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Abstract. This paper presents a model of proof discovery derived
from the proof attempts of subjects who carried out interactive proofs
using the HOL or Isabelle provers. Techniques of knowledge mod-
elling, from knowledge-basedsystem development, are used to derive
a semi-formal model of the knowledge utilised by the subjects. The
proposed model makes claims about the relation between the problem
class, the proof plan and its implementation.

1 INTRODUCTION

Automated theorem provers are able to solve increasingly more com-
plex problems, however, these tasks still only approximate real world
verification tasks. It is becoming clear that provers developed accord-
ing to the automated-proof philosophy will very often require user
intervention to complete a proof. Consequently, the user must attempt
to comprehend the state of a partially successful proof and the repre-
sentation of its derivation. The user must then decide how the proof
should be developed.

In interactive theorem proving, e.g. in HOL [6], the user chooses all
proof steps him/herself. The user is thus responsible for all high level
and low level decisions regarding the general strategy of the proof
and the tactics to implement the strategy. The user is less likely to
have problems orienting themselves in a proof (in [1] the frequency of
user errors in proof context are quantified and found to be negligible).
However, users are often uncertain about the correct proof strategy
and use the theorem prover to explore conjectures about the proof.

One aim of several recent approaches to automated theorem prov-
ing is to find ways to implement humanlike proof strategies [8]. While
these techniques cannot generally be equated with cognitive models,
they are nonetheless the best models of problem solving in the domain
of theorem proving that we have. For this reason we shall contrast
our findings, which concern human problem solving, with the tech-
niques of automated reasoning. We also relate our results to cognitive
studies of programming, whose methods and findings we believe to
be relevant to the study of interactive proof.

In this paper we identify levels of representation and structure in
proofs found interactively. This structure is not utilised in current
automated provers, hence we propose, firstly, that new methods of
automated proof should utilise the types of knowledge we identify,
and secondly that this structure should be extracted from automated
proofs in order to generate an explanation – irrespective of how the
proof was actually found.

This paper continues in Section 2 with a description of the method-
ology used to collect and interpret the data. An aggregate picture of
the activities of interactive proof is presented in Section 3 and a
�
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knowledge-based model of problem solving is presented in Section
4. These two descriptions of the observed proof activity differ in that
the former is a relatively uninterpreted view of the data, while the
latter postulates the existence of various concepts and their role in
problem solving. Finally, we discuss the model and its relation to
automated approaches to proof and to programming.

2 METHODOLOGY

In this paper we take an observational approach to knowledge ac-
quisition. This approach is comparable with that of [2] who note
that observational studies have the advantage that they can be used
to discover what the expert actually does. The disadvantage of this
approach is the complexity of the analysis and the time required –
in contrast with the standard approaches. We believe the observa-
tional approach is appropriate in this instance as there are insufficient
existing studies which we could make use of to obtain background
information, prior to, for example, using a model-based knowledge
acquisition method. In the well-known study of [9] the participants
had no accumulated experience in theorem proving. Their problem-
solving skills in this domain were consequently undeveloped and the
study is therefore not an appropriate source of data for our purposes.

The following experimental method was used. Subjects were asked
to prove a given theorem. They were requested to think aloud while
attempting the proof and their voice was recorded on tape. All inputs
to and outputs from the prover were recorded (the shell script) as
was the final proof (the proof script). After the proof was completed,
or 40 minutes had elapsed, subjects were asked to complete a short
questionnaire. This experimental method was intended to gather a
range of data relating to the human-prover interaction in addition to
collecting information required for knowledge acquisition. See [1]
for more details.

All subjects were asked to prove the following theorem:
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(1)

Transcripts were made from four think-aloud recordings. Utterances
were grouped into paragraphs, or foci. The focus of an utterance was
determined by the meaning of the words of the utterance and the
context in which the words were spoken. This context was defined
by previous focus and the point in the proof as determined from the
shell script.

