providing a visualisation of the formalised process will
assist the modelling task. This may be form-based or use direct manipulation.
The tool developers task of providing the interface is simplified by the type-level
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characterisation of the event models, as diagrammatic views of arbitrary logical
formula need not be created.

In conclusion, we believe type-level abstractions of processes to be valuable
in terms of the semantics they provide, and in terms of supporting the knowledge
authoring task directly, and through easing tool design.
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