
 1

1 Transformational level brokering

The key elements for understanding the operation of the broker are the service description and

the broker algorithm.

1.1 Service description language

A competence is advertised to the broker as a Service_advertisement message consisting of

the following terms:

• senderURI: the address of this agent (also used for communications: currently just a

fully resolved machine name plus an open port for receiving messages);

• service-name: the name of this particular service, which should be uniquely identify

the service for this agent – a given agent may advertise many services, a particular

service is identified by the combination of URI and name.

• service: the service offered itself; this is described as a Knowledge_transformation

construct, and is described using the following elements:

o transformation-type: a list of one or more terms describing the nature of this

transformation; the terms are drawn from a standard ontology.

o input-knowledge: a list of one or more body of knowledge descriptions (see

below), each representing some structured information supplied as input to

this transformation.

o output-knowledge: a body of knowledge description representing the

structured information that is the result of this transformation.

Each body of knowledge is described using the following terms:

• name: an identifier for this body of knowledge;

• abstraction-level: the level of abstraction of this body of knowledge,

described using a term from the given ontology.

• representation-format: the representational paradigm (in AI-terms) used to

structure the body of knowledge, once again a term from the given ontology.

From this it can be seen that a transformation is here considered to be some sort of standard

alteration of one or more input bodies of knowledge into a single output body of knowledge.

It should be noted that the above competence description makes no mention of preconditions

(other than the required input-knowledge) on service provision or external competences that

 2

are required during execution of the services: services are assumed to be ‘stand-alone’

components, available regardless of the current state of the system or environment. (Such a

view would seem to be more in keeping with the developing notions of web services.)

It is expected that a service advertisement description will be complete, inasmuch as values

will be supplied for all the above fields, and, moreover, where ontological terms are specified,

these will be at a (reasonably) low level of abstraction (since, generally speaking, it is

expected that services will effect concrete rather than abstract transformations).

A query description has the same basic structure as a service description (albeit a construct of

type Service_query rather than of Service_advertisement), but it may contain more abstract

ontological terms (if for example, one of a class of transformations is desired, but no one

particular member of that class), and it may be incomplete in two particular ways:

• it may lack a transformation-type description, if this is implied by the descriptions of

the input-knowledge and output-knowledge (both of which, in this case, must be

supplied);

• it may lack the description of an output-knowledge if this is implied by the

transformation-type and the input-knowledge (both of which, in this case, must be

supplied).

In practice, the communication of both service advertisements and queries is made according

to an RDF specification of the above terms;1 the following section gives an example of an

advertisement in this form.

1.1.1 Service description: example

This is an example representing the advertisement of ‘id3’, a machine learning service. This

particular service effects a transformation of type Generalisation_synthesis on a body of

knowledge at abstraction level Instance_abstraction_level and having representation type

Symbolic-value_pairs, resulting in an output body of knowledge at abstraction level

Exclusive_domain_abstraction_level and representation type Rule-based. (These terms, and

all the constructions are all defined against the namespace kb: the corresponding RDFS

declaration of the terms used is not presented here, but it is hoped that the semantics of these

will be reasonably obvious.)

1 The change to using RDF for the descriptions was made partly to exploit the facilities of RDFS for

defining and using ontological terms, and partly to encourage greater interoperability with non-Prolog-

based agents.

 3

<?xml version='1.0' encoding='ISO-8859-1'?>

<!DOCTYPE rdf:RDF

[<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<!ENTITY kb 'http://protege.stanford.edu/kb#'>

<!ENTITY rdfs 'http://www.w3.org/TR/1999/PR-rdf-schema-19990303#'>]>

<rdf:RDF xmlns:rdf="&rdf;"xmlns:kb="&kb;"xmlns:rdfs="&rdfs;">

<kb:Service_advertisement rdf:about="&kb;KnowTransComms2_0"

kb:senderURI="http://amedee.inf.ed.ac.uk:12003"

kb:service-name="id3" rdfs:label="&kb;KnowTransComms2_0">

<kb:service rdf:resource="&kb;KnowTrans_0"/>

</kb:Service_advertisement>

<kb:Knowledge_transformation rdf:about="&kb;KnowTrans_0"

kb:name="id3" rdfs:label="id3">

<kb:transformation-type

rdf:resource="&kb;Generalisation_synthesis"/>

<kb:input-knowledge rdf:resource="&kb;KnowTrans_1"/>

<kb:output-knowledge rdf:resource="&kb;KnowTrans_2"/>

</kb:Knowledge_transformation>

<kb:Body_of_knowledge rdf:about="&kb;KnowTrans_1"

kb:name="input-examples" rdfs:label="input-examples">

<kb:representation-format

rdf:resource="&kb;Symbolic-value_pairs"/>

<kb:abstraction-level

rdf:resource="&kb;Instance_abstraction_level"/>

</kb:Body_of_knowledge>

<kb:Body_of_knowledge rdf:about="&kb;KnowTrans_2"

kb:name="output-rules" rdfs:label="output-rules">

<kb:representation-format rdf:resource="&kb;Rule-based"/>

<kb:abstraction-level

rdf:resource="&kb;Exclusive_domain_abstraction_level"/>

</kb:Body_of_knowledge>

</rdf:RDF>

So, a query matching to this service might, say, request the transformation

Generalisation_synthesis of a body-of-knowledge described at the Instance_abstraction_level

and in terms of Attribute-value_pairs (assuming this representational paradigm is defined as a

superclass of Symbolic-value_pairs). Hence, in this environment, all agents are constrained to

describe their services and pose their queries in terms of a shared knowledge transformation