Each focus was described by a summary phrase. In contrast with
[2], where dialogues are analysed, we cannot analyse the function
of utterances (or foci) as we dealing with monologues. We restrict
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ourselves to summarising the evidence of the transcript and the shell
script into a more concise form and putting it into temporal order; fo-
cusing on the activities that are described (verbally) or were recorded.
The aim of this analysis is to identify patterns of activities in inter-
active proof with the minimum amount of interpretation. Section 3
describes the activities of interactive proof.

The initial analysis yields a picture of proof activities, but this
picture has no explanatory value. For this we need to postulate a
model, such as a task model or a knowledge-based model. Following
the model-based approach to describing expertise [13] we propose an
inference structure which specifies a number of concepts and steps of
reasoning which model the problem solving behaviour of the subjects.
This model is presented in Section 4.

3 THE ACTIVITIES OF INTERACTIVE PROOF

In order to describe the transcripts in a consistent way, the following
terminology was defined:

tactical level A description of proof step(s) in terms of tactics.
logical level A description of the proof, or of proof steps, in general,

logical terms, i.e. a description which is not concerned with the
tactics which realise it.

consider problem A verbalisation of the top goal statement or a
reference to it.

sketch solution A general description of the solution in logical terms.
consider current goal A verbalisation of the current goal or a ref-

erence to it.
formulate proof step A description of the next proof step(s) by nam-

ing the tactic(s) (a tactical level description) or by describing the
effects of the tactic (a logical level description), i.e. a specific
description of how a tactic operates.

repeat proof step An utterance indicating that a previously formu-
lated proof step will be repeated.

consider strategy A description of the next several proof steps in
abstract, logical terms.

revise strategy A description of the next several proof steps which
revises an earlier strategy.

assess A judgement of the result of a proof step with respect to the
current strategy. An assessment may also be indicated indirectly,
for example by commenting on the lack of response of the prover.

review proof script A modification of the proof script other than at
the current subgoal.

recognise context error A statement indicating an error such as
backing up too far.

acquire information A statement indicating that additional infor-
mation is being sought.

do proof step Execution of a proof step indicated by a statement or
by the HOL shell script.

undo proof step Backing up one or more proof steps, indicated by
a statement or by the HOL shell script.

Each group of utterances was summarised by one of the above
phrases, with the exception of those which were irrelevant to the
proof activity, e.g. comments about typing mistakes, problems with
the emacs editor etc. The terminology was not defined prior to the
analysis of the transcripts. Pilot studies had shown some common
activities, but had not produced a sufficiently comprehensive set of
terms. The sequence of activities undertaken by each subject can be
examined by writing the activities in a tabular form. All subjects began
by considering the problem and sketching the solution (mentally) to
some degree. The activities of subject C are illustrated in Figure 1
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Figure 1. The activities of subject C.

which shows the formulation and execution of proof steps 2 to 9
(PS2-PS9). This diagram shows a typical pattern of activities during
the proof: proof steps are formulated then executed, the result is
often assessed and formulation is often preceeded by considering
the current goal or by considering strategy. Figure 1 does not show
every formulation of a proof step being preceeded by a perceptual
activity (e.g. considering the current goal) or being followed by an
evaluation activity (e.g. assessment). This is in part due to subjects not
verbalising all their thoughts. It is also likely that on some occasions
subjects did not take time to read the output of the prover. There were
differences between subjects in the manner in which they thought
aloud, and in the length of silences during rapid activity – particularly
towards the end of the proof. Consequently, it is unlikely that an
entirely uniform pattern of activities could emerge.

To discover what an aggregate picture of proof activity looks like
we counted the transitions between activities in all transcripts. For
each of the twelve activities there are eleven other activities which
might follow, therefore there are a total of 132 possible transitions.
In fact only 29 distinct transitions occurred. When those transitions
which are unique to one subject are eliminated, 16 distinct transitions
remain. These account for 111 of the original 126 transitions found in
the transcripts (88% of the data) and Figure 2 illustrates the frequency
of these transitions.

In Figure 2 the activities are distinguished according to whether
they concern purely logical concepts (the logical level) or whether
they concern concepts specific to interaction with the HOL prover
(the interaction level). The consider current goal activity has an am-
biguous status. It may describe a purely perceptual action; but the
current goal is also the problem solving goal and hence the subject
may be considering the goal at the logical level. To resolve this type
of ambiguity it is necessary to model the problem-solving behaviour
at greater depth. We now turn to this task.
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4 A KNOWLEDGE-BASED MODEL

We begin with an informal description of typical problem-solving
behaviour, and then describe the knowledge acquisition method in
detail and present the resulting knowledge-based model. We shall
make use of the data from the HOL users experiment together with
data from four subjects who used the Isabelle [10] theorem prover.
These subjects were asked to formulate a definition and to prove the
following theorem, where ���������	��
� ��� 
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Problem solving was always observed to begin by sketching the
solution, or strategy (as defined above), of the proof. Examples in-
clude list-induction and simplify-with-arith. Two of the Isabelle users
sketched their solutions on paper before beginning the interactive
proof. The tangible result of selecting a strategy was a proof step
(a line of input) or a sequence of proof steps. It was determined,
by means of a questionnaire, that the selection of tactics was often
uncertain or experimental. This supports the proposal that the rela-
tion between the theorem to be proven and the solution strategy is
a heuristic one. Subjects who chose a wrong solution approach, e.g.
double-list-induction (HOL subject D) or induction on the wrong
variable (Isabelle subject 1), revised their approach upon the failure
of a tactic or when progress in the proof was difficult.

In HOL it is possible to combine several tactics into one proof
step; for example, one HOL subject (A) combined four tactics into
one proof step, while other subjects entered these tactics in two or in
three proof steps (subjects D and B respectively). In order to model
the derivation of proof steps from a strategy we introduce the concept
of a plan which is composed of actions. The plan is further refined
to derive a sequence of tactics. In the case of subject A, the plan is a
single compoundaction [prepare-list-induct-assum-rewrite(l)] which
is refined into the tactic sequence:

GEN TAC THEN STRIP TAC THEN LIST INDUCT TAC
THEN ASM REWRITE TAC[];;.

In the case of subject B, the plan is composed of three actions:�
prepare, list-induct(l), assum-rewrite

�
and these actions are refined

to the following three tactic sequences:

GEN TAC THEN STRIP TAC;;
INDUCT THEN list INDUCT MP TAC;;
ASM REWRITE TAC [];;

The important distinction between these two plans (which result in
essentially the same tactics) is that the second plan permits the inter-
mediate proof states to be examined while the first does not. Subject
A was more experienced than subject B and this may explain the
more compact plan.

Both plans are partial plans – they solve only the first subgoals of
the main goal. Subjects were not able to produce complete plans of
the proof without evaluating some tactics. This is simply because it
is not possible to do interactive proof solely in the head. This is not to
say that subjects did not consider the solution of the step case in their
initial sketch of the solution; no subject attempted to predict the exact
form of the step case subgoal without interaction with the prover
(or pencil and paper calculation). The plans describe stereotypical
sequences of actions. The existence of such patterns has previously
been noted [3].

4.1 Knowledge acquisition and knowledge
modelling

Knowledge acquisition is a modelling activity where the interpreta-
tion of the data is guided by known, or hypothesised, models of prob-
lem solving. In this case the sources of data were the transcripts of the
think-aloud recordings and the shell script. Concepts were identified
from phrases in the transcripts and rendered into a decontextualised
form where necessary. A problem-solving model was defined and the
explanatory power of the model was assessed.

One candidate problem-solving model is heuristic classification
[4] where solutions are heuristically associated with problems. In this
model strategies might be identified with certain internal nodes of the
solution hierarchy (a hierarchy of plans). However, this distinction
between strategy and plan is rather unsatisfactory.
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Figure 3. The classify and associate inference structure.