 4

ontology, and moreover, it is assumed that this ontology will be applicable across a range of

domains. The introduction and use of this more general ontology for describing services is an

attempt to address the problem noted above of having to ‘know’ the terms in which services

are advertised in order to be able to formulate queries requesting them.2

1.2 Broker algorithm

When it receives a new transformational query, the task of the broker is to determine whether

any advertised service – or sequence of services – would result in the desired transformation.

The algorithm to do this is as follows:

1. Let the solutions set, S={}. Let the possibles set, P={}. Search through the advertised

services to find possible terminal services (these are services that may constitute the

final element in a sequence of services to achieve the goal query):

• If the query contains both transformation-type and output-knowledge

descriptions, then any service which matches3 both these represents a possible

2 This is not to say that this representation is either correct or universally appropriate (for instance, the

language currently permits only descriptions of domain-independent services: there is no facility for

describing the domain that a service operates in, and to rectify this would seem likely to introduce

some of the problems noted above with the functional level description). Ultimately, the

appropriateness of this representation depends on its pragmatic value, and testing is required to

determine this.

3 To determine whether a query transformation-type, Tq, consisting of a list of ontological terms,

matches a service transformation-type, Ts, the following algorithm is applied:

1. Let Q = Tq and R = Ts.

2. If Q = {} or R = {} then stop: Tq and Ts are deemed to match.

3. Otherwise, taking the next term q of Q, compare it to each of the terms r in R in turn to

determine the ‘best’ matching term among these, rB. The terms q and r match if and only if q

is equal to or subsumes r, and the best match is that which involves the least ‘ontological

distance’ between the q and r – if the terms are equal, their ontological distance is 0, if q is an

immediate superclass of r, their distance is 1 and so forth. If there is more than one term in R

that fulfils the criteria of the best match, an arbitrary choice is made amongst these as to the

best, rB. However, if no term in R is found to match q then the process stops - Tq and Ts do not

match.

4. The two best matching terms q and rB are removed from Q and from R respectively, and the

matching process continues from 2 above.

 5

terminal service, and is added to P as the first element of a potential service

sequence (a service sequence is a list of services whose application, in order,

would result in the satisfaction of the query).

• Else, if the query contains no output-knowledge, then any service that matches the

desired transformation-type represents a possible terminal service, and is added

to P as the first element of a potential service sequence.

• Else, if the query contains no transformation-type, then any service that matches

the desired output-knowledge represents a possible terminal service, and is added

to P as the first element of a potential service sequence.

2. If P = {} then stop. Return S as the set of plausible complete sequences for satisfying

the current query.

3. Consider each element p ∈ P in turn to determine whether p constitutes a ‘complete’

service sequence for the current query: if the input-knowledge of the query and the

input-knowledge of the first element (a service) of p match then this is a complete

sequence, and p is removed from P and added to S.

4. For each incomplete plausible sequence p ∈ P search the current services for any

other known service s that could plausibly precede this in a service sequence: s can

plausibly precede p if the output-knowledge of s matches the input-knowledge of the

first element of p (in other words, if the output of s could plausibly represent the input

to the sequence p).4 For each s that meets this criterion, a new plausible service

A query output-knowledge description, Oq (a body of knowledge), is considered to match a service

output-knowledge description, Os, if and only if:

• The abstraction-level of Oq is equal to or subsumes the abstraction-level of Os, and;

• The representation-format of Oq is equal to or subsumes the representation-format of Os.

To determine if a query input-knowledge description, Iq (a list of bodies of knowledge), matches a

service input-knowledge description, Is, a similar algorithm is applied as for the transformation-type

matching described above but, within this, matching the individual (body of knowledge) elements using

the same approach as for the output-knowledge elements.

4 Given particular combinations of particular service descriptions, it will be noted that with this step

there is the potential of propagating non-terminating circular sequences. Currently this is avoided by

checking that s does not already exist in p, but this simple approach could result in the exclusion of

certain valid sequences.

 6

sequence consisting of s appended to the front of p is added to P. Finally, remove p

from P.

5. Repeat from step 2 above.

	Transformational level brokering
	Service description language
	Service description: example

	Broker algorithm