The observed pattern of reasoning can also be described by in-
troducing the notion of a Problem Class. Specific problems are first
classified as an instance of a particular problem class and then the
solution is obtained by association [5, 7]. The heuristic aspect of
problem solving is retained as classification may be an uncertain in-
ference. The main organising principle of the problem class hierarchy
is form of the solution. For example, assumption-rewriting-problem
is now viewed as a problem class, a subclass of rewriting-problem.
Previously, we used the term strategy to describe typical solutions of
problems in these classes. Now we distinguish problem types from
solutions (plans). The full model is shown in Figure 3 and we now
describe each reasoning step, known as an inference step and class of
concepts, known as a meta-class, at this ‘meta-level’.

�

The Current Goal is the goal to be proven as it is represented at
the prover interface. At the start of problem solving the instance of
Current Goal is:

!P.P[] /\
(!x. P[x] /\
(!l1 l2. P l1 /\ P l2 ==> P(APPEND l1 l2)))
==> (!l. P l) (3)

Both the Current Goal and the Problem Context are abstracted to
obtain the Problem Description. When the Current Goal is (3) the
Problem Description contains equation (1), among other information.
We shall develop this example.

The classify inference determines the Problem Class which is as-
sociated with the Problem Description. Examples of problem classes
which are associated with (1) are list-induction-problem
and double-list-induction-problem.�

We have attempted to use KADS terminology where possible, hence re-
finement is now called association which is actually a composition of two
primitive steps: specialise and select.

A Plan is derived from the Problem Class by the associate plan
inference. The plan is a pre-existing sequence of actions which forms a
partial solution. The associate inference may dependon the abstracted
form of the current goal or on the problem context. This will be
the case where there is a choice of an important parameter such as
the induction variable and the induction action needs to contain the
variable name. Similarly, a rewriting action may need to specify a
theorem name – an element of the problem context. Such actions
can be represented in the plan as do-induction-on(x). In the
example case, plans include:

�
prepare-list-induct-assum-rewrite(l)] and�
prepare, list-induct(l), assum-rewrite].

Each action in the plan is then executed. This requires an Action
to be selected from the Plan by the select inference. The Action must
be refined to, or associated with, a Tactic Sequence where a tactic
is an executable command. Association may make reference to the
Current Goal as commands are often sensitive to the syntax of the
goal expression. For example, an action on an assumption (e.g. spe-
cialisation) may be implemented by a tactic which may operate on the
ith assumption of a list of assumptions or on a specific subexpression.
The prepare action may be associated with:

GEN TAC THEN STRIP TAC;; or with
REPEAT STRIP TAC;;.

The tactic sequence is then applied and the result is assessed. If
the Judgement is positive then the Tactic Sequence is joined to the
Proof.

Once all the actions in a plan have been refined and successfully
executed the Current Goal is abstracted to obtain a new Problem
Description. This new problem must be solved by classifying it and
deriving a plan; the sequence of inferences described above is re-
peated.

The sequence of inferences, and their dependency on the outcome
of other inferences, is represented at the task level [13]. We now
describe the sequence of inferences on the failure of a tactic. If a
tactic fails then an alternative Tactic Sequence associated with the
current Action is sought – the associate tactic inference is repeated.
If no successful tactic sequence is found then the previous action
is selected and an alternative refinement of that action is sought.
The associate plan and classify inferences may be repeated until all
possible problem classes have been exhausted.

4.2 Assessing the validity of the model

The validity of the model as an explanation of the observed be-
haviour was assessed by attempting to fit all observed problem-
solving episodes to the model. The primary source of data to be
explained was the temporal sequence of tactics; related sequences of
tactics were termed episodes. The sequence of concepts was consid-
ered to be an important, but secondary, source of data.

The first episode in all transcripts could be described by the classify
and associate model. All 18 subsequent problem-solving episodes
identified in the transcripts of the Isabelle users were also consistent
with this model. In the HOL users transcripts, 7 of the remaining
13 episodes could be described by the classify and associate model.
Six problem-solving episodes could only be described as planning as
the sequence of tactics could only have arisen as a result of explicit
reasoning about the effects of actions on the proof state.
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The model describes problem solving in the HOL trial less well
than in the Isabelle trial. The explanation for this lies in the goal
theorems that were proven. Equation (2) can be proven by induction
and rewriting; this structure is very typical. The proof of equation (1)
may require more complex reasoning in the step case if the definition
of APPEND used to relate CONS to APPEND. Equation (1) may be
proven in a more standard way if a theorem with the correct properties
is used. However, only one subject made use of this theorem.

The classify and associate process we have described is one of
several types of problem-solving activity which were observed. Rea-
soning about actions is not accounted for in the proposed knowl-
edge model. This type of reasoning is best described by a different
knowledge model, rather than by extending the proposed model. Plan
synthesis and plan modification both require such reasoning.

5 REPRESENTATION AND REASONING IN
PROOF AND PROGRAMMING

The levels of representation we define differ from those most often
employed in automated theorem proving. Tactics, as we use the term,
are the lowest level of representation of logical inferences. This level
has been fixed by the HOL and Isabelle user communities over many
years. Actions are meaningful proof steps which might require several
tactics to implement. Actions do not have a fixed granularity, but have
a complexity which is dependent on expertise. Sequences of actions,
or a single compound action, constitute partial plans which describe
the proof at an abstract level. In common with the proof planning
approach [3] we find that many induction proofs have a stereotypical
structure when viewed at this level. Abstract representations of proofs
are also required if proofs are to be reused by analogy [8].

Studies of programming, e.g. [11, 12], have identified the notion
of a plan as an abstraction of a program. Plans are associated with a
class of problems in a problem taxonomy. In problem solving, a plan
is an intermediate abstraction which links a problem to its solution,
that is, to the program [12]. Plan knowledge also plays a role in pro-
gram comprehension [11], as does both control flow knowledge and
goal hierarchy knowledge (often termed procedural and functional
knowledge respectively). Our model of interactive proof resembles
these views of programming in the important respects of levels of
representation and knowledge structures. This reinforces our view
that proof and programming are similar activities from the problem-
solving perspective. Further, studies of program comprehension can
be seen to be relevant to the problem of understandingproofs, whether
complete or incomplete.

6 DISCUSSION

Existing approaches to automated theorem proving put great empha-
sis on techniques for analysing the syntactic structure of theorems
and goals. The observational studies reported on here stress the role
of the subjects’ knowledge of typical proof structures and the interac-
tive nature of the discovery process. This emphasis does not exclude
syntactic analysis and planning from the problem-solving process.

The knowledge-basedmodel has several novel features. The first is
that action refinement bridges the gap between the planning level and
the tactic level. Naturally, this proposal rests on the aforementioned
nature of actions as meaningful logical steps or as useful procedu-
ral steps which manipulate the proof state, generally to permit some
logical operation. Further, conceptual modelling suggests that identi-
fying the problem class is an important intermediate step in selecting
a partial plan.

In our model, partially successful proofs can be explained at mul-
tiple levels of description and this is potentially useful for explaining
the initial (presumably successful) proof steps in abstract terms while
the sequence of the proof which fails can be presented in more de-
tail. The first proof idea in a proof is encapsulated in the problem
class associated with the top goal. Subsequent problem solving steps
can also be summarised by the problem class, or by the sequence
of actions that were attempted but failed, or at the lowest level, the
tactics that were used to implement an action. The fact that humans
discover proofs in this way gives confidence that it provides a good
explanation structure.

In the examples quoted in this paper the association between the
goal and a problem class could simply be stated as this knowledge
was acquired from experimental trials. For the knowledge model to
be the basis for an automated prover, techniques will be required
for deriving higher level concepts from the syntactic form of goals
and theorems. It is clearly necessary that some of this analysis be
automated, while some associations must be learned from examples
or obtained by conventional knowledge acquisition methods.
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